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1 Introduction

The �rst chapter illustrates the di�culties of achieving nanometer resolution in microscopy and gives

a brief abstract of the occuring phenomena. Finally the thesis is motivated and outlined.

1.1 The di�raction barrier

Figure 1.1: Airy disk intensities. [1]

In general the resolution of light microscopes is

roughly limited by λ/2 ≈ 250 nm, which corre-

sponds to half of the wavelength of the visible

spectrum. This is caused by the fact that when-

ever we observe an object, we actually do not ob-

serve a point, but a distribution of photons. Usu-

ally the size of that distribution is negligible com-

pared to the resolution. However when it comes

to structures in the dimension of nanometers, we

start to observe the so called Airy di�raction pat-

tern or Airy disk displayed in Figure 1.1. It is

named after the English astronomer George Bid-

dell Airy, who was the �rst to theoretically treat

this phenomenon in the year 1835 [2].

Figure 1.2: Airy disk point spread function (solid)

with central ring �t by a Gaussian(dashed). [1]

The pattern consists of several rings, though

the central ring contains the major part with

83.8% of the intensity. Its radius can be shown

to be

rAiry ≈ 0.61
λ

NA
. (1.1)

Now the so called Rayleigh criterion declares,

that two spots are no longer resolvable if their

centers come closer than the radii of their inner

rings. Taking the fact into consideration that the

best current optical microscopes have numerical

apertures NA of up to 1.4 [3], we achieve a lower

bound for the optical resolution.

Furthermore the central ring is well-�tted by a Gaussian as displayed in Figure 1.2. As �rst stated

by Thomann et al. in 2002 [4] and proven by Zhang et al. in 2006 [5] the standard deviation for the

minimal error in the sense of L∞ is

σ ≈ 0.21
λ

NA
.

Consequently there are biological structures which can be resolved optically as well as those which

we cannot resolve as the scheme in Figure 1.3 points out.

But even if details cannot be resolved, there are multiple approaches to at least locate the center of

an object to a much greater precision. One of these is STochastical Optical Reconstruction Microscopy

(STORM), which was introduced by Michael J. Rust, Mark Bates and Xiaowei Zhuang in 2006 (cf.

[7]) and forms the basis of this thesis.



Christoph Schaller - STORMicroscopy 4

Figure 1.3: The size scale of
various biological structures in
comparison with the di�raction-
limited resolution. [6] (left to
right) A mammalian cell, a bac-
terial cell, a mitochondrion, an
in�uenza virus, a ribosome, the
green �uorescent protein, and a
small molecule (thymine).

1.2 Imaging and noise

Wanting to work with these distributions of photons one would like to localize single photons as precise

as possible. However it is only possible to collect photons in so called pixels and measure the current

they cause at a photoelectric cell. Here we got our �rst crucial source of noise: As we collect photons

within an area, we do not know from which exact location the photon originated. This uncertainty is

called �pixelation noise�.

Additionally the measured current does not indicate the exact number of photons within the area

as there are e�ects like dark current or incoming photons generating di�erent numbers of electrons.

Those inaccuracies are regarded as global in�uences and therefore their impact is summarized under

the term �background noise� together with e�ects such as out-of-focus �uorescence and readout errors.

Figure 1.4: The imaging process is aggravated by di�erent

sources of noise and pixelation.

Finally we do not always observe

a perfect distribution but a �xed

number of localizations generated

by the distribution. The in�uence

of that factor is called �photon shot

noise�, but becomes negligible for

large enough photon numbers.

Taking into account that pixel

sizes of about 100 nm are common,

the imaging process as depicted in

Figure 1.4 seems pretty rough. Nev-

ertheless the distributions remain

observable and thus we can deter-

mine their most likely centers.



Christoph Schaller - STORMicroscopy 5

1.3 STORM - the basic idea

Figure 1.5: The STORM imaging process. [8]

The basic idea is presented in principle in the

adjacent scheme in Figure 1.5. At �rst photo-

switchable �uorophores are attached to speci�c

molecules, e.g. nucleic acids or proteins, in an

immobilized sample. Then one (optically resolv-

able) subset is activated by laser excitation of

a speci�c wavelength. Thereafter the activated

�uorophores emit photons while imaging occurs.

That way one obtains a coarse matrix for every

frame, which contains the number of collected

photons within every pixel. Using these one is

now able to reconstruct the spot centers utilizing

a so called ��tting algorithm�. After waiting for

the activated �uorophores to go back into a dark

state, one can repeat the described process sev-

eral times to obtain a STORM image until most

of the �uorophores were excited at least once.

As the cautious reader might have observed

there are several preconditions to be satis�ed.

On the one hand we would like to have well-

separated objects to easily distinguish them from

each other, on the other hand we need to be able

to label only speci�c subsets in a discriminable

way. Furthermore if our objects are too large

themselves, reducing them to one point is not very meaningful, thus we assume them small enough to

be considered punctate.

The following Figure 1.6 depicts the improved resolution due to STORM compared to immuno�u-

orescence microscopy.

Figure 1.6: STORM imaging of micro-
tubules in a mammalian cell. [9] (A)
Conventional immuno�uorescence image
in a large area. (B) STORM image of the
same area. (C and E) Conventional and
(D and F) STORM images corresponding
to the boxed regions in (A).
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1.4 Motivation and classi�cation of the present thesis

Several authors claim to achieve �nanometer precision� using STORM. This coincides with the theo-

retical predictions yielding that for a �su�cient� number of photons in a spot we should be able to

locate its center arbitrarily accurate. However for simulated data as well as microscopic measurements

we observe lower resolutions as desired, probably resulting from approximations in the used models

or algorithms. Therefore it seems necessary to have a closer look at all steps of the �tting process to

detect error sources and look for possible improvements.
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2 Fitting algorithms

As a starting point for the upcoming research the predominant theoretical status is recapitulated.

Then according to our �ndings we will try to improve the currently used �tting algorithms.

2.1 Preliminaries and overview

Let some experimental result, i.e. a large matrix with photon counts for every pixel, be given. First of

all we have to locate spots within this matrix roughly, before we can commence with �tting the spot

centers. Assuming that there are no overlapping spots, this can be done using the Algorithm 2.1.

Algorithm 2.1 Simple spot recognition.
• Find pixel values above some threshold (e.g. �8 standard deviations away from the mean� [10]
of the intensity value distribution).

• Look for local maxima within connected regions of such pixels.

• Cut out surrounding regions according to the known size of a potential spot.

• Average the remaining cell values of the frame to obtain the background mean.

• Subtract the background mean from the spots.

• Fit the spot centers.

Unfortunately the �t of the background noise is only treated in a very simple manner here. As long

as its (standard) deviation is �su�ciently� small this may be adequate, but a localized background

�t might be more precise. Nonetheless this implies a higher computational e�ort, so �rst we use the

same approach as previous authors and analyze its behaviour.

In [11] Cheezum et al. applied four commonly used single particle tracking algorithms under

realistic conditions. In comparison to the centroid algorithm, cross-correlation and the sum-absolute

di�erence (SAD) method, a direct Gaussian �t to the intensity distribution turns out to be the best

choice for point sources in terms of robustness and precision.

2.2 Gaussian mask and full least squares �tting

Now assume a matrix of observed photon counts (without background noise) for each pixel within a

possible spot location is given and denote it Sij , where (i, j) de�nes the location of the pixel center

with respect to a local coordinate grid. Moreover indicate with (x0, y0) the unknown spot center

and the likewise unknown total number of photons within the spot with N . Now let pG(i, j) be the

probability density function of a (normalized) Gaussian distribution centered in (x0, y0) with known

(it can be calculated from the emission wavelength) standard deviation σ, i.e.

pG(i, j) =
1

2πσ2
exp

(
− (i− x0)2

2σ2
− (j − y0)2

2σ2

)
.

In the following we want to approximate the center of the spot by �tting Sij with a Gaussian curve

given by Gij := N · pG(i, j), which is a pixelated approximation of the expected number of photons.

Indeed for every pixel I = [i− 1
2 , i+

1
2 ]× [j− 1

2 , j+
1
2 ] we use

´
I
pG(x, y)dA ≈ pG(i, j) ·AI = pG(i, j).

Thus we require a small enough pixel size to justify this approximation.

For �tting with a Gaussian in the next step a maximum likelihood estimation is done by the

least squares approach, i.e. we want to minimize χ2 =
∑
i, j

(Sij−Gij)
2

σ2
ij

. Here σij denotes the local

uncertainty of the pixel values, which we assume to be constant across one spot. We know that the
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x- and y-direction of a two-dimensional Gaussian distribution are independent. Thus we can consider

minimization in direction of x0 and y0 separately. Let us start with the x-coordinate.

