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Christoph Schaller - STORMicroscopy

1 Introduction

The first chapter illustrates the difficulties of achieving nanometer resolution in microscopy and gives

a brief abstract of the occuring phenomena. Finally the thesis is motivated and outlined.

1.1 The diffraction barrier

In general the resolution of light microscopes is
roughly limited by A/2 &~ 250 nm, which corre-
sponds to half of the wavelength of the visible
spectrum. This is caused by the fact that when-
ever we observe an object, we actually do not ob-
serve a point, but a distribution of photons. Usu-
ally the size of that distribution is negligible com-
pared to the resolution. However when it comes
to structures in the dimension of nanometers, we
start to observe the so called Airy diffraction pat-
tern or Airy disk displayed in Figure 1.1. It is
named after the English astronomer George Bid-
dell Airy, who was the first to theoretically treat
this phenomenon in the year 1835 [2].
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Figure 1.2: Airy disk point spread function (solid)

with central ring fit by a Gaussian(dashed). [1]

Figure 1.1: Airy disk intensities. [1]

The pattern consists of several rings, though
the central ring contains the major part with
83.8% of the intensity. Its radius can be shown
to be

T diry N 0.61-2 . (1.1)
NA

Now the so called Rayleigh criterion declares,
that two spots are no longer resolvable if their
centers come closer than the radii of their inner
rings. Taking the fact into consideration that the
best, current optical microscopes have numerical
apertures N A of up to 1.4 [3], we achieve a lower

bound for the optical resolution.

Furthermore the central ring is well-fitted by a Gaussian as displayed in Figure 1.2. As first stated
by Thomann et al. in 2002 [4] and proven by Zhang et al. in 2006 [5] the standard deviation for the

minimal error in the sense of L, is

A

oc~021—

NA

Consequently there are biological structures which can be resolved optically as well as those which

we cannot resolve as the scheme in Figure 1.3 points out.

But even if details cannot be resolved, there are multiple approaches to at least locate the center of

an object to a much greater precision. One of these is STochastical Optical Reconstruction Microscopy
(STORM), which was introduced by Michael J. Rust, Mark Bates and Xiaowei Zhuang in 2006 (cf.

[7]) and forms the basis of this thesis.
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1.2 Imaging and noise

Figure 1.3: The size scale of
various biological structures in
comparison with the diffraction-
limited resolution. [6] (left to
right) A mammalian cell, a bac-
terial cell, a mitochondrion, an
influenza virus, a ribosome, the
green fluorescent protein, and a
small molecule (thymine).

Wanting to work with these distributions of photons one would like to localize single photons as precise

as possible. However it is only possible to collect photons in so called pixels and measure the current

they cause at a photoelectric cell. Here we got our first crucial source of noise: As we collect photons

within an area, we do not know from which exact location the photon originated. This uncertainty is

called “pixelation noise”.

Additionally the measured current does not indicate the exact number of photons within the area

as there are effects like dark current or incoming photons generating different numbers of electrons.

Those inaccuracies are regarded as global influences and therefore their impact is summarized under

the term “background noise” together with effects such as out-of-focus fluorescence and readout errors.

Finally we do not always observe
a perfect distribution but a fixed
number of localizations generated
by the distribution. The influence
of that factor is called “photon shot
noise”, but becomes negligible for
large enough photon numbers.

Taking into account that pixel
sizes of about 100 nm are common,
the imaging process as depicted in
Figure 1.4 seems pretty rough. Nev-
ertheless the distributions remain
observable and thus we can deter-

mine their most likely centers.

‘ true spot center
. found spot center
®  photon from the spot

background photon

Figure 1.4: The imaging process is aggravated by different

sources of noise and pixelation.
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1.3 STORM - the basic idea

The basic idea is presented in principle in the
adjacent scheme in Figure 1.5. At first photo-
switchable fluorophores are attached to specific
molecules, e.g. nucleic acids or proteins, in an
immobilized sample. Then one (optically resolv-
able) subset is activated by laser excitation of
a specific wavelength. Thereafter the activated
fluorophores emit photons while imaging occurs.
That way one obtains a coarse matrix for every
frame, which contains the number of collected
photons within every pixel. Using these one is
now able to reconstruct the spot centers utilizing
a so called “fitting algorithm”. After waiting for
the activated fluorophores to go back into a dark
state, one can repeat the described process sev-
eral times to obtain a STORM image until most
of the fluorophores were excited at least once.
As the cautious reader might have observed
there are several preconditions to be satisfied.
On the one hand we would like to have well-
separated objects to easily distinguish them from
each other, on the other hand we need to be able
to label only specific subsets in a discriminable

way. Furthermore if our objects are too large

1.Initial Configuration

2, Photoacti\f_gte Molecules

Activated
Molecules

Photoactivatable Molecules
(Initially Non-fluorescent)

4. Localize Molecules

Repeat Steps 3-6
for Many (10*-10°%) Molecules

Figure 1.5: The STORM imaging process. [§]

themselves, reducing them to one point is not very meaningful, thus we assume them small enough to

be considered punctate.

The following Figure 1.6 depicts the improved resolution due to STORM compared to immunoflu-

orescence microscopy.

Figure 1.6: STORM imaging of micro-
tubules in a mammalian cell. [9] (A)
Conventional immunofluorescence image
in a large area. (B) STORM image of the
same area. (C and E) Conventional and
(D and F) STORM images corresponding
to the boxed regions in (A).
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1.4 DMotivation and classification of the present thesis

Several authors claim to achieve “nanometer precision” using STORM. This coincides with the theo-
retical predictions yielding that for a “sufficient” number of photons in a spot we should be able to
locate its center arbitrarily accurate. However for simulated data as well as microscopic measurements
we observe lower resolutions as desired, probably resulting from approximations in the used models
or algorithms. Therefore it seems necessary to have a closer look at all steps of the fitting process to

detect error sources and look for possible improvements.
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2 Fitting algorithms

As a starting point for the upcoming research the predominant theoretical status is recapitulated.
Then according to our findings we will try to improve the currently used fitting algorithms.

2.1 Preliminaries and overview

Let some experimental result, i.e. a large matrix with photon counts for every pixel, be given. First of
all we have to locate spots within this matrix roughly, before we can commence with fitting the spot

centers. Assuming that there are no overlapping spots, this can be done using the Algorithm 2.1.

Algorithm 2.1 Simple spot recognition.

e Find pixel values above some threshold (e.g. “8 standard deviations away from the mean“ [10]
of the intensity value distribution).

Look for local maxima within connected regions of such pixels.

Cut out surrounding regions according to the known size of a potential spot.

Average the remaining cell values of the frame to obtain the background mean.

Subtract the background mean from the spots.

Fit the spot centers.

Unfortunately the fit of the background noise is only treated in a very simple manner here. As long
as its (standard) deviation is “sufficiently” small this may be adequate, but a localized background
fit might be more precise. Nonetheless this implies a higher computational effort, so first we use the
same approach as previous authors and analyze its behaviour.

In [11] Cheezum et al. applied four commonly used single particle tracking algorithms under
realistic conditions. In comparison to the centroid algorithm, cross-correlation and the sum-absolute
difference (SAD) method, a direct Gaussian fit to the intensity distribution turns out to be the best

choice for point sources in terms of robustness and precision.

2.2 Gaussian mask and full least squares fitting

Now assume a matrix of observed photon counts (without background noise) for each pixel within a
possible spot location is given and denote it .S;;, where (i, j) defines the location of the pixel center
with respect to a local coordinate grid. Moreover indicate with (zg, yo) the unknown spot center
and the likewise unknown total number of photons within the spot with N. Now let ps(4, ;) be the
probability density function of a (normalized) Gaussian distribution centered in (zo, yo) with known

(it can be calculated from the emission wavelength) standard deviation o, i.e.

exp (_(i —z0)®  (j— yo)z) .

202 202

1,]§) =
pG( .7) D)

In the following we want to approximate the center of the spot by fitting S;; with a Gaussian curve
given by G;; := N - pg(i,j), which is a pixelated approximation of the expected number of photons.
Indeed for every pixel I = [i — %, 1+ %] X [j— %,j+ %] we use fI pa(z,y)dA = pg(i,j) - Ar = pa(i, ).
Thus we require a small enough pixel size to justify this approximation.

For fitting with a Gaussian in the next step a maximum likelihood estimation is done by the
(Si;=Gy;)?

I A—s

uncertainty of the pixel values, which we assume to be constant across one spot. We know that the

least squares approach, i.e. we want to minimize x? = 3 . Here o;; denotes the local
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x- and y-direction of a two-dimensional Gaussian distribution are independent. Thus we can consider
minimization in direction of xy and yo separately. Let us start with the x-coordinate.

