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On Conformational Dynamics induced by LangevinProcessesCh. Sch�utte and W. HuisingaKonrad{Zuse{Zentrum BerlinTakustr. 7, 14195 Berlin, GermanyAugust 12, 1999AbstractThe function of many important biomolecules is related to their dy-namic properties and their ability to switch between di�erent confor-mations, which are understood as almost invariant or metastable sub-sets of the positional state space of the system. Recently, the presentauthors and their coworkers presented a novel algorithmic scheme forthe direct numerical determination of such metastable subsets and thetransition probability between them [24]. Although being di�erent inmost aspects, this method exploits the same basic idea as Dellnitzand Junge [5] in their approach to almost invariance in discrete dy-namical systems: the almost invariant sets are computed via certaineigenvectors of the Markov operators associated with the dynamicalbehavior.In the present article we analyze the application of this approachto (high{friction) Langevin models describing the dynamical behaviorof molecular systems coupled to a heat bath. We will see that thiscan be related to theoretical results for (symmetric) semigroups ofMarkov operators going back to Davies [3, 4]. We concentrate ona comparison of our approach in respect to random perturbations ofdynamical systems.Keywords. Smoluchowski equation, Fokker{Planck equation, semigroupof Markov operators, canonical ensemble, small noise, �rst exit time, halftime period.Mathematics subject classi�cation. 65U05, 60J25, 60J60, 15A181 IntroductionThe chemically interesting function of many important biomolecules, likeproteins or enzymes, results from their dynamical properties, particularly



from their ability to undergo so{called conformational transitions (cf. [27]).In a conformation, the large scale geometric structure of the molecule isunderstood to be conserved, whereas on smaller scales, the system may aswell rotate, oscillate or uctuate. Recently, Deuflhard et al. demonstratedthat conformations can be understood as metastable or almost invariant setsof the Hamiltonian system governing the molecular dynamics [6].Dellnitz and Junge demonstrated that such metastable or almost in-variant sets of discrete dynamical systems with small random perturbationscan be identi�ed numerically via certain \dominant" eigenvectors of theMarkov operator associated with the perturbed system [5].By transferring this idea to statistical mechanics, Sch�utte et al.[24]showed that the almost invariant sets of dynamical uctuations in statisticalmolecular ensembles can be determined via the \dominant" eigenvectors ofa speci�c class of Markov operators associated with discrete time continuousspace Markov chains [24, 23]. It has been demonstrated that, even for largerbiomolecules, the eigenvectors of interest can be computed e�ciently andallow to identify the desired almost invariant sets [23, 7]. This allows forthe �rst time to identify dynamical conformations of molecular ensemblesincluding their stability life spans and the rate of transitions between them[12].Although being di�erent in most algorithmic aspects, the two approachesare both based on the same three fundamental concepts �rst introduced in[5]: (1) some set B is called almost invariant if it is almost certain (withrespect to the invariant probability measure of the system) to �nd the sys-tem in B initially and again after a discrete observation time step; (2) thepresence of m almost invariant sets results in a cluster of m eigenvalues �k(of a speci�c Markov operator) with absolute value close to one, while theremaining part of the spectrum is contained in some disc with radius sig-ni�cantly smaller than one. The almost invariant sets can be determinedvia the eigenvectors corresponding to these eigenvalues �k; (3) these eigen-vectors are computed via a Galerkin discretization of the Markov operator;the entries of the resulting discretization matrix are evaluated via appropri-ately chosen short{term trajectories of the (randomly perturbed) dynamicalsystem under investigation.In this contribution we consider (high{friction) Langevin models of molec-ular motion under the inuence of a heat bath and apply the �rst two con-cepts mentioned above to this type of dynamics. In this case, the Markovoperators that describe the dynamical uctuations, are given by the evolu-tion semigroup of a Fokker{Planck equation associated with the Langevinequation. This will allow us to compute the dominant eigenvectors of theseMarkov operators via the Fokker{Planck operator generating the semigroupand, thus, entirely without any trajectory simulation. Moreover, we willshow that this new approach leads exactly to the situation already discussedby Davies [3, 4] in the early 80's. 2