For every minimum of χ2:

0 =
d

dx0

∑
(Sij −Gij)2

⇐⇒ 0 =
∑

2(Sij −Gij)
d

dx0
Gij

⇐⇒ 0 =
∑

(Sij −Gij)
(i− x0)
σ2

Gij

⇐⇒ 0 =
∑

SijGij(i− x0)−
∑

G2
ij(i− x0) (2.1)

If we now use the approximation
∑
G2
ij(i− x0) ≈ 0 due to odd symmetry as Gx0+k, j ≈ Gx0−k, j

and (x0 + k− x0) = −(x0 − k− x0), we obtain the Gaussian mask algorithm described by Thompson

et al. in [10]. Ultimately, the remaining equation 0 =
∑
SijGij(i− x0) yields the iteration

x0 =

∑
iSijGij∑
SijGij

.

In particular, this equation does not depend on N anymore as it cancels after plugging in Gij =

N · pG(i, j). Then pG depends only on (x0, y0), while the Sij are known. Analogously we obtain an

iteration formula for y0 resulting in the following parallel iteration for both coordinates

x0 =

∑
iSijpG(i, j)∑
SijpG(i, j)

, y0 =

∑
jSijpG(i, j)∑
SijpG(i, j)

. (2.2)

However if we do not neglect the second term we can achieve higher accuracy at the cost of some

extra computational e�ort as then (2.1) ensues the iteration

x0 =

∑
i(Sij −Gij)Gij∑
(Sij −Gij)Gij

. (2.3)

Again we come up with a similar equation for y0, but this time our iteration is not independent

of N . Thus here we have to �t the total number of photons at the same time. This can be achieved

by adding up the total photon count within the spot with respect to the current (x0, y0) or more

accurate by using the equation

N =

∑
SijpG(i, j)∑
pG(i, j)2

, (2.4)

where the pixel counts are weighted with the probability to hit the considered pixel. The parallel

iteration of the position equations from (2.3) with (2.4) is mostly called full least squares �tting.

Nonetheless when performing the Gaussian mask algorithm, we only need to calculate N once

from (2.4) in the very end to gain an approximation of the total number of photons in the spot.

2.3 Numerical integration algorithm

When having a look at the currently used algorithms one observes that they all approximate integrals

of the point spread function by assuming a constant value inside of every pixel which is equal to the

one at its center. Right now we are trying to avoid this approximation.

Recall the notations from Chapter 2.2, i.e. Sij is the matrix of photon counts, σ the standard

deviation, N the unknown number of photons and (x0, y0) the spot center, that we want to approx-

imate. Now instead of using a pixelated Gaussian we want to use the exact Gaussian distribution,

which was called pG in the two-dimensional case.
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Once more we can limit the �tting to the one-dimensional case as all occuring distributions are

rotationally symmetric. Hence we use Ci =
∑
j Sij as the observation data and �t with Gi =

N
´ i+ 1

2

i− 1
2

p1D(x)dx, where p1D denotes the one dimensional Gaussian distribution centered in x0 with

standard deviation σ, i.e. p1D(x) = 1√
2πσ

exp(− (x−x0)
2

2σ2 ).

We repeat the least squares approach

0 =
d

dx0
(
∑
i

(Ci −Gi)2)

⇐⇒ 0 =
∑

2(Ci −Gi)
d

dx0
Gi,

but now requiring to calculate d
dx0

Gi = N d
dx0

´ i+ 1
2

i− 1
2

p1D(x)dx.

Luckily we can switch integral and di�erentiation here as [i− 1
2 , i+

1
2 ] is �nite, p1D(x) is continuous

and d
dx0

p1D(x) exists and is continuous, too. Therefore we obtain d
dx0

Gi = N
´ i+ 1

2

i− 1
2

(x−x0)
σ2 p1D(x)dx

and thus 0 =
∑

(Ci −Gi)
´ i+ 1

2

i− 1
2

(x− x0)p1D(x)dx.

Knowing that e(x) = 1
2erf(

x−x0

σ
√
2
) satis�es e′(x) = p1D(x), plugging in yieldsGi = N

(
e(i+ 1

2 )− e(i−
1
2 )
)
.

For simplicity we denote ei± = e(i± 1
2 ). Furthermore we can integrate

ˆ i+ 1
2

i− 1
2

(x− x0)p1D(x)dx =
[
−σ2p1D(x)

]i+ 1
2

i− 1
2

.

For our least squares problem follows

0 =
∑

(Ci −Nei+ +Nei−)σ
2[p1D(i+

1

2
)− p1D(i−

1

2
)]

⇐⇒ 0 =
∑

(Ci −Nei+ +Nei−)

(
exp(−

(i+ 1
2 − x0)

2

2σ2
)− exp(−

(i− 1
2 − x0)

2

2σ2
)

)
︸ ︷︷ ︸

=:f(x0)

.

Now we �just� need to solve this nonlinear equation. If we do not want to approximate, an application

of Newton's method for f(x0) started in the pixel center of the local maximum should su�ce. In order

to apply the iteration xn+1 = xn − f(xn)
f ′(xn)

we need to know f ′(x0), too. As ei± = e(i± 1
2 ) depends on

x0, the product rule yields

f ′(x0) =
∑

(Np1D(i+
1

2
)−Np1D(i−

1

2
))

(
exp(−

(i+ 1
2 − x0)

2

2σ2
)− exp(−

(i− 1
2 − x0)

2

2σ2
)

)

+
∑

(Ci −Nei+ +Nei−)

(
i+ 1

2 − x0
σ2

exp(−
(i+ 1

2 − x0)
2

2σ2
)−

i− 1
2 − x0
σ2

exp(−
(i− 1

2 − x0)
2

2σ2
)

)
.

By denoting

pi±(xn) := exp(−
(i± 1

2 − xn)
2

2σ2
) =
√
2πσp1D(i±

1

2
)

and generalizing

ei±(xn) :=
1

2
erf(

i± 1
2 − xn
σ
√
2

)
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we can write

f ′(xn) =
∑ N√

2πσ
(pi+ − pi−)2 +

∑
(Ci −Nei+ +Nei−)

1

σ2

(
(i+

1

2
− xn)pi+ − (i− 1

2
− xn)pi−

)
and

f(xn) =
∑

(Ci −Nei+ +Nei−)(pi+ − pi−).

Finally we need some way of calculating the values ei± = 1
2erf(

i± 1
2−x0

σ
√
2

). This can be done by one of

several approximations for the error function according to the needed accuracy. In MATLAB the build-

in function erf(x) performs e�ciently with relative errors of order 10−19 as it is an implementation of

the algorithm given by W. Cody in [12]. As we obtain an analogous relation g(yn) in y-direction one

can iterate

xn+1 = xn −
f(xn)

f ′(xn)
, yn+1 = yn −

g(yn)

g′(yn)
,

starting o� with (x0, y0) located in the pixel center.

But as f(xn), f ′(xn) and g(yn), g′(yn) are still N -dependant, this needs to be done in turn with

the weighted sum

N =

∑
SijPij(xn, yn)∑
Pij(xn, yn)2

,

where Pij(xn, yn) is the probability to hit pixel (i, j) from center (xn, yn) and consequently

Pij =

ˆ i+ 1
2

i− 1
2

ˆ j+ 1
2

j− 1
2

pG(x, y)dy dx =
1

4

[
erf(

x− xn
σ
√
2

)

]i+ 1
2

i− 1
2

[
erf(

y − yn
σ
√
2

)

]j+ 1
2

j− 1
2

= (ei+,x−ei−,x)(ei+,y−ei−,y).

Nonetheless the required values of the error function are the same ones required for the iterations of

the pixel center and thus only need to be calculated once.

All in all this provides a method using no approximations apart from the calculation of the error

functions which can be done to whatever precision needed.

2.4 Poissonian background �tting

After avoiding approximations in the �tting algorithm itself we now want to have a closer look at the

background noise and how it is treated. We recall that background noise was estimated in a rather

simple fashion so far. Obviously subtracting a constant value from every pixel does not represent the

reality as the background noise is a random process following a certain distribution. As stated in [10]

and universally accepted, the background noise can be seen as a Poisson process and therefore every

pixel value should stem from the same Poisson distribution. Thus we want to include �tting a noise

value for every pixel within a spot.

Assume a matrix Kij of observed photon counts including background noise is given. Now we

introduce a matrix bij , which is meant to contain the number of photons most probably steming from

the background. Finally Gij denotes the matrix of the currently �tted Gaussian distribution and b

the average background noise value.

Thence the probability of an observation is

Pij =
G
Kij−bij
ij e−Gij

(Kij − bij)!︸ ︷︷ ︸
PPSF

· b
bije−b

bij !︸ ︷︷ ︸
Pback

.

Here PPSF is the probability of observing Kij − bij photons from the distribution Gij and Pback
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the probability to observe bij background photons if these have an average of b. Both processes

are considered to be Poissonian as there is a certain probability of success and a �xed number of

independently drawn samples.