For every minimum of x?2:

_ d 2
0= d—xOZ(& —Gyj)

d
= 0=> 2(S; - G“)dTJOGij

P —x

—= 0= Z SZJGZJ(Z - $0) — Z GZQJ(Z — .’170) (2.1)

If we now use the approximation ) G;(i — o) ~ 0 due to odd symmetry as Gugik, j & Gao—k, j
and (zg +k —x9) = —(xg — k — xg), we obtain the Gaussian mask algorithm described by Thompson
et al. in [10]. Ultimately, the remaining equation 0 =) S;;G;;(i — o) yields the iteration

_ ZiSijGij
> 8iiGij

In particular, this equation does not depend on N anymore as it cancels after plugging in G;; =

Lo

N -pa(i, 7). Then pe depends only on (zg, yo), while the S;; are known. Analogously we obtain an
iteration formula for yy resulting in the following parallel iteration for both coordinates

o= ZSupalig) - 2 i%pe(i )
> Siipa(i,j) > Sijpali, j)

However if we do not neglect the second term we can achieve higher accuracy at the cost of some

(2.2)

extra computational effort as then (2.1) ensues the iteration

> i(Si; — Gij)Gij
> (Sij — Gij)Gij

o = (2.3)
Again we come up with a similar equation for yg, but this time our iteration is not independent
of N. Thus here we have to fit the total number of photons at the same time. This can be achieved
by adding up the total photon count within the spot with respect to the current (zg, yo) or more
accurate by using the equation
N = 25ura(i ) (2.4)
> pali,j)?
where the pixel counts are weighted with the probability to hit the considered pixel. The parallel
iteration of the position equations from (2.3) with (2.4) is mostly called full least squares fitting.
Nonetheless when performing the Gaussian mask algorithm, we only need to calculate N once
from (2.4) in the very end to gain an approximation of the total number of photons in the spot.

2.3 Numerical integration algorithm

When having a look at the currently used algorithms one observes that they all approximate integrals
of the point spread function by assuming a constant value inside of every pixel which is equal to the
one at its center. Right now we are trying to avoid this approximation.

Recall the notations from Chapter 2.2, i.e. S;; is the matrix of photon counts, o the standard
deviation, N the unknown number of photons and (zo, yo) the spot center, that we want to approx-
imate. Now instead of using a pixelated Gaussian we want to use the exact Gaussian distribution,

which was called pg in the two-dimensional case.
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Once more we can limit the fitting to the one-dimensional case as all occuring distributions are

rotationally symmetric. Hence we use C; = ZjSij as the observation data and fit with G; =
-1 -
N f;jf p1p(x)dx, where p1p denotes the one dimensional Gaussian distribution centered in xg with
2
2
standard deviation o, i.e. pip(x) = ;nanp(_%)'

We repeat the least squares approach

d

0= Tm(zi:(ci - Gi)?)

d

i1l
but now requiring to calculate %Gi = N% f;jf p1p(z)dx.
2

Luckily we can switch integral and differentiation here as [i — 1,4+ 1] is finite, p; p(z) is continuous
1
and ﬁplp(x) exists and is continuous, too. Therefore we obtain d%oGi = Nf;jg %%@pw(x)dz

and thus 0 = Y(C; — Gy) [ 2 (x — 20)p1 p (2)da.

—1
2

Knowing that e(z) = Lerf( x;\%o) satisfies €’ (x) = p1p(x), plugging in yields G; = N (e(i + 3) —e(i — 3)).
For simplicity we denote e;+ = e(i & 3). Furthermore we can integrate

z+% it
/ (x — x0)p1p(x)de = [—ogplp(:p)}i_z .

1

2

For our least squares problem follows

0= 32(C: ~ Newy + New )olpioi+ )~ pioti — 3)

> 0=) (Ci— Neip + Nei_) (eXP((iJr;U_QxO)) — exp((i_;(;zxo))) :

=:f(z0)
Now we “just” need to solve this nonlinear equation. If we do not want to approximate, an application
of Newton’s method for f(x() started in the pixel center of the local maximum should suffice. In order

to apply the iteration x,.1 = @, — ;c/(é")) we need to know f/(xg), too. As e;x =e(i + %) depends on

xg, the product rule yields

f'(xo) =Y (Npip(i + %) — Npip(i — %)) (exp((iﬂ_%)) _ exp((i_z_ﬂct)))>

i+l—1‘0 (Z'+l—.730)2 Z'—l—ﬂio (i—l—aio)z
+ Z(Cl — Ne;jr + Ne;_) (;exp(— 2 ) — Z exp(——2——") ).
By denoting

(i + % —x,)?

pix(zn) = exp(— 52

)= \/%apw(ii%)

and generalizing
1 iti-—m,
eit(Ty) = ierf(;i\/g)
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we can write
N 1 1 o1
fl(xn) = Z m(ﬁw —pin)’+ Z(Ci — Neip + Nei—); ((l + 5 T )pig — (i — 57 In)Pi—)

and
flan) = Z(Cz — Neiy + Nei_)(pit — pi—)-

il
Finally we need some way of calculating the values e;o+ = %erf(Zi;\/;O ). This can be done by one of

several approximations for the error function according to the needed accuracy. In MATLAB the build-
in function erf(z) performs efficiently with relative errors of order 10719 as it is an implementation of
the algorithm given by W. Cody in [12]. As we obtain an analogous relation ¢(y,) in y-direction one

can iterate

f(xn) 9(yn)

Tn+1l = Tp — m, Yn+1 = Yn —
n

starting off with (z¢, yo) located in the pixel center.
But as f(z,), f'(z,) and g(yn), ¢'(y.) are still N-dependant, this needs to be done in turn with
the weighted sum

N — > 8 Pij(xn,yn) 7
Z Pv] (l‘n, yn)2

where P;;(zy,,yn) is the probability to hit pixel (¢, j) from center (z,, y,) and consequently

itg
=5 J

Nonetheless the required values of the error function are the same ones required for the iterations of

i+ 1 r—x 173 y—yn 172
r,y)dy de = - |erf i erf n = (€ijr2—Ci—z)(€ity—€i_y).
potas o)ty de = g et 2] et ] < rnamerna)einseioa)

1
2

the pixel center and thus only need to be calculated once.
All in all this provides a method using no approximations apart from the calculation of the error

functions which can be done to whatever precision needed.

2.4 Poissonian background fitting

After avoiding approximations in the fitting algorithm itself we now want to have a closer look at the
background noise and how it is treated. We recall that background noise was estimated in a rather
simple fashion so far. Obviously subtracting a constant value from every pixel does not represent the
reality as the background noise is a random process following a certain distribution. As stated in [10]
and universally accepted, the background noise can be seen as a Poisson process and therefore every
pixel value should stem from the same Poisson distribution. Thus we want to include fitting a noise
value for every pixel within a spot.

Assume a matrix K;; of observed photon counts including background noise is given. Now we
introduce a matrix b;;, which is meant to contain the number of photons most probably steming from
the background. Finally G;; denotes the matrix of the currently fitted Gaussian distribution and b
the average background noise value.

Thence the probability of an observation is

GV =Gy by b

1j

P = .
———————— ——

Ppsr Pyack

Here Ppgr is the probability of observing K;; — b;; photons from the distribution G;; and Pyger
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the probability to observe b;; background photons if these have an average of b. Both processes
are considered to be Poissonian as there is a certain probability of success and a fixed number of
independently drawn samples.
Now we can interpret this as a function of b;;, i.e.
Pylby) _ G

C sz'(K” —bij)!7

where ¢ € R is independent of b;;. Consequently maximizing the right hand side with respect to b;;
gives us the value maximizing P;;.
Utilizing this idea, we introduce the following Algorithm 2.2 as an improved way of treating the

background noise.

Algorithm 2.2 Improved background fit.
e Start with a matrix of photon counts Kj;.

e Search for local maxima.

e Cut out surrounding regions according to the potential spots.

Initialize b;; 0 = b, where b is the average of the remaining cells, i.e. the background mean.

Repeat the following iteration steps up to a fixed accuracy.

— Calculate the matrix of photon counts S;; ., = Kij — bijn-
— Do one iteration step for (z,, y,) and N using a fitting algorithm.
Maximize Pij(bij) for all (Z, _])

Calculate b as the average of all b;;.

The only remaing question is how to maximize P;;(b;;). We cannot simply use the first derivative,
thus we are looking for a maximizer b;; € N. As we know the average values of the Poisson distribu-
tions, Ppgr is maximized by K;; — G;; and Py,ct, by b. Accordingly we can systematically compare

the values of P;; in the interval and find a local maximizer.