We will concentrate on the comparison of this approach with some re-lated aspects on random perturbations of dynamical systems as originatingfrom the work of Freidlin andWentzell [9]. For example, we will discussthe relation between the �rst exit time from some domain (Sec. 4) and itscharacterization as almost invariant in the above sense (Sec. 5).2 Classical Molecular DynamicsIn classical molecular dynamics (cf. textbook [1]), a molecule is modelledby a separable total energy or Hamilton functionH(q; p) = 12 pTM�1p + V (q); (1)where q and p are the corresponding positions and momenta of the atoms,Mthe diagonal mass matrix, and V a di�erentiable potential. The HamiltonfunctionH is de�ned on the phase space � � R2d . Realistic MD{simulationstypically include a large number N of atoms resulting in d = 3N spatialcoordinates. Thus, the dimension of � is 2d = 6N . The correspondingcanonical equations of motion_q = M�1p; _p = �gradV (q) (2)describe the dynamics of the molecule. In the following we set M = Id forbrevity. In most cases, the phase space is simply given by � = 
� Rd . Wewill call 
 � Rd the position space of the system.Statistical MechanicsDue to measurement uncertainties it is in principle impossible to determin-ing the precise initial state|all the positions and momenta| of the entiremolecule. Thus, when modelling physical reality, we are forced to propagatea collection of trajectories which \samples" the distribution of possible initialstates. In this sense, we always have to simulate an ensemble of molecularsystems which represents the distribution of possible initial states determinedvia the initial measurement. Then, every comparison of later measurementswith simulation results will concern mean or expectation values and not anysingle system in the ensemble. Hence, we now consider an ensemble of sys-tems described by a time dependent probability density f = f(x; t) in thephase space.Most experiments on molecular systems are performed under the equilib-rium conditions of constant temperature, particle number, and volume. Thecorresponding stationary density is the canonical density associated with theHamilton function Hfcan(x) = 1Z exp (��H(x)) ; with Z = Z� exp (��H(x)) dx;3



where � = 1=kBT , with T being the system's temperature and kB the Boltz-mann's constant. Since H was assumed to be separable, fcan is a productfcan(x) = 1Zp exp���2 pTM�1p�| {z }=P(p) 1Zq exp (�� V (q))| {z }=Q(q) ; (3)where we normalize P and Q so thatZ P(p)dp = Z Q(q)dq = 1: (4)3 Langevin DynamicsThe canonical ensemble cannot be simulated via time averages over long{term simulations of the pure Hamiltonian dynamics (2) of any single molec-ular system from the ensemble, since for every single system the energy isconserved. In order to get the dynamical behavior of a typical system withinthe ensemble one has to remodel the equation of motion under the restrictionthat the canonical density is the unique invariant density of the remodelleddynamics.One approach involves a thermal embedding of the molecular system intothe dynamical description. Most commonly one assumes that the thermalembedding is due to a heat bath surrounding the molecule and that theinuence of the heat bath can be modelled by an additional random forceacting on the molecular system. The corresponding equation of motion isthe Langevin equation_q = p; _p = �gradV (q) �  p + � _W; (5)which describes the dynamics of the molecule under inuence of the Brow-nian motion of the heat bath and an additional damping that equilibratesthe energy. Here, W = W (t; !) denotes a 3N{dimensional Wiener processwith mean zero and correlation hW (t)W (s)i = �(t� s)Id. In order to forcethe canonical density with inverse temperature � to be the invariant densitywe have to choose the damping constant  relative to the noise amplitude �according to � = 2�2 : (6)See [1] for details of the remodelling step.3.1 High Friction LimitFor many practical investigations, this Langevin model is simpli�ed by thehigh friction limit [1, 22] which results in the Smoluchowski equation or high4



friction Langevin equation: _q + gradV (q) = � _W: (7)Every family of solution processes fQq0t gt�0 of (7) for given initial positionsq0 constitutes a Markov process Pt. The evolution of an ensemble of systemsu(q; t) induced by (7) is determined by the Cauchy problem given by thewell{known Fokker{Planck or Kolmogorov{forward equation:2@tu = 0BB@�22 �q + rqV � rq + �qV| {z }=Af 1CCA u (8)with initial distribution u(q; t = 0) = f(q). Thus, the semigroup Pt isgenerated by the Fokker{Planck operator Af , i.e.,Pt = exp(tAf )and u(q; t) = Ptf(q). The stationary density of the Fokker-Planck equation(8) is the canonical position density Q:� = 2�2 ; Q = 1Z exp (��V ) ) AfQ = 0 and PtQ = Q;and, again under certain conditions on the potential, this is the uniquenormalized stationary density and the semigroup Pt is asymptotically stable,i.e., Ptf ! Q for t ! 1 and for every normalized position densities f 2L1(
) [11, 15, 25]. In fact, in many situations the convergence Ptf ! Q iseven exponentially fast [2]. Due to this properties, the Langevin equationis the most prominent stochastic model for the heat{bath{driven relaxationof molecular ensembles to the canonical ensemble.3.2 MetastabilityThe most popular example for the existence of almost invariant sets in thedynamical behavior of Smoluchowski processes is the double-well potentialVdw(q) = 12 (q2 � 1)2 (9)with one{dimensional position space 
 = R. Fig. 1 illustrates the typicaldynamical behavior of the process which is connected to the existence of thetwo almost invariant sets B1 = (�1; 0) and B2 = (�1; 0).For applications to complex systems, the main computational prob-lem is the following: 5
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Figure 1: Illustration of a typical trajectory of the Smoluchowski equation for the double-well potential Vdw with white noise amplitude � = 0:5 and friction constant  = 1. Thedynamics is characterized by certain sudden jumps between the two potential wells (aroundq = �1). (Results of numerical experiments using discretizations of (7) due to [14, 19]).In most realistic applications, the almost invariant sets are un-known and it is impossible to e�ciently determine them via an-alyzing the structure of the potential energy function. The al-gorithmic problem discussed herein is how to identify the mostsigni�cant almost invariant sets in this situations.But even if we assumed that the almost invariant sets have already beendetermined, the question remains how to compute the rate of transitionsbetween them. Before we explain how the \main computational problem"can be attacked (see Sec. 5), we summarize some results concerning theprobability to leave the neighborhood of some local minimum of the poten-tial energy function V , which is a almost invariant set whenever the noiseamplitude � is small enough.4 Small Noise AsymptoticsLet us consider the behavior of the solution process of the Smoluchowskiequation (7) for the case of small noise amplitudes � = �. Since the inversetemperature is then given by �� = 2=�, its limit corrresponds to the limit ofzero temperature. Suppose that fQq;�t gt�0 denotes the corresponding familyof Smoluchowski Markov processes started in q at time t = 0.Let our potential V be twice continuously di�erentiable, let q0 2 
be one of its local minima, and D some domain with su�ciently smooth6