Now we can interpret this as a function of bij , i.e.

Pij(bij)

c
=

G
−bij
ij bbij

bij !(Kij − bij)!
,

where c ∈ R is independent of bij . Consequently maximizing the right hand side with respect to bij
gives us the value maximizing Pij .

Utilizing this idea, we introduce the following Algorithm 2.2 as an improved way of treating the

background noise.

Algorithm 2.2 Improved background �t.
• Start with a matrix of photon counts Kij .

• Search for local maxima.

• Cut out surrounding regions according to the potential spots.

• Initialize bij,0 = b, where b is the average of the remaining cells, i.e. the background mean.

• Repeat the following iteration steps up to a �xed accuracy.

� Calculate the matrix of photon counts Sij,n = Kij − bij,n.
� Do one iteration step for (xn, yn) and N using a �tting algorithm.

� Maximize Pij(bij) for all (i, j).

� Calculate b as the average of all bij .

The only remaing question is how to maximize Pij(bij). We cannot simply use the �rst derivative,

thus we are looking for a maximizer bij ∈ N. As we know the average values of the Poisson distribu-

tions, PPSF is maximized by Kij − Gij and Pback by b. Accordingly we can systematically compare

the values of Pij in the interval and �nd a local maximizer.

2.5 Fitting a Gaussian background noise

2.5.1 The approach

As we will establish in Chapter 7.1, the background noise can be well-estimated by a Gaussian distri-

bution. We want to try to include this into our �tting algorithm to obtain even better results than

before. In the previous algorithms we always subtracted the average background noise from every

pixel and used the result as input for our �tting algorithm. This is reasonable for a Poissonian (as-

sumed) as well as a Gaussian (observed) as then the average background noise is zero for every pixel.

However this increases the uncertainty of every pixel value according to the standard deviation of the

underlying background distribution. Thus the variations are much higher for the observed Gaussian,

which has a signi�cantly larger standard deviation than the corresponding Poissonian for the same

mean value.
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Figure 2.1: Average error according to intensity,

pixel size 100 nm, spot diameter 500 nm.

To emphasize this we generate 1000 STORM

images (for di�erent intensities) for both cases,

�t them with our numerical integration algorithm

and plot the average errors in Figure 2.1. We

use an average intensity of 550 per pixel respec-

tively and a standard deviation of 80 for the

Gaussian according to our noise statistics. In

consequence of the higher standard deviation we

observe a signi�cantly larger average �tting error

caused by the increased variations of the individ-

ual pixel values. This motivates the attempt to

include our knowledge of the background distri-

bution into a �tting algorithm to achieve lower

average errors.

So far we minimized χ2 =
∑

(Oij − b︸ ︷︷ ︸
Sij

−Gij)2, where Oij denoted the original values, b the mean

background and Gij the distribution of our current �t. Instead we now want to work with χ2 =

(Oij− bij−Gij)2, where bij denotes a so called �local� background �t. Unfortunately it is not possible

to minimize with respect to all free parameters (x, y, bij), because the background �t bij is position-

dependant in an analytically unknown way. Thus we want to generate a pool of discrete Gaussian

distributed background values and assign them to the individual pixels.

Previously the �tting of Poissonian background and position in turn did not result in signi�cant

improvements as seen in Chapter 2.4. The reason for that may be that separate �tting damps the

iteration steps in direction of the initial position as the di�erence of observations and old �t is treated as

background. Therefore we will analyze whether taking the result of the common numerical integration

algorithm as an initial iterate for the new algorithm improves its quality. This seems justi�ed as we

will have an unbiased starting point for our background �tting, which will hopefully shift it further

on towards the true center, even if it does not arrive there due to damping. Still the result would be

an improvement of the best possible �t that was developed until now.

2.5.2 The discrete approximation of a Gaussian

As mentioned before, we will need a pool of background values distributed according to a known

Gaussian. Here we describe how to obtain the most probable distribution of such discrete values.

First of all, assume we know the average m ∈ R and the standard deviation s ∈ R of the underlying

background, because we can estimate them from the pixels which were not assigned to a spot. Then

the probability to observe a �xed number k ∈ N of background photons is approximately P (k) =´ k+ 1
2

k− 1
2

1√
2πs

exp(− (z−m)
2s2 )dz, a number which we can easily calculate. Now we can inductively �nd

the most probable �next� photon number by basic stochastics as the probality to observe a speci�c

distribution of n pixel values is a multiset permutation and therefore given by

P =
n!

a1! · a2! · ... · an!
P (k1)

a1 · ... · P (kn)an ,

where ai denotes the number of occurences of the background noise value ki.

Altogether this motivates the following inductive Algorithm 2.3 to obtain the desired distribution.
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Algorithm 2.3 Generating the most probable discrete Gaussian distribution.
• The most probable distribution for k = 1 is of course D1 = {m}.

• Now for k = n+ 1, we can obtain Dn+1 from Dn.

� Denote the maximal and minimal i ∈ Z for which m+ i occurs in Dn by tmin and tmax.

� Calculate zi =
P (m+i)
am+i+1 , where am+i is the number of occurences of m + i in Dn, for all

i ∈ {tmin − 1, ..., tmax + 1}.
� Denote the i ∈ Z for which zi is maximal by t and obtain Dn+1 = Dn ∪ {t}.

2.5.3 The algorithm itself

We recall our algorithm for one coordinate from Chapter 2.3, which can be summarized by the following

equations:

f(xn) =
∑

(Ci −Nei+ +Nei−)(pi+ − pi−),

f ′(xn) =
∑ N√

2πσ
(pi+−pi−)2+

∑
(Ci−Nei++Nei−)

1

σ2

(
(i+

1

2
− xn)pi+ − (i− 1

2
− xn)pi−

)
and

xn+1 = xn −
f(xn)

f ′(xn)
.

Here we denoted the number of photons by N , the standard deviation by σ, the 1D-observations

by Ci =
∑
j Sij and furthermore

pi±(xn) := exp(−
(i± 1

2 − xn)
2

2σ2
) =
√
2πσp1D(i±

1

2
) and

ei±(xn) :=
1

2
erf(

i± 1
2 − xn
σ
√
2

).

The point that we want to tackle now is Ci =
∑
j Sij =

∑
j(Oij − b), where b was the average

background noise.

Let us assume we haveM×M pixels that contain a spot. Then the background noise in one column

(or analogously row) is the sum of M background values. We recall our notations and algorithms

from the previous Chapter 2.5.2. Thus the number of background photons in one column is normally

distributed with mean M ·m and standard deviation
√
M · s as the sum of normal distributions is

again normally distributed with the means and variances summed. Now we can use Algorithm 2.3 to

calculate the M most probable background values DM . Finally we need to assign these values to the

columns.

We recall that we minimize χ2 =
∑M
i=1(Oi − bi − Gi)2 =

∑M
i=1(Oi − bi −Nei+ +Nei−)

2, where

we denote a columnwise background �t by bi. Now for the actual iterate xn we can calculate the

di�erences (Oi−Nei++Nei−) and assign the values bi ∈ DM such that χ2 is minimal. This is simply

done by ordering the di�erences and background values respectively and grouping the ones in the

same places (cf. Appendix B for the proof).
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3 Uncertainty and precision

Before the algorithms will be tested, we assess the inherent inaccuracies in the �tting process.

3.1 Error estimation

In [10] Thompson et al. furthermore provided the single error estimation for the localization precision

of least squares �tting. This is done by splitting up the problem into the two extreme cases of few or

many photons (compared to the background noise) being present.

We start with the so called photon shot noise-limited case, where we assume that no background

noise is present or it is negligible compared to the occuring photon numbers. As long as no pixelation

occurs the error can be estimated by the common statistical formula 〈(4x)2〉 = Var(x)
N = σ2

N .

Figure 3.1: Top-hat dis-

tribution of size a.

Secondary to σ denoting the standard deviation, we use a for the pixel

size and thus a2

12 is the variance of a top-hat distribution of size a, which

can be seen in Figure 3.1. Therefore adding the pixelation noise results in

〈(4x)2〉 =
σ2 + a2

12

N
.

The second case, where we assume that no pixelation occurs, is a little more complex. We recall

that we minimized χ2 =
∑
i,j

(Sij−Gij)
2

ψ2
ij

, where the observations were denoted as Sij , our �t as Gij
and ψij was the local uncertainty. Anyhow we can limit ourselves to the one-dimensional case again

as a 2D Gaussian equals a pair of independent 1D Gaussians in each coordinate direction. Thus we

only have to consider χ2 =
∑
k

(Sk−Gk)
2

b2 and furthermore use ψk = b ∀k, because all uncertainty is

background noise with standard deviation b.