2.5 Fitting a Gaussian background noise
2.5.1 The approach

As we will establish in Chapter 7.1, the background noise can be well-estimated by a Gaussian distri-
bution. We want to try to include this into our fitting algorithm to obtain even better results than
before. In the previous algorithms we always subtracted the average background noise from every
pixel and used the result as input for our fitting algorithm. This is reasonable for a Poissonian (as-
sumed) as well as a Gaussian (observed) as then the average background noise is zero for every pixel.
However this increases the uncertainty of every pixel value according to the standard deviation of the
underlying background distribution. Thus the variations are much higher for the observed Gaussian,
which has a significantly larger standard deviation than the corresponding Poissonian for the same

mean value.
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To emphasize this we generate 1000 STORM

M images (for different intensities) for both cases,
— NI 550, 80 Gaussian

] fit them with our numerical integration algorithm

251
and plot the average errors in Figure 2.1. We

use an average intensity of 550 per pixel respec-

tively and a standard deviation of 80 for the

average error [nm]

Gaussian according to our noise statistics. In
consequence of the higher standard deviation we

observe a significantly larger average fitting error

caused by the increased variations of the individ-

i) L I L L

I
0z 0.4 0.6 0a 1 12 14 18 18 2

intensity . ual pixel values. This motivates the attempt to
Figure 2.1: Average error according to intensity, include our knowledge of the background distri-
pixel size 100 nm, spot diameter 500 nm. bution into a fitting algorithm to achieve lower

average errors.

So far we minimized x? = Y(0;; — b—G;;)?, where O;; denoted the original values, b the mean
background and Gj;; the distribution Jof our current fit. Instead we now want to work with x? =
(05 —bij — Gi;)?, where b;; denotes a so called “local” background fit. Unfortunately it is not possible
to minimize with respect to all free parameters (x, y, b;;), because the background fit b;; is position-
dependant in an analytically unknown way. Thus we want to generate a pool of discrete Gaussian
distributed background values and assign them to the individual pixels.

Previously the fitting of Poissonian background and position in turn did not result in significant
improvements as seen in Chapter 2.4. The reason for that may be that separate fitting damps the
iteration steps in direction of the initial position as the difference of observations and old fit is treated as
background. Therefore we will analyze whether taking the result of the common numerical integration
algorithm as an initial iterate for the new algorithm improves its quality. This seems justified as we
will have an unbiased starting point for our background fitting, which will hopefully shift it further
on towards the true center, even if it does not arrive there due to damping. Still the result would be

an improvement of the best possible fit that was developed until now.

2.5.2 The discrete approximation of a Gaussian

As mentioned before, we will need a pool of background values distributed according to a known

Gaussian. Here we describe how to obtain the most probable distribution of such discrete values.
First of all, assume we know the average m € R and the standard deviation s € R of the underlying

background, because we can estimate them from the pixels which were not assigned to a spot. Then

the probability to observe a fixed number & € N of background photons is approximately P(k) =
k+3 1 (z=m)
k—3 \/27rsexp(_ 252

the most probable “next” photon number by basic stochastics as the probality to observe a specific

)dz, a number which we can easily calculate. Now we can inductively find

distribution of n pixel values is a multiset permutation and therefore given by

n!
P=————"—""P(k)" -...- P(ky),
ar!-as! - ... ay! (k) (kn)
where a; denotes the number of occurences of the background noise value k;.

Altogether this motivates the following inductive Algorithm 2.3 to obtain the desired distribution.
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Algorithm 2.3 Generating the most probable discrete Gaussian distribution.

e The most probable distribution for & = 1 is of course D; = {m}.

e Now for k =n + 1, we can obtain D,,;1 from D,,.

— Denote the maximal and minimal ¢ € Z for which m + ¢ occurs in D,, by t,in and tqz-
P(m+1)

— Calculate z; = = AT where a,,4; is the number of occurences of m + ¢ in D,,, for all
m k2

i € {twmin — 1, vy tmas + 1}.
— Denote the i € Z for which z; is maximal by ¢ and obtain D, +; = D,, U {t}.

2.5.3 The algorithm itself

We recall our algorithm for one coordinate from Chapter 2.3, which can be summarized by the following

equations:

flan) = (Ci = New + Nein)(pir — pi-),

f(xzy) = Z %@H _pi7)2+Z(Ci—Nei++Nei,)% ((2 + % — ZTp)Pix — (i — % — xn)pi> and

Here we denoted the number of photons by NV, the standard deviation by o, the 1D-observations
by C; =>" ; S;; and furthermore

i+t —x,)? o1
pit(Tn) := eXP(—%) = V2mopip(i £ 5) and
1 it i—x,
eix(x,) = —erf(—2—"").
:I:( ) 2 ( O'\/§ )

The point that we want to tackle now is C; = 3, Si; = >_,(Oi; — b), where b was the average
background noise.

Let us assume we have M x M pixels that contain a spot. Then the background noise in one column
(or analogously row) is the sum of M background values. We recall our notations and algorithms
from the previous Chapter 2.5.2. Thus the number of background photons in one column is normally
distributed with mean M - m and standard deviation v/M - s as the sum of normal distributions is
again normally distributed with the means and variances summed. Now we can use Algorithm 2.3 to
calculate the M most probable background values Dj;. Finally we need to assign these values to the
columns.

We recall that we minimize x2 = Y00, (0; — bi — Gi)2 = 2 (O; — b; — Ne; + Ne;_)?, where
we denote a columnwise background fit by b;. Now for the actual iterate z,, we can calculate the
differences (O; — Ne;+ + Ne,_) and assign the values b; € Dy such that x? is minimal. This is simply
done by ordering the differences and background values respectively and grouping the ones in the

same places (cf. Appendix B for the proof).
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3 Uncertainty and precision

Before the algorithms will be tested, we assess the inherent inaccuracies in the fitting process.

3.1 Error estimation

In [10] Thompson et al. furthermore provided the single error estimation for the localization precision
of least squares fitting. This is done by splitting up the problem into the two extreme cases of few or
many photons (compared to the background noise) being present.

We start with the so called photon shot noise-limited case, where we assume that no background

noise is present or it is negligible compared to the occuring photon numbers. As long as no pixelation

occurs the error can be estimated by the common statistical formula ((Az)?) = Va]rér) =%
pA Secondary to o denoting the standard deviation, we use a for the pixel

size and thus ﬁ is the variance of a top-hat distribution of size a, which

can be seen in Flgure 3.1. Therefore adding the pixelation noise results in

rd

X
Figure 3.1: Top-hat dis-

tribution of size a.

o+ @
(e = 12
The second case, where we assume that no pixelation occurs, is a little more complex. We recall
that we minimized x? = > i %, where the observations were denoted as S;;, our fit as Gj;
and 1);; was the local uncertainty. Anyhow we can limit ourselves to the one-dimensional case again
as a 2D Gaussian equals a pair of independent 1D Gaussians in each coordinate direction. Thus we
only have to consider x? = Dok (S’“;ifk)g and furthermore use ¥, = b Vk, because all uncertainty is
background noise with standard deviation b.
Now we apply a Taylor approximation for Gy, i.e. Gi(z) = Gr(zo) + (z — xo) G} (m0) + O((Az)?).

YAV
Additionally we denote ASy = Gg(xq) — Sk.

0= dx—z2 (B = G@)) g

= 0= (=AS, - Az Gi(x0)) Gi(xo) + O((Ax)?)
k

= 0= ASGy(x0) + Y Gilw)* Az + O((Ax)?)
k k
>k ASKGY (20)
>k Gi(@0)?
We know that G} (z¢) are constants and ((AS)?) = Var(Sy) = b%. Moreover (ASk) ~ 0 holds as
the values of Sy, are symmetrically distributed with respect to (Si) ~ Gi(xo). Plugging this in results

in the following calculations.

<<ZASkG;(xO)> )= ((ASK))G(0)” ZbQG’ (20)?
k

k
2 b?
= (A2)*) = =—"
X AL
From Gy (z) = \/;V?Uexp(—(k;ﬁ)z) we derive G} (z) = N\/(%Uf)exp( (k x) ) and consequently

Gl (x)? = Mexp(—(k%)?). Finally we use Y, G.(%0)* = a [ G}, (z0) Qdk.

2706
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/OC (k;ix)zexp (—W> di = VT (3.2)

N? oym  aN?
2ot 2 4y/mo3

= a- / G (z0)%dk = a

2 7T0'3
— ((aay?) = 2T

— 8b%ro?

Similar calculations for the two dimensional case yield ((Axz)?) = 2522 The main difference is a

o\/T
-

double integral in (3.2) resulting in another factor of
At last we approximate the error between the two extreme cases by the sum of both estimations,

resulting in

0% +a?/12 n 8b2mot
N a?N2? "~
This curve has a transition point, meaning that up to some critical number of photons the error
behaves like 1/N, but for large enough photon numbers decays with 1/+/N. It can be found where
U2+% o 4b2ﬁ03
N, = aN?

((ha)?) ~ (3.3)

both terms of the sum equal each other, i.e. , which is true for

4\/To3b?
Nt =~ 1)
a(o? + a?/12)

3.2 Numerical verification of a systematic error caused by pixelation

In our simulations we will observe an improvement of the average error due to numerical integrations.
To support these results we now want to show the existence of a systematical error for fitting with a
pixelated Gaussian. This means that not only the average error is smaller for numerical integrations,
but the mean center is unbiased, too.

Treating the error caused by pixelation analytically is hardly possible because of the occuring
integrals of the Gaussian probability density function. Still we can easily show the existence of a
systematic error due to pixelation as follows.

We assume to observe a perfect Gaussian distribution with no background noise, i.e. real photon
values for each pixel. If we used our numerical integration algorithm from Chapter 2.3, we would of
course be able to refit the center exactly as we fit with the very same distribution. However when
using the pixelated approach, i.e. setting the value of the Gaussian at the center as constant above

the whole pixel (cf. Chapter 2.2), this is not necessarily true any longer.
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Thus we systematically perform least squares
fits of a pixelated Gaussian to a Gaussian on a
grid with equally distributed spot centers within
one pixel, which can be seen in Figure 3.2. The
observed effects are easier to understand remem-
bering that a 2D Gaussian is the combination
of 1D Gaussians in x- and y- direction. Now as
long as the center is located at 0, 0.5 or 1 for one
coordinate, the Gaussian distribution is symmet-
ric with respect to the pixel grid in that direc-
tion and therefore this center coordinate coin-
cides with the one of the fit. Nevertheless for all
other cases we detect a tendency towards 0.5 as
indicated by the arrows, which are amplified by
a factor of 20. The fact, that the tendency goes
towards 0.5 and not 0 or 1 is probably caused by
starting the fitting iteration in the center of the

local maximum pixel.

& JENENCNCHCREI IR
T AN AILSS T

| OO )
e NN Y
TA A TTAARTTN A
W NN
A LTI N
B T T ART N A

ki i ey BRI 7

¥ [pixel]

Figure 3.2: Shift of fitted spot centers due to pixe-
lation, spot diameter 5 pixels.

For a spot size of 5 pixels (500 nm for the common pixel size of 100 nm) we measure an average

systematic error of 4 - 1073 px (0.4 nm) and a maximal error of 6 - 1073 px (0.6 nm) already for

fitting the perfect Gaussian. The existence of this systematic error coincides with the observed error

difference between numerical integrations and pixelated algorithms (e.g. Figure 4.5). We will quantify

the observed effects in Chapter 4.4.

All used algorithms were programmed in MATLAB®, for further information consider Appendix

Al



Christoph Schaller - STORMicroscopy 17

4 Random STORM images

In this chapter we want to simulate STORM images, allowing us to know the exact spot centers to
closely examine the fitting process. We still use MATLAB®, for the simulation code see Appendix
Al

4.1 TImage generation and setup

Again based upon Thompson [10], who states that the background noise can be considered as a Poisson

process, one can use the following Algorithm 4.1.

Algorithm 4.1 Random image generation.
e Fix a spot center.

e Generate a fixed number of photons from a Gaussian distribution.
e Collect the photons on a coarse grid.

e Add Poisson distributed background photons for every pixel.

In theory one should use the Airy distribution for photon generation, however the difference be-
tween its central ring and a Gaussian distribution is very small, while we do not observe the outer
rings in practice anyway. Parameters available for tuning are the spot center relative to the pixel grid,
the number of photons in the spot, the pixel size, the size of the distribution and the average number
of background photons per pixel.

4.2 Error dependencies

First of all we want to check how much the preci- A B
sion of the fitting is related to the position of the

spot center within the pixel. This might depend oy
crucially on the relation of the spot size, i.e. the £ A 7~
diameter of the distribution and the pixel size as Soied ( ) N\
the sketch in Figure 4.1 shows. N—1

One may foresee that in case A, where the
spot is twice as big as one pixel, better results / \
are obtained for the pixel center. This is reason- /A
able as photons hit three pixels in each direction  COIner \ / J
instead of two for the center located in the corner

and thus we have much more detailed informa-
tion to fit. On the other hand in case B, where Figure 4.1: Dependency on the position of the spot
the spots are smaller than one pixel, it would be center within the cell.
preferable to have the spots located close to the pixel corners to obtain photon hits in more than one
pixel.

Therefore one has to consider realistic values for those sizes to be able to validate the influence of
their relation. From (2.2) we know that the radius of the inner Airy disk is given by

0.61)\ 1.22\
T Airy = NA - dAiryz NA’

where A\ denotes the emission wavelength of the used fluorophore and N A the numerical aperture, a

dimensionless characteristic of the objective. As observable in [13], Table 1, the emission wavelengths
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of different fluorophores range from 500 to 800 nm. On the other hand numerical apertures of up to
1.51 are theoretically possible with oil immersions, while nowadays values between 1.0 and 1.35 are
common in practice [3]. Hence the spot diameter may vary between 400 and up to 800 nm. Moreover

light microscopes usually have pixel sizes of down to about 100 nm.

Thus in Figure 4.2 we plot the average error

pixel comer for positions close to the corner, in-between and

in-between |
pixel center

close to the center of a pixel over the pixel size.

For a constant spot size of 800 nm 1000 random
images with respectively 10000 photons are gen-

erated, fitted with the Gaussian mask algorithm

avy. error [nrm)
=
L

ar 1 and the errors, here denoting the euclidean dis-
Bt 1 tance of the fitted center from the original one,
4l i averaged. A Poissonian background noise with

) ‘ , , ; : ; - , a mean of 130 photons per pixel (as reported by
40 B0 80 100 120 140 180 180 200 220

pixel siza [nm] our experimental contributors) is added. Keep-

Figure 4.2: Average error according to pixel size; ing the spot size constant is reasonable as only

spot diameter 800 nm, 10000 photons, average of the relation of spot size and pixel size is rele-

130 photons/pixel background noise. vant. Additionally for a fixed fluorophore only
the pixel size can be adapted.

Two effects can be observed here. On the one hand whenever the pixels are too small the spot is
too far spread out and therefore gets hard to distinguish from the background noise. On the other
hand for large pixels, depending on the position of the center within the pixel, the photons hit too
few different pixels and become harder to recognize as suspected above. Nonetheless between these
extreme cases there is a sufficiently large range of pixel sizes (60 - 140 nm), where small errors occur

independent of the spot position.

The common pixel size of about 100 nm is

pixel corner
in-between

right in the center of that interval and should

pixel center

therefore be adequate for the different occuring
spot diameters. Anyhow we checked this fact,
the result can be seen in Figure 4.3. As visi-

ble for small spots the position of the center be-

avy. error [nm)

comes recognizable, still the error stays accept-
able. Nevertheless it is remarkable that miniza-

tion of the spot diameter does not imply the

smallest possible average error. Apart from these

3 . . . ; ;
o . . . . 400 500 B00 700 800 900 1000
effects at the lower limit, we perceive a linear in- spot diameter [nm]

crease of the error, which is independent of the Figure 4.3: Average error according to spot diam-

center position. eter; pixel size 100 nm, 10000 photons, average of

130 photons/pixel background noise.
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Figure 4.4: Average error according to photon num-
ber, pixel size 100 nm, spot diameter 500 nm, av-

erage of 130 photons/pixel background noise.

4.3 Effect of numerical integrations

Finally we try to confirm the dependency of
the average error on the number of photons in a
spot in the form Az ~ \/% for large enough N,
which we introduced in Chapter 3.1, see (3.3).
Our simulation results seem to agree with the
estimated proportionality in the logarithmic plot
in Figure 4.4 pretty well at first, however the
decay is damped and thus the average error does

not converge to zero.

As we hope to avoid unnecessary approximations, we use random generated data with known spot

centers to check whether our algorithm is more precise, i.e. yields a fit that is significantly closer to

the true center. First, we fix the number of photons at 10000 and generate 1000 frames respectively

for the occuring spot sizes. The pixel size is kept at 100 nm, the background noise is set to zero here

as we want to compare with the minimal possible error, i.e. the error caused by coarse- and finiteness

of the data, which is according to (3.3) given by

O'2+ﬁ
Amin: 12~
(Bin) =\ T

T T

Gaussian Mask Fit
Mumerical integration |
unavoidable error

avy. error [nm]

L L L L L
400 500 600 700 a00 200 1000
spot diameter [nm]

Figure 4.5: Average error according to spot diam-

eter, pixel size 100 nm, 10000 photons, no back-

ground noise.

In Figure 4.5 we observe that at least 10%
of the error can be avoided by using numerical
integration fitting. Especially at small spot sizes
the algorithm outperforms the Gaussian mask fit
as the error keeps linearly decreasing here. This
agrees with the theory, even if the error is still

larger than the unavoidable one.
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Additionally we verifiy that the average error 15

pixel corner
inbetween
pixel center

caused by numerical integration fitting is inde-

=
T

pendent of the position of the spot center within

£
in
T
I

the pixel now. This can be seen in Figure 4.6. We

add a Poisson distributed background noise with

w
T
I

an average of 130 photons per pixel, all other

avy. ermor [nm]

i
n
T
L

parameters remain unchanged.