Now we apply a Taylor approximation for Gk, i.e. Gk(x) = Gk(x0)+ (x− x0)︸ ︷︷ ︸
4x

G′k(x0)+O((4x)2).

Additionally we denote 4Sk = Gk(x0)− Sk.

0 =
d

dx
χ2 =

∑
k

2
(Sk −Gk(x))

b2
G′k(x)

⇐⇒ 0 =
∑
k

(−4Sk −4x ·G′k(x0))G′k(x0) +O((4x)2)

⇐⇒ 0 =
∑
k

4SkG′k(x0) +
∑
k

G′k(x0)
24x+O((4x)2)

=⇒4x ≈ −
∑
k4SkG′k(x0)∑
kG
′
k(x0)

2
(3.1)

We know that G′k(x0) are constants and 〈(4Sk)2〉 = Var(Sk) = b2. Moreover 〈4Sk〉 ≈ 0 holds as

the values of Sk are symmetrically distributed with respect to 〈Sk〉 ≈ Gk(x0). Plugging this in results

in the following calculations.

〈

(∑
k

4SkG′k(x0)

)2

〉 =
∑
k

〈(4Sk)2〉G′k(x0)2 =
∑
k

b2G′k(x0)
2

=⇒
(3.1)
〈(4x)2〉 = b2∑

kG
′
k(x0)

2

From Gk(x) = N√
2πσ

exp(− (k−x)2
2σ2 ) we derive G′k(x) = N ·(k−x)√

2πσ3
exp(− (k−x)2

2σ2 ) and consequently

G′k(x)
2 = N2·(k−x)2

2πσ6 exp(− (k−x)2
σ2 ). Finally we use

∑
kG
′
k(x0)

2 ≈ a
´
G′k(x0)

2dk.
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ˆ ∞
−∞

(k − x)2

σ2
exp

(
− (k − x)2

σ2

)
dk =

σ
√
π

2
(3.2)

=⇒ a ·
ˆ ∞
−∞

G′k(x0)
2dk = a · N

2

2πσ4
· σ
√
π

2
=

aN2

4
√
πσ3

=⇒ 〈(4x)2〉 = 4b2
√
πσ3

aN2

Similar calculations for the two dimensional case yield 〈(4x)2〉 = 8b2πσ4

a2N2 . The main di�erence is a

double integral in (3.2) resulting in another factor of σ
√
π

2 .

At last we approximate the error between the two extreme cases by the sum of both estimations,

resulting in

〈(4x)2〉 ≈ σ2 + a2/12

N
+

8b2πσ4

a2N2
. (3.3)

This curve has a transition point, meaning that up to some critical number of photons the error

behaves like 1/N , but for large enough photon numbers decays with 1/
√
N . It can be found where

both terms of the sum equal each other, i.e. σ2+ a2

12

Nt
= 4b2

√
πσ3

aN2
t

, which is true for

Nt =
4
√
πσ3b2

a(σ2 + a2/12)
.

3.2 Numerical veri�cation of a systematic error caused by pixelation

In our simulations we will observe an improvement of the average error due to numerical integrations.

To support these results we now want to show the existence of a systematical error for �tting with a

pixelated Gaussian. This means that not only the average error is smaller for numerical integrations,

but the mean center is unbiased, too.

Treating the error caused by pixelation analytically is hardly possible because of the occuring

integrals of the Gaussian probability density function. Still we can easily show the existence of a

systematic error due to pixelation as follows.

We assume to observe a perfect Gaussian distribution with no background noise, i.e. real photon

values for each pixel. If we used our numerical integration algorithm from Chapter 2.3, we would of

course be able to re�t the center exactly as we �t with the very same distribution. However when

using the pixelated approach, i.e. setting the value of the Gaussian at the center as constant above

the whole pixel (cf. Chapter 2.2), this is not necessarily true any longer.
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Figure 3.2: Shift of �tted spot centers due to pixe-

lation, spot diameter 5 pixels.

Thus we systematically perform least squares

�ts of a pixelated Gaussian to a Gaussian on a

grid with equally distributed spot centers within

one pixel, which can be seen in Figure 3.2. The

observed e�ects are easier to understand remem-

bering that a 2D Gaussian is the combination

of 1D Gaussians in x- and y- direction. Now as

long as the center is located at 0, 0.5 or 1 for one

coordinate, the Gaussian distribution is symmet-

ric with respect to the pixel grid in that direc-

tion and therefore this center coordinate coin-

cides with the one of the �t. Nevertheless for all

other cases we detect a tendency towards 0.5 as

indicated by the arrows, which are ampli�ed by

a factor of 20. The fact, that the tendency goes

towards 0.5 and not 0 or 1 is probably caused by

starting the �tting iteration in the center of the

local maximum pixel.

For a spot size of 5 pixels (500 nm for the common pixel size of 100 nm) we measure an average

systematic error of 4 · 10−3 px (0.4 nm) and a maximal error of 6 · 10−3 px (0.6 nm) already for

�tting the perfect Gaussian. The existence of this systematic error coincides with the observed error

di�erence between numerical integrations and pixelated algorithms (e.g. Figure 4.5). We will quantify

the observed e�ects in Chapter 4.4.

All used algorithms were programmed in MATLAB R©, for further information consider Appendix

A.1.
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4 Random STORM images

In this chapter we want to simulate STORM images, allowing us to know the exact spot centers to

closely examine the �tting process. We still use MATLAB R©, for the simulation code see Appendix

A.1.

4.1 Image generation and setup

Again based upon Thompson [10], who states that the background noise can be considered as a Poisson

process, one can use the following Algorithm 4.1.

Algorithm 4.1 Random image generation.
• Fix a spot center.

• Generate a �xed number of photons from a Gaussian distribution.

• Collect the photons on a coarse grid.

• Add Poisson distributed background photons for every pixel.

In theory one should use the Airy distribution for photon generation, however the di�erence be-

tween its central ring and a Gaussian distribution is very small, while we do not observe the outer

rings in practice anyway. Parameters available for tuning are the spot center relative to the pixel grid,

the number of photons in the spot, the pixel size, the size of the distribution and the average number

of background photons per pixel.

4.2 Error dependencies

Figure 4.1: Dependency on the position of the spot

center within the cell.

First of all we want to check how much the preci-

sion of the �tting is related to the position of the

spot center within the pixel. This might depend

crucially on the relation of the spot size, i.e. the

diameter of the distribution and the pixel size as

the sketch in Figure 4.1 shows.

One may foresee that in case A, where the

spot is twice as big as one pixel, better results

are obtained for the pixel center. This is reason-

able as photons hit three pixels in each direction

instead of two for the center located in the corner

and thus we have much more detailed informa-

tion to �t. On the other hand in case B, where

the spots are smaller than one pixel, it would be

preferable to have the spots located close to the pixel corners to obtain photon hits in more than one

pixel.

Therefore one has to consider realistic values for those sizes to be able to validate the in�uence of

their relation. From (2.2) we know that the radius of the inner Airy disk is given by

rAiry ≈
0.61λ

NA
=⇒ dAiry ≈

1.22λ

NA
,

where λ denotes the emission wavelength of the used �uorophore and NA the numerical aperture, a

dimensionless characteristic of the objective. As observable in [13], Table 1, the emission wavelengths
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of di�erent �uorophores range from 500 to 800 nm. On the other hand numerical apertures of up to

1.51 are theoretically possible with oil immersions, while nowadays values between 1.0 and 1.35 are

common in practice [3]. Hence the spot diameter may vary between 400 and up to 800 nm. Moreover

light microscopes usually have pixel sizes of down to about 100 nm.

Figure 4.2: Average error according to pixel size;

spot diameter 800 nm, 10000 photons, average of

130 photons/pixel background noise.

Thus in Figure 4.2 we plot the average error

for positions close to the corner, in-between and

close to the center of a pixel over the pixel size.

For a constant spot size of 800 nm 1000 random

images with respectively 10000 photons are gen-

erated, �tted with the Gaussian mask algorithm

and the errors, here denoting the euclidean dis-

tance of the �tted center from the original one,

averaged. A Poissonian background noise with

a mean of 130 photons per pixel (as reported by

our experimental contributors) is added. Keep-

ing the spot size constant is reasonable as only

the relation of spot size and pixel size is rele-

vant. Additionally for a �xed �uorophore only

the pixel size can be adapted.

Two e�ects can be observed here. On the one hand whenever the pixels are too small the spot is

too far spread out and therefore gets hard to distinguish from the background noise. On the other

hand for large pixels, depending on the position of the center within the pixel, the photons hit too

few di�erent pixels and become harder to recognize as suspected above. Nonetheless between these

extreme cases there is a su�ciently large range of pixel sizes (60 - 140 nm), where small errors occur

independent of the spot position.

Figure 4.3: Average error according to spot diam-

eter; pixel size 100 nm, 10000 photons, average of

130 photons/pixel background noise.