[
T
L

in
T
L

1 L L L L L
400 500 BO0 700 800 900 1000
spot diameter [nm]

Figure 4.6: Average error according to spot diam-
eter, pixel size 100 nm, 10000 photons, average of

130 photons/pixel background noise.

Finally we have a look at the relation of the

Gaussian Mask Fit average error and the photon number. We choose

MNurnarical integration ||

N2 g ! a constant spot size of 500 nm for which both

algorithms are performing fine when using the
common pixel size of 100 nm. Then we generate

2000 images for several photon numbers and add

avg. error [nm]

an average of 130 photons per pixel background

noise. In Figure 4.7 we obtain decreasing errors

for both algorithms, however the numerical inte-
02r

gration fitting again performs better. Especially

" SR T— i it fits the expected N—1/2-dependancy very well,

Figure 4.7: Average error according to photon num- resulting in an average error converging straight
ber, pixel size 100 nm, spot diameter 500 nm, av- tO zero in contrast to the Gaussian mask fit.

erage of 130 photons/pixel background noise.

4.4 Quantification of occuring shifts caused by pixelation

In Chapter 3.2 we analyzed the occuring systematic errors due to pixelation in the extreme case of
fitting the perfect Gaussian distribution, which equals the limit of observing an infinite number of
photons stemming from one spot. Now we want to fix different photon numbers and analyze the
occuring shifts. Thus for every fixed photon number we generate 200 equally distributed spot centers
and 200 STORM images respectively (40.000 STORM images altogether) and fit those. To increase
the number of samples we consider x- and y-coordinate as independent, which is reasonable because a
2D Gaussian is only the combination of 1D Gaussians in each coordinate direction. Then we calculate
the 1D shifts towards the spot center. Last but not least we need to be sure, which part of the error
is caused by pixelation. Therefore we apply numerical integrations as a cross-check to the Gaussian
mask fits.

The results for a spot size of 500 nm and a pixel size of 100 nm, for which both algorithms are
performing fine, can be found in Figure 4.8 on the next page. No background noise is added here as
it would only make our results less clear. We observe that the shifts for the NI algorithm are centered
around 0, while the GM fits are unambiguously biased in direction of the spot center. As expected

the distribution becomes less broad for an increasing photon number.
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Figure 4.8: Distribution of 1D shifts, spot size 500 nm, pixel size 100 nm, no background noise.
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Furthermore average and maximal shifts for all simulated setups are shown in Table 4.1. The
displayed shifts are 1D, thus multiplication by v/2 yields the particular 2D errors. We recognize
that the average shift for the GM algorithm stays constant at approximately 0.28 nm (0.4 nm in
2D), which perfectly agrees with the value from Chapter 3.2. Anyhow the maximal error is steadily
decreasing from 1.15 nm (1.63 nm) for 1000 photons down to 0.47 nm (0.66 nm) for 1000000 photons.
This coincides with the 2D limit of 0.6 nm for the perfect distribution, too. On the other hand the

maximal errors for the numerical integrations are strikingly smaller and converging to zero very fast.

number of GMF NI
photons mean [nm] I max [nm] mean [nm] I max [nm]
1000, 0,2797 151525 0,033 0,6341
10000 0,2871 0,6494 -0,0027 0,2158
100000 0,2867 0,4924 0 0,0638
1000000 0,2858 0,4704 -0,0005 0,0234

Table 4.1: 1D average and maximal shifts, spot size 500 nm, pixel size 100nm, no background noise.

These results show that the numerical integration algorithm is superior to pixelated approaches.

4.5 Fitting a Poissonian background

Back in our algorithm testing environment we

Gaussian mask fit
Numetical integration ||
NI with background fit

want to compare the developed algorithm for Pois-

sonian background fitting (cf. Chapter 2.4) with

the former ones. Thus we use the same settings
as in Chapter 4.3. We start off comparing dif-

ferent spot sizes for a fixed pixel size of 100 nm.

avg. eror [nm]

1000 frames with 10000 photons respectively are
generated using no background noise. The unedi-

fying results can be seen in Figure 4.9. As shown,

there is no improvement compared to the com- j , ‘ ‘ , ,
400 &00 B00 oo 800 900 1000

mon numerical integration fitting, which is sim- cpot diameter [nin]
pler and faster. Figure 4.9: Average error according to spot diam-

eter, pixel size 100 nm, 10000 photons, no back-

ground noise.
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Gaussian Mask Fit
Mumerical integration
Ml with background fit

avy. error [nm]

02F q

.
10t 10° 10
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L

Figure 4.10: Average error according to photon

number, pixel size 100 nm, spot diameter 500 nm,

average of 130 photons/pixel background noise.

Next we analyze different photon numbers for
a fixed spot size of 500 nm, using the common
pixel size of 100 nm and generating 5000 frames
respectively. The average background noise rate
is set to 130 photons per pixel. Nonetheless Fig-

ure 4.10 shows no improvements either.

Overall we cannot see improvements in the localization precision due to Poissonian background

fitting. The photon number can be fitted more accurately that way, yet in this thesis we are only

looking for improved resolution as we deem the current photon number fits sufficient.

4.6 Simulation results for Gaussian background fitting

Finally we implement two variations of our latest algorithm:

e GDbNi, our numerical integration algorithm with a Gaussian background fit starting in the center

of the local maximum pixel and

e WpGbNi, using the fitting result of our common numerical integration (Ni) algorithm as an

initial iterate for GbNi.

Now we generate 1000 STORM images for sev-
eral photon numbers and fit them with the differ-
ent algorithms. We add a Gaussian background
noise with a mean of 130 and a standard devi-
ation of 20 according to our noise statistics in
Chapter 7.1. The spot size is set to 500 nm and
the pixel size to 100 nm as usual. Unforunately
we are not able to observe significant improve-
ments in Figure 4.11. Thus we do not apply
GDbNi or WpGbNi to real data as the Ni algo-
rithm seems to already achieve the same accu-
racy. This may be caused by the fact that vari-
ations of the local background values are much
weaker than other noise factors such as pixela-

tion and finiteness of the sample.

—ni
——GhNi
— WpGhNi

avg. error [nm]

02k B

4 6

.
10 10° 10
number of photons

Figure 4.11: Average error according to photon
number, pixel size 100 nm, spot diameter 500 nm,
Gaussian background with mean 130 and standard

deviation 20.
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5 Processing experimental data

Having data of STORM runs at hand that were attained by Gregor Lichtner at the FMP Berlin, we
first have to investigate how to handle experimental data.

5.1 Awvailable fitting tools

Our collaborators currently use the software RapidSTORM, which was originally developed by Steve

Wolter in the context of his diploma thesis in 2009 [14]. The package applies the so called Levenberg-

Marquardt algorithm, which is a more robust alternative to the Gauss-Newton algorithm for solving

least squares problems. Nonetheless, the distribution is fitted with a pixelated Gaussian as in Chapter

2.2. Although the algorithm might be faster or locate more spots, it does not possess a higher

accuracy. The background noise fitting is done by subtracting a local mean value, which might be

another opportunity for improvements.

Besides, there are several other frameworks for fitting STORM data. The two most famous alter-
natives are DAOSTORM [15] and QuickPALM [16], which date back to 2011 and 2010 respectively.

DADSTORM schamatic|

1. Local maxima in the image are identified
as candidate moleculss.

2. Multiple PSFs are fit to the image o
produce inifial localizations.

3. The residuals image is inspected for
molecules lefi cut of the inital fii. The
positions of these maolecules are added o
the list of localizations from step 2.

4. Multple PSFs are fit o the original image,
using updated list of candidate molecules
from step 3. This yields a more accurate fit
compared to results in step 2

5. Steps 34 are repeated 4 tmes iof
maximise the recall (fraction of detected
malecules). The final data show high recall
and localization precision

Figure 5.1: Schematic
TORM algorithm. [15]

illustration of the DAOS-

The former is an adaption of an astronomy
software, DAOPHOT II, which allows to fit over-
lapping molecules. This is accomplished by group-
ing up candidate spot centers with overlapping
distributions and minimizing the total sum of the
squared errors of all fits within a group. The em-
ployed PSF model relies on a pixelated Gaussian
as well. Due to several identified noise sources,
different ad-hoc weights are included in the least
squares fitting. Albeit, the algorithm does not
outperform the Gaussian mask estimation (cf.
Chapter 3.1) for well-separated molecules in terms
of precision, as stated in the article’s supplement.
The difference of DASTORM compared to the
ordinary approach (cf. Figure 1.5) utilized in
RapidSTORM and QuickPALM can be seen in
Figure 5.1.

QuickPALM on the other hand is a plugin for
the visualization software ImageJ, which allows
real-time processing of STORM or PALM (Pho-
toActivated Localization Microscopy) data. In
contrast, the precision is worse than for Gaus-
sian fitting methods, since a modified center of
mass algorithm is used to achieve this.

For localizing single molecules as precise as possible, RapidSTORM seems to be the best choice

out of the currently available implementations. Furthermore it contains many interesting features for

experimentalists, such as automatic rejection of “bad” fits.
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5.2 Identifying trajectories

A so called STORM image usually consists of several (from 100 up to 10.000) frames displaying the
same observed area. The imaging time for every frame is fixed, therefore the same spot is monitored
in multiple consecutive images. Now one wants to detect those “trajectories”. Thus we have given
RapidSTORM output files, which contain a list of spot locations and photon numbers for every frame
and look for reappearances. Combining those results in a more precise localization of the spot center
as the photon number-weighted mean of the single locations. The detailed procedure is given by
Algorithm 5.1.

Algorithm 5.1 Identification of trajectories.
e Get all localizations out of the first frame.

e Set these as starting points for new “active” trajectories.

e For all frames, repeat the following steps.

— For all localizations within the frame:

x Check whether there is an active trajetory within a fixed range of the localization.
x If it is, add the localization to the trajectory.
x If not, generate a new “active” trajectory starting in the localization.

— Set all trajectories, that did not appear in the frame to “completed”.

e Calculate the weighted localizations and total photon numbers for all trajectories.

5.3 Drift

Unforunately one cannot ensure that there is no drift of the observed sample, which may for example
be caused by temperature changes or external forces. Even if the movements are very small in
usual microscopic dimensions, they may become a non-negligible factor whenever we want to achieve
nanometer resolution. Therefore Mlodzianoski et al. analyzed drifting effects in STORM for the 3D
case in 2011 [17].

Analogously we want to estimate the sample movement for the 2D case now. Of course we do
not estimate the shifts from localization to localization as then we would misinterpret the fitting
inaccuracy as drift. Though grouping up of spots over multiple frames and analyzing the drift of
the averaged spot centers should be an improvement for large enough frame numbers. Thus we will
carefully pay attention to whether or not a data set is influenced by drift or not.

In case it becomes necessary, we will implement the following approach. First of all we use so
called beads, “large” objects which can be tagged with numerous fluorophores, such that they are
permanently emitting photons. Second we model the sample drift by a combination of translation
and rotation. We denote the velocity with o, the angular frequency with w and the center of rotation

with 7 and obtain the following evolution of a point T4 in time

(1) = ( x(t) ) S S ( c?s(wt) —sin(wt) ) F— ).
y(t) sin(wt)  cos(wt)

By locating at least four beads we could now calculate the seven free parameters of our modelled
drift or whenever more of them are available perform a non-linear least squares fit. However in practice
we are not interested in a continuous drift or knowing the center of rotation, but in an estimation of
the drift from one frame to another. Therefore we can discard time as a factor and approximate the
drift for a discrete step by

m—x—ﬁ=7+Mm-x’£. (5.1)
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Here M,,; is an arbitrary “rotation” matrix and as already mentioned ZC—n> does not denote the
localization of a spot in frame n, but a mean localization of the surrounding frames. Now every

assigned pair (.Z‘_n>7 Zn+i) provides two equations to estimate the six parameters

7:<U1 ) andet:<m1 m2>.
V2 ms3 My

of the drift x,,+1 —Z,. Hence we need to locate at least three beads in the surrounding frames. In case
of more localizations we calculate the linear least squares fit since the drift is no longer parameter-
dependant in a non-linear way.

At this point we only have to describe how to obtain such a fit. Assume i € N equations
amz\l + ai72)\2 + ...+ ai7k)\k =

for known right hand sides b; and factors a; , are given and we want to estimate the k£ € N unknowns

Ar € R. This can be accomplished by minimizing the error in the Euclidean norm, i.e.
16— AA||2 < [|b — Avl]s Yo € R,
Now according to [18], Theorem 2.14, A\ € R¥ is a minimizer, if and only if
AT AN = ATh (5.2)

Furthermore it is unique if A is injective.
In our case the right hand sides are the occuring drifts, the unknowns are the free parameters and

the respective factors follow from (5.1):

ba; L LTn41,i _ Tn,i
boit1 Yn+1,i Yni |
A= (Ulv V2,M1,M2,M3, m4),
a2 1= (13 0; Tnyis Yn,is 07 0) and

azi+1 = (07 1,0,0, Tnis yn,i)~

As we will not locate two spots in the exact same place A is obviously injective and thus a unique

minimizer is given by (5.2), which can be evaluated using basic linear algebra.
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6 xStorm

In the context of this thesis an independent software package for spot localization was created.

6.1 Necessity of the development

Even if RapidSTORM is open source code and the possibility of including other “fitting kernels” was
originally build in, there are several reasons against that. Above all, the code was once well-structured,
but soon became confusing due to several bug- and hotfixes and only sparse annotations. Furthermore
the documentation is mainly meant for users, while the code contains many parts that are not relevant
for the present thesis.

Consequently we decided to develop our own fitting environment for experimental data called
xStorm, where x is an abbreviation of exact. In particular this allows us to include several algorithms
for the analysis of external influences such as noise or drift. Nonetheless Steve Wolter’s diploma
thesis [14] and the article published by his group on their experiences and results while designing and
working with RapidSTORM [19] were very helpful.

In terms of the programming language we decided in favor of C++-, which combines computational
efficiency with availability of diverse functions, extensions and packages, e.g. for user interfaces and
multithreading. In addition the G++ compiler guarantees the portability of the C++ code to the
most common operating systems. Fortran would have been a reasonable decision as well, however
making computational power accessible for the user as well as programming itself is more complex
here. MATLAB®, which we used for our simulations, is very intuitive as it has many mathematical
functions already built-in, but it is simply too ineffecient (i.e. slow) when it comes to working with
huge amounts of data. Similarly, these computational disadvantages apply to Java and Python.

6.2 Input and output

As an output from a STORM experiment, one obtains a .tif- or .tiff-file containing several frames. We
will have a closer look at this format in the following Chapter 6.3, for now we just assume that we
can extract framewise matrices of intensity values from it. Furthermore we need to know the pixel
size in nanometers to provide meaningful final results. Optionally we would like to know the emission
wavelength (A [nm]) and the numerical aperture (NA) of the used microscope, because this gives us
the spot size (cf. (1.1)).

One fit finally consists of only four numbers. Those are x- and y-coordinates of the spot center,
the number of fitted photons and the frame the spot was found in. Consequently we use a simple
text file with four columns (and a space as separator) to print our results and condense a complete
STORM image into a list of found spots, alike the output format of RapidSTORM.

6.3 The tagged image file format (TIFF)

Nowadays the TIFF " is controlled by Adobe Systems and known as a flexible file format that uses so
called header tags to structure data and multiple images. The latest version (6.0) of its specification

[20] can be found on Adobe’s homepage.
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Unsurprisingly the first task when developing it il

0 Byte Order X Tag

a framework for STORM experiments is being

2 42 X+2 Type

able to extract data from these images, such that

4 Offset of 0th IFD X+4 Count

one can efficiently work with them. Therefore A

understanding the TIFF-structure displayed in

Figure 6.1 is crucial.

l X+8 Value or Offset

The first eight bytes contain two characters i)

A B Number of Directory Entries v

defining the byte order (little or big endian), two
containing the number 42 to label the file as a e it I:l s
TIFF and four with the offset (distance to the At Diesteny Sty
beginning of the file) of the first Image File Di- A28 Direetoy Entot2
rectory or shortened IFD. In turn each IFD starts

A+2+B*12 Offset of next IFD

with two bytes containing the number of 12-byte
directory entries following and ends with four
bytes describing the offset of the next IFD. The i

last IFD ends with four bytes of zero. Finally

each directory entry consists of the tag identify- Figure 6.1: The TIFF structure. [20]

ing the field (two bytes), the field data type (two bytes), the number of values (four bytes) and the

value(s) itself or if those exceed four bytes a file offset to where the values can be found.

An example directory entry in big endian is

10 04 00O01 0O0 1 224 .

tag type #values values/of fset

Having in mind that each byte may contain the values 0..255, we detect the field as tag number
256, which (according to the specification) contains the number of pixels in x-direction. The type
4 stands for LONG, i.e. 4-byte unsigned integer and the number of values is 1. Thus 1-4 = 4
bytes are necessary for the contained value(s) and the last four bytes contain the value itself, which
is 1-256 4+ 224 = 480. As a result the described image has a width of 480 pixels.