The common pixel size of about 100 nm is

right in the center of that interval and should

therefore be adequate for the di�erent occuring

spot diameters. Anyhow we checked this fact,

the result can be seen in Figure 4.3. As visi-

ble for small spots the position of the center be-

comes recognizable, still the error stays accept-

able. Nevertheless it is remarkable that miniza-

tion of the spot diameter does not imply the

smallest possible average error. Apart from these

e�ects at the lower limit, we perceive a linear in-

crease of the error, which is independent of the

center position.
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Figure 4.4: Average error according to photon num-

ber, pixel size 100 nm, spot diameter 500 nm, av-

erage of 130 photons/pixel background noise.

Finally we try to con�rm the dependency of

the average error on the number of photons in a

spot in the form 4x ∼ 1√
N

for large enough N,

which we introduced in Chapter 3.1, see (3.3).

Our simulation results seem to agree with the

estimated proportionality in the logarithmic plot

in Figure 4.4 pretty well at �rst, however the

decay is damped and thus the average error does

not converge to zero.

4.3 E�ect of numerical integrations

As we hope to avoid unnecessary approximations, we use random generated data with known spot

centers to check whether our algorithm is more precise, i.e. yields a �t that is signi�cantly closer to

the true center. First, we �x the number of photons at 10000 and generate 1000 frames respectively

for the occuring spot sizes. The pixel size is kept at 100 nm, the background noise is set to zero here

as we want to compare with the minimal possible error, i.e. the error caused by coarse- and �niteness

of the data, which is according to (3.3) given by

〈4xmin〉 =

√
σ2 + a2

12

N
.

Figure 4.5: Average error according to spot diam-

eter, pixel size 100 nm, 10000 photons, no back-

ground noise.

In Figure 4.5 we observe that at least 10%

of the error can be avoided by using numerical

integration �tting. Especially at small spot sizes

the algorithm outperforms the Gaussian mask �t

as the error keeps linearly decreasing here. This

agrees with the theory, even if the error is still

larger than the unavoidable one.
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Figure 4.6: Average error according to spot diam-

eter, pixel size 100 nm, 10000 photons, average of

130 photons/pixel background noise.

Additionally we veri�y that the average error

caused by numerical integration �tting is inde-

pendent of the position of the spot center within

the pixel now. This can be seen in Figure 4.6. We

add a Poisson distributed background noise with

an average of 130 photons per pixel, all other

parameters remain unchanged.

Figure 4.7: Average error according to photon num-

ber, pixel size 100 nm, spot diameter 500 nm, av-

erage of 130 photons/pixel background noise.

Finally we have a look at the relation of the

average error and the photon number. We choose

a constant spot size of 500 nm for which both

algorithms are performing �ne when using the

common pixel size of 100 nm. Then we generate

2000 images for several photon numbers and add

an average of 130 photons per pixel background

noise. In Figure 4.7 we obtain decreasing errors

for both algorithms, however the numerical inte-

gration �tting again performs better. Especially

it �ts the expected N−1/2-dependancy very well,

resulting in an average error converging straight

to zero in contrast to the Gaussian mask �t.

4.4 Quanti�cation of occuring shifts caused by pixelation

In Chapter 3.2 we analyzed the occuring systematic errors due to pixelation in the extreme case of

�tting the perfect Gaussian distribution, which equals the limit of observing an in�nite number of

photons stemming from one spot. Now we want to �x di�erent photon numbers and analyze the

occuring shifts. Thus for every �xed photon number we generate 200 equally distributed spot centers

and 200 STORM images respectively (40.000 STORM images altogether) and �t those. To increase

the number of samples we consider x- and y-coordinate as independent, which is reasonable because a

2D Gaussian is only the combination of 1D Gaussians in each coordinate direction. Then we calculate

the 1D shifts towards the spot center. Last but not least we need to be sure, which part of the error

is caused by pixelation. Therefore we apply numerical integrations as a cross-check to the Gaussian

mask �ts.

The results for a spot size of 500 nm and a pixel size of 100 nm, for which both algorithms are

performing �ne, can be found in Figure 4.8 on the next page. No background noise is added here as

it would only make our results less clear. We observe that the shifts for the NI algorithm are centered

around 0, while the GM �ts are unambiguously biased in direction of the spot center. As expected

the distribution becomes less broad for an increasing photon number.
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Figure 4.8: Distribution of 1D shifts, spot size 500 nm, pixel size 100 nm, no background noise.
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Furthermore average and maximal shifts for all simulated setups are shown in Table 4.1. The

displayed shifts are 1D, thus multiplication by
√
2 yields the particular 2D errors. We recognize

that the average shift for the GM algorithm stays constant at approximately 0.28 nm (0.4 nm in

2D), which perfectly agrees with the value from Chapter 3.2. Anyhow the maximal error is steadily

decreasing from 1.15 nm (1.63 nm) for 1000 photons down to 0.47 nm (0.66 nm) for 1000000 photons.

This coincides with the 2D limit of 0.6 nm for the perfect distribution, too. On the other hand the

maximal errors for the numerical integrations are strikingly smaller and converging to zero very fast.

Table 4.1: 1D average and maximal shifts, spot size 500 nm, pixel size 100nm, no background noise.

These results show that the numerical integration algorithm is superior to pixelated approaches.

4.5 Fitting a Poissonian background

Figure 4.9: Average error according to spot diam-

eter, pixel size 100 nm, 10000 photons, no back-

ground noise.

Back in our algorithm testing environment we

want to compare the developed algorithm for Pois-

sonian background �tting (cf. Chapter 2.4) with

the former ones. Thus we use the same settings

as in Chapter 4.3. We start o� comparing dif-

ferent spot sizes for a �xed pixel size of 100 nm.

1000 frames with 10000 photons respectively are

generated using no background noise. The unedi-

fying results can be seen in Figure 4.9. As shown,

there is no improvement compared to the com-

mon numerical integration �tting, which is sim-

pler and faster.
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Figure 4.10: Average error according to photon

number, pixel size 100 nm, spot diameter 500 nm,

average of 130 photons/pixel background noise.

Next we analyze di�erent photon numbers for

a �xed spot size of 500 nm, using the common

pixel size of 100 nm and generating 5000 frames

respectively. The average background noise rate

is set to 130 photons per pixel. Nonetheless Fig-

ure 4.10 shows no improvements either.

Overall we cannot see improvements in the localization precision due to Poissonian background

�tting. The photon number can be �tted more accurately that way, yet in this thesis we are only

looking for improved resolution as we deem the current photon number �ts su�cient.

4.6 Simulation results for Gaussian background �tting

Finally we implement two variations of our latest algorithm:

• GbNi, our numerical integration algorithm with a Gaussian background �t starting in the center

of the local maximum pixel and

• WpGbNi, using the �tting result of our common numerical integration (Ni) algorithm as an

initial iterate for GbNi.

Figure 4.11: Average error according to photon

number, pixel size 100 nm, spot diameter 500 nm,

Gaussian background with mean 130 and standard

deviation 20.

Now we generate 1000 STORM images for sev-

eral photon numbers and �t them with the di�er-

ent algorithms. We add a Gaussian background

noise with a mean of 130 and a standard devi-

ation of 20 according to our noise statistics in

Chapter 7.1. The spot size is set to 500 nm and

the pixel size to 100 nm as usual. Unforunately

we are not able to observe signi�cant improve-

ments in Figure 4.11. Thus we do not apply

GbNi or WpGbNi to real data as the Ni algo-

rithm seems to already achieve the same accu-

racy. This may be caused by the fact that vari-

ations of the local background values are much

weaker than other noise factors such as pixela-

tion and �niteness of the sample.
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5 Processing experimental data

Having data of STORM runs at hand that were attained by Gregor Lichtner at the FMP Berlin, we

�rst have to investigate how to handle experimental data.

5.1 Available �tting tools

Our collaborators currently use the software RapidSTORM, which was originally developed by Steve

Wolter in the context of his diploma thesis in 2009 [14]. The package applies the so called Levenberg-

Marquardt algorithm, which is a more robust alternative to the Gauss-Newton algorithm for solving

least squares problems. Nonetheless, the distribution is �tted with a pixelated Gaussian as in Chapter

2.2. Although the algorithm might be faster or locate more spots, it does not possess a higher

accuracy. The background noise �tting is done by subtracting a local mean value, which might be

another opportunity for improvements.

Besides, there are several other frameworks for �tting STORM data. The two most famous alter-

natives are DAOSTORM [15] and QuickPALM [16], which date back to 2011 and 2010 respectively.

Figure 5.1: Schematic illustration of the DAOS-

TORM algorithm. [15]

The former is an adaption of an astronomy

software, DAOPHOT II, which allows to �t over-

lapping molecules. This is accomplished by group-

ing up candidate spot centers with overlapping

distributions and minimizing the total sum of the

squared errors of all �ts within a group. The em-

ployed PSF model relies on a pixelated Gaussian

as well. Due to several identi�ed noise sources,

di�erent ad-hoc weights are included in the least

squares �tting. Albeit, the algorithm does not

outperform the Gaussian mask estimation (cf.

Chapter 3.1) for well-separated molecules in terms

of precision, as stated in the article's supplement.

The di�erence of DASTORM compared to the

ordinary approach (cf. Figure 1.5) utilized in

RapidSTORM and QuickPALM can be seen in

Figure 5.1.

QuickPALM on the other hand is a plugin for

the visualization software ImageJ, which allows

real-time processing of STORM or PALM (Pho-

toActivated Localization Microscopy) data. In

contrast, the precision is worse than for Gaus-

sian �tting methods, since a modi�ed center of

mass algorithm is used to achieve this.

For localizing single molecules as precise as possible, RapidSTORM seems to be the best choice

out of the currently available implementations. Furthermore it contains many interesting features for

experimentalists, such as automatic rejection of �bad� �ts.
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5.2 Identifying trajectories

A so called STORM image usually consists of several (from 100 up to 10.000) frames displaying the

same observed area. The imaging time for every frame is �xed, therefore the same spot is monitored

in multiple consecutive images. Now one wants to detect those �trajectories�. Thus we have given

RapidSTORM output �les, which contain a list of spot locations and photon numbers for every frame

and look for reappearances. Combining those results in a more precise localization of the spot center

as the photon number-weighted mean of the single locations. The detailed procedure is given by

Algorithm 5.1.

Algorithm 5.1 Identi�cation of trajectories.
• Get all localizations out of the �rst frame.

• Set these as starting points for new �active� trajectories.

• For all frames, repeat the following steps.

� For all localizations within the frame:

∗ Check whether there is an active trajetory within a �xed range of the localization.
∗ If it is, add the localization to the trajectory.
∗ If not, generate a new �active� trajectory starting in the localization.

� Set all trajectories, that did not appear in the frame to �completed�.

• Calculate the weighted localizations and total photon numbers for all trajectories.

5.3 Drift

Unforunately one cannot ensure that there is no drift of the observed sample, which may for example

be caused by temperature changes or external forces. Even if the movements are very small in

usual microscopic dimensions, they may become a non-negligible factor whenever we want to achieve

nanometer resolution. Therefore Mlodzianoski et al. analyzed drifting e�ects in STORM for the 3D

case in 2011 [17].

Analogously we want to estimate the sample movement for the 2D case now. Of course we do

not estimate the shifts from localization to localization as then we would misinterpret the �tting

inaccuracy as drift. Though grouping up of spots over multiple frames and analyzing the drift of

the averaged spot centers should be an improvement for large enough frame numbers. Thus we will

carefully pay attention to whether or not a data set is in�uenced by drift or not.

In case it becomes necessary, we will implement the following approach. First of all we use so

called beads, �large� objects which can be tagged with numerous �uorophores, such that they are

permanently emitting photons. Second we model the sample drift by a combination of translation

and rotation. We denote the velocity with −→v , the angular frequency with ω and the center of rotation

with −→r and obtain the following evolution of a point −→x0 in time

−→x (t) =

(
x(t)

y(t)

)
= −→x0 +−→v · t+

(
cos(ωt) −sin(ωt)
sin(ωt) cos(ωt)

)
· (−→x0 −−→r ).

By locating at least four beads we could now calculate the seven free parameters of our modelled

drift or whenever more of them are available perform a non-linear least squares �t. However in practice

we are not interested in a continuous drift or knowing the center of rotation, but in an estimation of

the drift from one frame to another. Therefore we can discard time as a factor and approximate the

drift for a discrete step by
−−−→xn+1 −−→xn = −→v +Mrot · −→xn. (5.1)
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Here Mrot is an arbitrary �rotation� matrix and as already mentioned −→xn does not denote the

localization of a spot in frame n, but a mean localization of the surrounding frames. Now every

assigned pair (−→xn, −−−→xn+1) provides two equations to estimate the six parameters

−→v =

(
v1

v2

)
and Mrot =

(
m1 m2

m3 m4

)
.

of the drift −−−→xn+1−−→xn. Hence we need to locate at least three beads in the surrounding frames. In case

of more localizations we calculate the linear least squares �t since the drift is no longer parameter-

dependant in a non-linear way.

At this point we only have to describe how to obtain such a �t. Assume i ∈ N equations

ai,1λ1 + ai,2λ2 + ...+ ai,kλk = bi

for known right hand sides bi and factors ai,k are given and we want to estimate the k ∈ N unknowns

λk ∈ R. This can be accomplished by minimizing the error in the Euclidean norm, i.e.

||b−Aλ||2 ≤ ||b−Av||2 ∀v ∈ Rk.

Now according to [18], Theorem 2.14, λ ∈ Rk is a minimizer, if and only if

ATAλ = AT b (5.2)

Furthermore it is unique if A is injective.

In our case the right hand sides are the occuring drifts, the unknowns are the free parameters and

the respective factors follow from (5.1):(
b2i

b2i+1

)
:=

(
xn+1,i

yn+1,i

)
−

(
xn,i

yn,i

)
,

λ := (v1, v2,m1,m2,m3,m4),

a2i := (1, 0, xn,i, yn,i, 0, 0) and

a2i+1 := (0, 1, 0, 0, xn,i, yn,i).

As we will not locate two spots in the exact same place A is obviously injective and thus a unique

minimizer is given by (5.2), which can be evaluated using basic linear algebra.
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6 xStorm

In the context of this thesis an independent software package for spot localization was created.

6.1 Necessity of the development

Even if RapidSTORM is open source code and the possibility of including other ��tting kernels� was

originally build in, there are several reasons against that. Above all, the code was once well-structured,

but soon became confusing due to several bug- and hot�xes and only sparse annotations. Furthermore

the documentation is mainly meant for users, while the code contains many parts that are not relevant

for the present thesis.

Consequently we decided to develop our own �tting environment for experimental data called

xStorm, where x is an abbreviation of exact. In particular this allows us to include several algorithms

for the analysis of external in�uences such as noise or drift. Nonetheless Steve Wolter's diploma

thesis [14] and the article published by his group on their experiences and results while designing and

working with RapidSTORM [19] were very helpful.

In terms of the programming language we decided in favor of C++, which combines computational

e�ciency with availability of diverse functions, extensions and packages, e.g. for user interfaces and

multithreading. In addition the G++ compiler guarantees the portability of the C++ code to the

most common operating systems. Fortran would have been a reasonable decision as well, however

making computational power accessible for the user as well as programming itself is more complex

here. MATLAB R©, which we used for our simulations, is very intuitive as it has many mathematical

functions already built-in, but it is simply too ine�ecient (i.e. slow) when it comes to working with

huge amounts of data. Similarly, these computational disadvantages apply to Java and Python.

6.2 Input and output

As an output from a STORM experiment, one obtains a .tif- or .ti�-�le containing several frames. We

will have a closer look at this format in the following Chapter 6.3, for now we just assume that we

can extract framewise matrices of intensity values from it. Furthermore we need to know the pixel

size in nanometers to provide meaningful �nal results. Optionally we would like to know the emission

wavelength (λ [nm]) and the numerical aperture (NA) of the used microscope, because this gives us

the spot size (cf. (1.1)).

One �t �nally consists of only four numbers. Those are x- and y-coordinates of the spot center,

the number of �tted photons and the frame the spot was found in. Consequently we use a simple

text �le with four columns (and a space as separator) to print our results and condense a complete

STORM image into a list of found spots, alike the output format of RapidSTORM.

6.3 The tagged image �le format (TIFF)

Nowadays the TIFF
TM

is controlled by Adobe Systems and known as a �exible �le format that uses so

called header tags to structure data and multiple images. The latest version (6.0) of its speci�cation

[20] can be found on Adobe's homepage.
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Figure 6.1: The TIFF structure. [20]

Unsurprisingly the �rst task when developing

a framework for STORM experiments is being

able to extract data from these images, such that

one can e�ciently work with them. Therefore

understanding the TIFF-structure displayed in

Figure 6.1 is crucial.

The �rst eight bytes contain two characters

de�ning the byte order (little or big endian), two

containing the number 42 to label the �le as a

TIFF and four with the o�set (distance to the

beginning of the �le) of the �rst Image File Di-

rectory or shortened IFD. In turn each IFD starts

with two bytes containing the number of 12-byte

directory entries following and ends with four

bytes describing the o�set of the next IFD. The

last IFD ends with four bytes of zero. Finally

each directory entry consists of the tag identify-

ing the �eld (two bytes), the �eld data type (two bytes), the number of values (four bytes) and the

value(s) itself or if those exceed four bytes a �le o�set to where the values can be found.