Apart from these tags only raw data is contained in the file, while usually each IFD specifies where
the data for one frame can be found and how it is formatted.

6.4 Program design

For the implementation the programming framework Ultimate++ was chosen. It is available for
several platforms as it is compatible with G++ and contains all libraries we need as well as its own
development environment, TheIlDE.

The basic code (cf. Appendix A.2) was split up according to the following tasks.
e Graphic User Interface (GUI)- xStorm.h, xStorm.lay

e TIFF processing - tiffproc.h

Self-written datatypes - data.h

Routines for working with a single frame, i.e. spot finding and fitting - spots.h
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Figure 6.2: The xStorm GUL

As we are interested in comparing different fitting algorithms the program allows selection of one

of them. Furthermore different fitting parameters need to be specified as can be seen in the GUI in

Figure 6.2. Those are

e the pixel size in nanometers,

e the emission wavelength in nanometers, which specifies the approximate spot size; 0 means that

the spot size (or equivalently the standard deviation of the Gaussian) is included in the fit,

e the minimal number of photons; 0 means that the program fits all spots it can recognize and

e the number of frames to be fit; 0 means that all contained images are processed.

6.5 Parallel processing

The fitting procedure contains several computationally expensive steps. Therefore multithreading

should be implemented wherever reasonably possible. Fortunately the fitting process allows a high

level of parallelization, resulting in an appreciable decrease of computing time already on a quad-core
CPU. The multithreading is done using the “CoWork” class contained in Ultimate++.

GUIL

TIFF reader

Frame reader 1

Frame reader 2

\

Hierarchy

‘ controls
1 reports to

Frame reader N

/

Candidate fitter 2.1

Candidate fitter 2.2

\

Candidate fitter 2.M,

Figure 6.3: Multithreading in xStorm.

Of course only one thread can ac-
cess the source file at the same time.
Still whenever a complete frame has
been read, it can be passed to a new
thread to deal with it, while the orig-
inal one continues reading. The new
threads scan the frames for spot can-
didates. Ultimately, for every detec-
tion a surrounding region depending
on the spot size, called subframe, can
be cut out and transferred to a new
“subthread”.

Additionally the reader thread is connected to a GUI thread, which keeps the GUI accessible while
the fitting is done. A schematic overview is given in the adjacent Figure 6.3.
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7 Experimental observations

In the end we analyze the experimental data. Some basic results are displayed here.

7.1 Noise statistics

As a start we want to have a look at the background noise. To do so we consider all pixels within a
40 x 41 grid of a common STORM image (#1, 100 frames), that were part of no fitted spot. Then
we collect the occuring intensities, which are proportional to the photon numbers, into several bins.

Finally normalizing the data results in the attached Figure 7.1.

The common statistical formulas yield a mean
value of A = 578 and a standard deviation of
o = 81, which correspond to the plotted graph.
In contrast to Thompson’s assumption [10] this
is no Poisson distribution at all, as 02 = 6561 >
578 = A. However the Gaussian fit seems ac-
curate. It remains questionable why none of the
authors of the following literature examined that
fact, even if a few (e.g. [19]) use non-Poissonian
background.

The small imbalance of the distribution to
the right, which results in a minor shift of the
Gaussian fit, is easily explainable as there are of

course some pixels which were hit by spot pho-

oo’

w -
w m o m

[
T

probahility density
o8]
m

300 350 400 450 500 S50 BOO BSO 700 750 8OO
intensity

Figure 7.1: Experimental background noise fitted

with a Gaussian.

tons though not treated as part of a spot. This applies especially to pixels beeing located in one of

the outer rings of an Airy distribution.

One has to pay attention to the difference between the intensity and the number of photons

here. Assuming a mean of 130 photons per pixel, the proportionality yields a standard deviation of

approximately 20.

3

w10

probability density

300 350 400 450 500 550 BOO  BSO 700 #50 8OO
intensity

Figure 7.2: Background noise for a single frame

compared to the overall fit.

To ensure that the increased standard devia-
tion is not the result of a changing mean value of
a Poissonian background distribution, we check
the distribution of the background noise for a
single frame. We arbitrarily choose frame 50 -
no special effects should occur here. As Figure
7.2 depicts it agrees with the Gaussian fit of the
whole background (red curve) very well, in fact
for the single frame we obtain a mean of A = 585
and a standard deviation of o = 83 only slightly

differing from the average ones.

Thus the background distribution is clearly Gaussian, but not Poissonian. As a consequence we

discard our Poissonian background fit (cf. Chapter 2.4) from further research.
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7.2 Single bead

Second we observe and localize a large single bead in STORM image #1 for 100 frames, being interested

in the fit accuracy of the two already compared algorithms, numerical integrations(NI) and Gaussian

mask fitting(GM).
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Figure 7.3: Distribution of fitted centers of a single bead.
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The adjacent Figure 7.3 shows the
distribution of the found spot centers
for both algorithms. Calculations yield
on; = 2.76 and ogy = 3.02 as stan-
dard deviations of the numerical inte-
gration and Gaussian mask fits from
their mean center respectively. Repeat-
ing the analysis using RapidSTORM
results in opg = 2.89. This agrees
with our expectations because full least
squares fitting (of a pixelated Gaus-
sian) is applied here. Therefore our
algorithm seems to perform best, pri-
marily when we take into considera-

tion that the average center of the nu-

merical integration fit should be closer to the true spot center according to our simulations. This is a

result we would like to quantify and confirm in theory.

Prior to this, we want to have a
look at the occuring drift. Thence we
average twenty fits respectively and plot
the “movement” of those mean spot cen-
ters in Figure 7.4. We clearly see that
for both algorithms a drift of approx-
imately 1.5 nm in x- and 3 nm in y-
direction occurs. Therefore we correct
the influence of this drift by shifting
every fit according to the average po-
sition of the surrounding 20 frames.

Figure 7.5 shows the drift-corrected
spot centers in comparison to the pre-
vious Figure 7.3. We obtain consider-

ably improved standard deviations of

22735

22731

27258

2472

227158

y [nm]

2271

2270.5

2270

2269.5

2269 1 1 1 _ 1
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34852 54894 34896 34898
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Figure 7.4: Drift of a single bead.

onr = 2.51 and ogpr = 2.75. To be able to relate this to the results of our simulations, we calculate

the average errors (R? distances from the mean center), too. A comparison is shown in the adjacent

Table 7.1.

average error [nm]

GM NI

experimental data 2,67 247

drift-corrected data 2.43 2,23
simulation data 2,24

Table 7.1: Average errors for fitting a single bead.
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Figure 7.5: Distribution of fitted centers of a single bead after

drift correction.

7.3 Multiple beads

We estimate the spot diameter by
10 pixels (enlarged by the bead itself),
know that the pixel size of our micro-
scope is 105 nm and detect a mean in-
tensity of 149400 per frame. Further-
more we know the underlying back-
ground distribution from the previous
Chapter 7.1.

simulation environment we obtain av-

Plugging this into our

erage errors, which agree with the ex-
We as-

sume that the remaining difference re-

perimental results very well.

sults from the uncertainty caused by
the drift correction and the difference
between Airy disk (real) and Gaussian

distribution (model).

To quantify our the findings from the previous Chapter 7.2 we want to use several smaller beads

(resulting spot size of approximately 8 pixels), fit them with both xStorm algorithms and compare

the fitted intensities and the standard deviations of the fitted centers from their algorithm’s mean.
The results for the 100 frames of STORM image #2 are shown in the following Table 7.2.

bead average intensity per frame standard deviation [nm]
number NI GMF NI-GMF NI GMF NI-GMF
1 17550 16762 787 7,38 7,50 -0,12
2 18695 17902 793 7,06 7,30 -0,23
3 84220 80189 4031 6,02 5,97 0.05
4 17733 16959 774 7,32 7,86 -0,54
5 22453 21246 1208 7,59 7,71 -0,12
6 37209 35565 1644 6,21 6,59 -0,38
g) 84258 80416 3843 5,64 5,96 -0,32
8 43348 41397 1950 6,26 6,41 0,16
9 48639 46442 2198 6,43 6,79 -0,36
10 46531 44326 2205 6,28 6,70 -0.42

Table 7.2: Quantitative comparison of different algorithms for bead fitting.

For all ten beads the NI algorithm is able to assign considerably more photons to the recognized

spots, underlining the fact that its average spot center is most probably closer to the true one. This

agrees with our simlutations. In addition our algorithm is able to obtain a smaller standard deviation

for nine out of ten beads and fails only slightly for bead three.

On the other hand the obtained standard deviations are considerably larger than our simulations

predict. For example, the generation of 100 images with an intensity of 40000 per frame but otherwise

analogous setting yields the values displayed in the following Table 7.3 compared to weighted standard

deviations for beads six, eight, nine and ten. Thus we want to survey the STORM image for drift

effects.
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standard deviation [nm]

| oM NI

experimental data 6,63 6,30
drift-corrected data 6,65 6,29
simulation data 4,10 3,74

Table 7.3: Standard deviations for fitting multiple beads.

For this purpose we proceed as be-
fore by averaging twenty fits respec-
tively and monitoring the “movement”
of the mean spot centers of one bead.
The disappointing result is shown in
Figure 7.6, which cleary reveals that
the spot seems to oscillate for more
than 20 nm. Even taking more (checked
for up to 50) frames for the averaged
centers does not allow us to detect a
drift in the original sense. Unfortu-
nately this observation is independent
of the applied fitting algorithm and the
chosen bead, while the oscillations of
the individual beads do not coincide
(cf. Figure 7.7).

30

25

20

% [nm)

20 25

Figure 7.6: Movement of one of the beads.

Consequently we cannot achieve agreement of the experimental results with our simulations here,

though we interpret the insufficient imaging quality as responsible. This is reasonable as satisfactory

results (i.e. beads that do not move apart from the drift of the whole sample) are available (cf. the

previous Chapter 7.2).

Nonetheless the numerical integration algorithm performs better than the Gaussian mask fit in

terms of fitting accuracy and assigned intensity.

Figure 7.7: Movement of four of the beads.

30
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7.4 Antibody fitting benchmark

Last but not least our experimental collaborators provided us with a STORM image (#3, 100 images)
of many antibodies (and several beads for drift correction) as a benchmark test for the resolution. In
the given sample the antibodies were heavily diluted to make them clearly distinguishable. A subset
is manually selected and all spots in a surrounding region fitted and assigned. Then the standard
deviations of the localizations for all selected antibodies are calculated. Finally the intensity-weighted
average of these values determines the resolution of the applied fitting algorithm.

We obtain the average standard deviations of on; = 12.50 and oGy = 13.27 for the fitting results
of the respective algorithms using xStorm and org = 14.29 for the corresponding fits of rapidSTORM.
It is not clear why rapidSTORM performs even worse than our Gaussian mask implementation here,
but the problem is probably related to the spot finding algorithm. Indeed rapidSTORM identifies
exceptionally many spots close to the image border, which our algorithms classify as artifacts. However

we only use antibodies recognized by both programs to allow a fair comparison.

standard deviation [nm]

GM NI RS
experimental data 13,27 12,50 14,29
drift-corrected data LE75 1112 12,62
simulation data 9,39 8,73 -

Table 7.4: Standard deviations for fitting antibodies.

Once again we compare the obtained values

. — to the corresponding simulation results in Table
Ll 7.4, though the RapidSTORM fitting algorithm

is not available in our MATLAB® environment.
We expected smaller standard deviations, even
though we did not model the drift and use a

Gaussian instead of an Airy disk for image gener-

standard deviation [nm)]

ation - however the values can still be considered

as “consistent”.

In addition a clean drift as in Chapter 7.2 can

raw experimental data drift corrected data

be recognized, resulting in an improvement of the
Figure 7.8: Antibody fitting benchmark results for standard deviation by about 1.5 nm independent
different fitting algorithms. of the applied fitting algorithm as visualized in
Figure 7.8.

As a result our algorithm turns out to be the best choice for practical applications as well.

7.5 Bias due to the fitting method

Additionally we want to check the distribution of the fitted spot centers for STORM experiments with
respect to the pixel grid. In theory we should observe a uniform distribution for a sufficiently large
number of spots. Thus we fit all detectable spots within STORM image #2 (100 frames), altogether
about 2500 spot centers. To increase the number of samples we then only consider a 1D distribution
of a subpixel-coordinate around the pixel center. This allows us to use each fitted x- and y- coordinate
as a sample respectively. As we want our results to be comparable we performed Gaussian mask fits

(GM) and numerical integrations (NI) for the same spots.
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Figure 7.9: Distribution of fitted spot centers in

experimental data.

Finally we want to test RapidSTORM for the
assumed tendency towards the pixel borders. We
consider x- and y-coordinate separately here as
there may be different effects depending on the
coordinate direction. To gain a larger number
of samples we use another STORM image (#4,
10000 frames) and fit all (approximately one mil-
lion) detectable spots. Then we repeat the above
analysis to obtain Figure 7.10. As we see there
is a clear tendendy towards the pixel borders,

especially in the x-coordinate.

The result can be seen in Figure 7.9, the his-
togram was normalized such that the observed
distributions should be approximately uniform.
Even if it is not obvious, the expected shift to-
wards the spot center for the GM algorithm is
identifiable, mainly in the large difference of fits
close to the center compared to those in the pixel
corners. Our NI fits on the other hand come con-
siderably closer to a uniform distribution as x?
(the sum of squared errors) for our algorithm is
at 8.14-10~* compared to 2.86- 1073 for the GM
fits.
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Figure 7.10: Distributions of fitted spot centers in
RapidSTORM fits.

Consequently we have to expect shifts for fitting experimental data with pixelated approaches as

predicted - another factor underlining the superiority of our numerical integration algorithm.
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8 Summary and Outlook

Finally we want to briefly review our results and summarize them. Additionally we discuss possible

further improvements and other approaches.

8.1 Our results

The numerical integration algorithm established in Chapter 2.3 is able to outperform pixelated ap-
proaches, such as the Gaussian mask fit(cf. Chapter 2.2) in terms of fitting accuracy as showed in
Sections 4 and 7. Regrettably the improvements are not as significant as we had hoped. Nonetheless
we avoid a systematic error, which underlines the remarkability of the slightly improved standard
deviations and average errors. Furthermore our algorithm is stable for small spots (compared to the
pixel size) in contrast to pixelated approaches, which cause non-negligible errors depending on the
subpixel position of the spot center as observable in Figures 4.4 and 4.7.

Then we discovered that the background noise is not Poisson distributed as assumed, but can be
adequately fitted with a Gaussian. This contradicts previous publications, though we are not able
to employ this to clearly improve the fitting accuracy. Using the average background value as a fit
seems imprecise, however we assume that the variations caused by the background noise are too small
compared to other influences.

Moreover we detected drifts within a STORM image and increased the fitting accuracy by cor-
recting them. A similar technique was already applied by other authors in 3D, still we were able to
reconstruct their results in 2D.

Finally the mentioned existence of systematic errors induced by pixelated model functions was
shown in Chapter 3.2 and the occuring errors quantified. Such an analysis was not carried out so far
as our numerical integration algorithm is the first method avoiding pixelation.

The joint significance of these new findings motivates our intention to publish them.

8.2 Future possibilities

From our point of view the numerical integration algorithm is achieving the best currently feasible
fitting accuracy for iterative approaches that try to directly fit a PSF to the observations. All known
noise sources have been examined and their influence compensated as far as possible. Indeed the
algorithm shows no bias and attention was paid to the background noise and drift effects. Nevertheless
the errors caused by coarse- and finiteness of the sample are unavoidable for such algorithms.

On the other hand there may be sources of inaccuracy that we simply did not model. Thus

improvements based on new physical research cannot be ruled out.
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Figure 8.1: An alternative approach for fitting

STORM images. [21]

Altogether, we see that the steady progress of improving microscopy resolution has not come to its

end and hope that this thesis will be a small contribution.
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A Code section

A.1 Simulation environment

All the simulation environment code is written in MATLAB®. For ecological reasons we decided not
to print code in here, however the algorithms and the basic scripts for analysis and comparison will
be archived by the Computational Molecular Biology (CMB) group at FU Berlin. In case you are
interested in working with the algorithms or codes, feel free to contact schaller.cf@googlemail.com,

but please keep in mind that it is research code, which may throw exceptions or provide senseless
results caused by wrong inputs.

As we are still interested in the topic, you may ask questions concerning fitting algorithms as well.

A.2 xStorm

The same argument holds for the xStorm code. The source code and a running version will be
archived, however no public release is planned. Thus the program might be very sensitive to several
parameters or show unstable behaviour for cases which were not considered so far. Nevertheless if
you are interested in working with xStorm or the algorithms in C++, contact us via mail and we will
provide you with further information.

To compile xStorm we used Ultimate++ in combination with the G4+ compiler contained in the
GCC package.
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B Assigning the matching background values

We briefly proof that the x?-sum is minimized by assigning the background values to the differences
ordered by size. This is easily seen by the repeated application of the following formula.

Claim: my > ma Aly > 1y = (my —11)? + (ma — 12)? < (my — 12)? + (ma — 11)?

Proof: (my —11)% + (ma — 12)? < (mq — l2)? + (ma — 11)?

< mi —2mily + 3 +m3 — 2mals + 13 <m? —2mqly + 13 + m3 — 2maly + 13

< mqly + moly — mqly — maly >0

< (m1—m2)-(I1 —l2) >0

N N

>0 >0
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