An example directory entry in big endian is

1 0︸ ︷︷ ︸
tag

0 4︸ ︷︷ ︸
type

0 0 0 1︸ ︷︷ ︸
#values

0 0 1 224︸ ︷︷ ︸
values/offset

.

Having in mind that each byte may contain the values 0..255, we detect the �eld as tag number

256, which (according to the speci�cation) contains the number of pixels in x-direction. The type

4 stands for LONG, i.e. 4-byte unsigned integer and the number of values is 1. Thus 1 · 4 = 4

bytes are necessary for the contained value(s) and the last four bytes contain the value itself, which

is 1 · 256 + 224 = 480. As a result the described image has a width of 480 pixels.

Apart from these tags only raw data is contained in the �le, while usually each IFD speci�es where

the data for one frame can be found and how it is formatted.

6.4 Program design

For the implementation the programming framework Ultimate++ was chosen. It is available for

several platforms as it is compatible with G++ and contains all libraries we need as well as its own

development environment, TheIDE.

The basic code (cf. Appendix A.2) was split up according to the following tasks.

• Graphic User Interface (GUI)- xStorm.h, xStorm.lay

• TIFF processing - ti�proc.h

• Self-written datatypes - data.h

• Routines for working with a single frame, i.e. spot �nding and �tting - spots.h
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Figure 6.2: The xStorm GUI.

As we are interested in comparing di�erent �tting algorithms the program allows selection of one

of them. Furthermore di�erent �tting parameters need to be speci�ed as can be seen in the GUI in

Figure 6.2. Those are

• the pixel size in nanometers,

• the emission wavelength in nanometers, which speci�es the approximate spot size; 0 means that

the spot size (or equivalently the standard deviation of the Gaussian) is included in the �t,

• the minimal number of photons; 0 means that the program �ts all spots it can recognize and

• the number of frames to be �t; 0 means that all contained images are processed.

6.5 Parallel processing

The �tting procedure contains several computationally expensive steps. Therefore multithreading

should be implemented wherever reasonably possible. Fortunately the �tting process allows a high

level of parallelization, resulting in an appreciable decrease of computing time already on a quad-core

CPU. The multithreading is done using the �CoWork� class contained in Ultimate++.

Figure 6.3: Multithreading in xStorm.

Of course only one thread can ac-

cess the source �le at the same time.

Still whenever a complete frame has

been read, it can be passed to a new

thread to deal with it, while the orig-

inal one continues reading. The new

threads scan the frames for spot can-

didates. Ultimately, for every detec-

tion a surrounding region depending

on the spot size, called subframe, can

be cut out and transferred to a new

�subthread�.

Additionally the reader thread is connected to a GUI thread, which keeps the GUI accessible while

the �tting is done. A schematic overview is given in the adjacent Figure 6.3.
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7 Experimental observations

In the end we analyze the experimental data. Some basic results are displayed here.

7.1 Noise statistics

As a start we want to have a look at the background noise. To do so we consider all pixels within a

40 × 41 grid of a common STORM image (#1, 100 frames), that were part of no �tted spot. Then

we collect the occuring intensities, which are proportional to the photon numbers, into several bins.

Finally normalizing the data results in the attached Figure 7.1.

Figure 7.1: Experimental background noise �tted

with a Gaussian.

The common statistical formulas yield a mean

value of λ = 578 and a standard deviation of

σ = 81, which correspond to the plotted graph.

In contrast to Thompson's assumption [10] this

is no Poisson distribution at all, as σ2 = 6561�
578 = λ. However the Gaussian �t seems ac-

curate. It remains questionable why none of the

authors of the following literature examined that

fact, even if a few (e.g. [19]) use non-Poissonian

background.

The small imbalance of the distribution to

the right, which results in a minor shift of the

Gaussian �t, is easily explainable as there are of

course some pixels which were hit by spot pho-

tons though not treated as part of a spot. This applies especially to pixels beeing located in one of

the outer rings of an Airy distribution.

One has to pay attention to the di�erence between the intensity and the number of photons

here. Assuming a mean of 130 photons per pixel, the proportionality yields a standard deviation of

approximately 20.

Figure 7.2: Background noise for a single frame

compared to the overall �t.

To ensure that the increased standard devia-

tion is not the result of a changing mean value of

a Poissonian background distribution, we check

the distribution of the background noise for a

single frame. We arbitrarily choose frame 50 -

no special e�ects should occur here. As Figure

7.2 depicts it agrees with the Gaussian �t of the

whole background (red curve) very well, in fact

for the single frame we obtain a mean of λ = 585

and a standard deviation of σ = 83 only slightly

di�ering from the average ones.

Thus the background distribution is clearly Gaussian, but not Poissonian. As a consequence we

discard our Poissonian background �t (cf. Chapter 2.4) from further research.
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7.2 Single bead

Second we observe and localize a large single bead in STORM image #1 for 100 frames, being interested

in the �t accuracy of the two already compared algorithms, numerical integrations(NI) and Gaussian

mask �tting(GM).

Figure 7.3: Distribution of �tted centers of a single bead.

The adjacent Figure 7.3 shows the

distribution of the found spot centers

for both algorithms. Calculations yield

σNI = 2.76 and σGM = 3.02 as stan-

dard deviations of the numerical inte-

gration and Gaussian mask �ts from

their mean center respectively. Repeat-

ing the analysis using RapidSTORM

results in σRS = 2.89. This agrees

with our expectations because full least

squares �tting (of a pixelated Gaus-

sian) is applied here. Therefore our

algorithm seems to perform best, pri-

marily when we take into considera-

tion that the average center of the nu-

merical integration �t should be closer to the true spot center according to our simulations. This is a

result we would like to quantify and con�rm in theory.

Figure 7.4: Drift of a single bead.

Prior to this, we want to have a

look at the occuring drift. Thence we

average twenty �ts respectively and plot

the �movement� of those mean spot cen-

ters in Figure 7.4. We clearly see that

for both algorithms a drift of approx-

imately 1.5 nm in x- and 3 nm in y-

direction occurs. Therefore we correct

the in�uence of this drift by shifting

every �t according to the average po-

sition of the surrounding 20 frames.

Figure 7.5 shows the drift-corrected

spot centers in comparison to the pre-

vious Figure 7.3. We obtain consider-

ably improved standard deviations of

σNI = 2.51 and σGM = 2.75. To be able to relate this to the results of our simulations, we calculate

the average errors (R2 distances from the mean center), too. A comparison is shown in the adjacent

Table 7.1.

Table 7.1: Average errors for �tting a single bead.
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Figure 7.5: Distribution of �tted centers of a single bead after

drift correction.

We estimate the spot diameter by

10 pixels (enlarged by the bead itself),

know that the pixel size of our micro-

scope is 105 nm and detect a mean in-

tensity of 149400 per frame. Further-

more we know the underlying back-

ground distribution from the previous

Chapter 7.1. Plugging this into our

simulation environment we obtain av-

erage errors, which agree with the ex-

perimental results very well. We as-

sume that the remaining di�erence re-

sults from the uncertainty caused by

the drift correction and the di�erence

between Airy disk (real) and Gaussian

distribution (model).

7.3 Multiple beads

To quantify our the �ndings from the previous Chapter 7.2 we want to use several smaller beads

(resulting spot size of approximately 8 pixels), �t them with both xStorm algorithms and compare

the �tted intensities and the standard deviations of the �tted centers from their algorithm's mean.

The results for the 100 frames of STORM image #2 are shown in the following Table 7.2.

Table 7.2: Quantitative comparison of di�erent algorithms for bead �tting.

For all ten beads the NI algorithm is able to assign considerably more photons to the recognized

spots, underlining the fact that its average spot center is most probably closer to the true one. This

agrees with our simlutations. In addition our algorithm is able to obtain a smaller standard deviation

for nine out of ten beads and fails only slightly for bead three.

On the other hand the obtained standard deviations are considerably larger than our simulations

predict. For example, the generation of 100 images with an intensity of 40000 per frame but otherwise

analogous setting yields the values displayed in the following Table 7.3 compared to weighted standard

deviations for beads six, eight, nine and ten. Thus we want to survey the STORM image for drift

e�ects.
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Table 7.3: Standard deviations for �tting multiple beads.

Figure 7.6: Movement of one of the beads.

For this purpose we proceed as be-

fore by averaging twenty �ts respec-

tively and monitoring the �movement�

of the mean spot centers of one bead.

The disappointing result is shown in

Figure 7.6, which cleary reveals that

the spot seems to oscillate for more

than 20 nm. Even taking more (checked

for up to 50) frames for the averaged

centers does not allow us to detect a

drift in the original sense. Unfortu-

nately this observation is independent

of the applied �tting algorithm and the

chosen bead, while the oscillations of

the individual beads do not coincide

(cf. Figure 7.7).

Consequently we cannot achieve agreement of the experimental results with our simulations here,

though we interpret the insu�cient imaging quality as responsible. This is reasonable as satisfactory

results (i.e. beads that do not move apart from the drift of the whole sample) are available (cf. the

previous Chapter 7.2).

Nonetheless the numerical integration algorithm performs better than the Gaussian mask �t in

terms of �tting accuracy and assigned intensity.

Figure 7.7: Movement of four of the beads.
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7.4 Antibody �tting benchmark

Last but not least our experimental collaborators provided us with a STORM image (#3, 100 images)

of many antibodies (and several beads for drift correction) as a benchmark test for the resolution. In

the given sample the antibodies were heavily diluted to make them clearly distinguishable. A subset

is manually selected and all spots in a surrounding region �tted and assigned. Then the standard

deviations of the localizations for all selected antibodies are calculated. Finally the intensity-weighted

average of these values determines the resolution of the applied �tting algorithm.

We obtain the average standard deviations of σNI = 12.50 and σGM = 13.27 for the �tting results

of the respective algorithms using xStorm and σRS = 14.29 for the corresponding �ts of rapidSTORM.

It is not clear why rapidSTORM performs even worse than our Gaussian mask implementation here,

but the problem is probably related to the spot �nding algorithm. Indeed rapidSTORM identi�es

exceptionally many spots close to the image border, which our algorithms classify as artifacts. However

we only use antibodies recognized by both programs to allow a fair comparison.

Table 7.4: Standard deviations for �tting antibodies.

Figure 7.8: Antibody �tting benchmark results for

di�erent �tting algorithms.

Once again we compare the obtained values

to the corresponding simulation results in Table

7.4, though the RapidSTORM �tting algorithm

is not available in our MATLAB R© environment.

We expected smaller standard deviations, even

though we did not model the drift and use a

Gaussian instead of an Airy disk for image gener-

ation - however the values can still be considered

as �consistent�.

In addition a clean drift as in Chapter 7.2 can

be recognized, resulting in an improvement of the

standard deviation by about 1.5 nm independent

of the applied �tting algorithm as visualized in

Figure 7.8.

As a result our algorithm turns out to be the best choice for practical applications as well.

7.5 Bias due to the �tting method

Additionally we want to check the distribution of the �tted spot centers for STORM experiments with

respect to the pixel grid. In theory we should observe a uniform distribution for a su�ciently large

number of spots. Thus we �t all detectable spots within STORM image #2 (100 frames), altogether

about 2500 spot centers. To increase the number of samples we then only consider a 1D distribution

of a subpixel-coordinate around the pixel center. This allows us to use each �tted x- and y- coordinate

as a sample respectively. As we want our results to be comparable we performed Gaussian mask �ts

(GM) and numerical integrations (NI) for the same spots.
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Figure 7.9: Distribution of �tted spot centers in

experimental data.

The result can be seen in Figure 7.9, the his-

togram was normalized such that the observed

distributions should be approximately uniform.

Even if it is not obvious, the expected shift to-

wards the spot center for the GM algorithm is

identi�able, mainly in the large di�erence of �ts

close to the center compared to those in the pixel

corners. Our NI �ts on the other hand come con-

siderably closer to a uniform distribution as χ2

(the sum of squared errors) for our algorithm is

at 8.14 ·10−4 compared to 2.86 ·10−3 for the GM
�ts.

Figure 7.10: Distributions of �tted spot centers in

RapidSTORM �ts.

Finally we want to test RapidSTORM for the

assumed tendency towards the pixel borders. We

consider x- and y-coordinate separately here as

there may be di�erent e�ects depending on the

coordinate direction. To gain a larger number

of samples we use another STORM image (#4,

10000 frames) and �t all (approximately one mil-

lion) detectable spots. Then we repeat the above

analysis to obtain Figure 7.10. As we see there

is a clear tendendy towards the pixel borders,

especially in the x-coordinate.

Consequently we have to expect shifts for �tting experimental data with pixelated approaches as

predicted - another factor underlining the superiority of our numerical integration algorithm.
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8 Summary and Outlook

Finally we want to brie�y review our results and summarize them. Additionally we discuss possible

further improvements and other approaches.

8.1 Our results

The numerical integration algorithm established in Chapter 2.3 is able to outperform pixelated ap-

proaches, such as the Gaussian mask �t(cf. Chapter 2.2) in terms of �tting accuracy as showed in

Sections 4 and 7. Regrettably the improvements are not as signi�cant as we had hoped. Nonetheless

we avoid a systematic error, which underlines the remarkability of the slightly improved standard

deviations and average errors. Furthermore our algorithm is stable for small spots (compared to the

pixel size) in contrast to pixelated approaches, which cause non-negligible errors depending on the

subpixel position of the spot center as observable in Figures 4.4 and 4.7.

Then we discovered that the background noise is not Poisson distributed as assumed, but can be

adequately �tted with a Gaussian. This contradicts previous publications, though we are not able

to employ this to clearly improve the �tting accuracy. Using the average background value as a �t

seems imprecise, however we assume that the variations caused by the background noise are too small

compared to other in�uences.

Moreover we detected drifts within a STORM image and increased the �tting accuracy by cor-

recting them. A similar technique was already applied by other authors in 3D, still we were able to

reconstruct their results in 2D.

Finally the mentioned existence of systematic errors induced by pixelated model functions was

shown in Chapter 3.2 and the occuring errors quanti�ed. Such an analysis was not carried out so far

as our numerical integration algorithm is the �rst method avoiding pixelation.

The joint signi�cance of these new �ndings motivates our intention to publish them.

8.2 Future possibilities

From our point of view the numerical integration algorithm is achieving the best currently feasible

�tting accuracy for iterative approaches that try to directly �t a PSF to the observations. All known

noise sources have been examined and their in�uence compensated as far as possible. Indeed the

algorithm shows no bias and attention was paid to the background noise and drift e�ects. Nevertheless

the errors caused by coarse- and �niteness of the sample are unavoidable for such algorithms.

On the other hand there may be sources of inaccuracy that we simply did not model. Thus

improvements based on new physical research cannot be ruled out.
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Figure 8.1: An alternative approach for �tting

STORM images. [21]

Apart from these e�orts, Larkin and Cook

recently published another completely di�erent

method for �tting STORM images [21]. Their

basic idea depicted in Figure 8.1 is to assign a

probability distribution to every photon (which

describes where its source spot could have been)

and join these distributions to describe the orig-

inal spot center. This technique is faster than it-

erative algorithms and as they claim more precise

for noisy images. For high signal-to-noise ratios

however it perfoms worse than a maximum like-

lihood method. As such ratios can be attained in

experimental setups, we do not interpret the al-

gorithm as superior. Anyhow the approach may

prove to be a signifcant contribution to superres-

olution microscopy, especially if it is extendable.

Altogether, we see that the steady progress of improving microscopy resolution has not come to its

end and hope that this thesis will be a small contribution.
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A Code section

A.1 Simulation environment

All the simulation environment code is written in MATLAB R©. For ecological reasons we decided not

to print code in here, however the algorithms and the basic scripts for analysis and comparison will

be archived by the Computational Molecular Biology (CMB) group at FU Berlin. In case you are

interested in working with the algorithms or codes, feel free to contact schaller.cf@googlemail.com,

but please keep in mind that it is research code, which may throw exceptions or provide senseless

results caused by wrong inputs.

As we are still interested in the topic, you may ask questions concerning �tting algorithms as well.

A.2 xStorm

The same argument holds for the xStorm code. The source code and a running version will be

archived, however no public release is planned. Thus the program might be very sensitive to several

parameters or show unstable behaviour for cases which were not considered so far. Nevertheless if

you are interested in working with xStorm or the algorithms in C++, contact us via mail and we will

provide you with further information.

To compile xStorm we used Ultimate++ in combination with the G++ compiler contained in the

GCC package.
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B Assigning the matching background values

We brie�y proof that the χ2-sum is minimized by assigning the background values to the di�erences

ordered by size. This is easily seen by the repeated application of the following formula.

Claim: m1 > m2 ∧ l1 > l2 =⇒ (m1 − l1)2 + (m2 − l2)2 < (m1 − l2)2 + (m2 − l1)2

Proof: (m1 − l1)2 + (m2 − l2)2 < (m1 − l2)2 + (m2 − l1)2

⇐⇒ m2
1 − 2m1l1 + l21 +m2

2 − 2m2l2 + l22 < m2
1 − 2m1l2 + l22 +m2

2 − 2m2l1 + l21

⇐⇒ m1l1 +m2l2 −m1l2 −m2l1 > 0

⇐⇒ (m1 −m2)︸ ︷︷ ︸
>0

· (l1 − l2)︸ ︷︷ ︸
>0

> 0 �
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