boundary @D containing q0 in its interior but no other minimum of V (noother minimum in D[@D). Without loss of generality we may assume thatV (q0) = 0.Whenever � is su�ciently small, the invariant density Q of the processwill be exponentially close to zero in D excluding a small neighborhood ofq0, i.e., the system will be with overwhelming probability near q0 and farfrom @D. Nevertheless, the trajectories of the process Qq;�t leave D withprobability one. We are interested in the asymptotic behavior of the exittime fromD. Such questions have been discussed in detail, e.g., by Freidlinand Wentzell, see [9], to which we will refer in the following.In order to present their results for the Smoluchowski equation, let � �qdenote the �rst exit time of the process Qq;�t from D,� �q = infft : Qq;�t 2 @Dg; for q 2 D:It can be shown that the exit of the process happens with probabilityclose to one near the point of minimal potential energy along @D. That is,suppose that qmin is the unique point on the boundary @D withVbarrier = V (qmin) = minq2@D V (q):Then, the following theorem holds:Theorem 4.1 [9, Thms. 2.1, 3.1., 4.1., and 4.2 of Chap. 4] Let the aboveassumptions on V , D, and @D hold. In addition, let the boundary be chosensuch that its exterior normal n = n(q) satis�es n(q) � rV (q) > 0. Then, theexit time asymptotically scales likelim�!0prob�e��(Vbarrier��) < � �q < e��(Vbarrier+�)� = 1; �� = 2�2 ; (10)for arbitrary � > 0 and q 2 D. The mean exit time � �q over the process Qq;�then satis�es lim�!0 �2 log � �q = 2 Vbarrier:Moreover, the process leaves D near qmin in the sense that, for every � > 0,we have lim�!0prob�jQq;�� �q � qminj < �� = 1: (11)The condition hn(q);rV (q)i > 0 guarantees that the trajectories of the(unperturbed) dynamical system  _q+rV = 0 converge to the potential en-ergy minimum at q0 whenever started on @D. Thus, the condition excludeslimit cycles of the dynamical system.7



In addition to these results for the limit �! 0, full asymptotic expansionsup to arbitrary orders in � have been constructed, cf. Fleming and James[8]. If qmin is not the unique minimum on @D, the exit takes place at all min-ima at @D, and the probability of exit near each minimum can be estimatedasymptotically [9, Chap. IV, Sec. 3], .4.1 Connection to Eigenvalue ProblemsThere are also results concerning the distribution of exit times of the processin some bounded domain D � 
 (which should have su�ciently smoothboundary @D but can be arbitrary otherwise). The following results are ofparticular interest: The weighted probability to �nd the process in D attime t (after starting it at q 2 D at t = 0) is denoted byu�(q; t) = Q�(q) prob (Qq;�t 2 D) ;while we denote the weighted probability for the process to leave D laterthan time t by v�(q; t) = Q�(q) prob �� �q > t� :Let A� denote the Fokker{Planck operator Af from (8) for � = �. Accordingto [9, 8], the two weighted probabilities u� and v� can be computed via PDEsgenerated by A�:2@tu� = A�u� in 
; u�(�; t = 0) = Q� � �D; (12)2@tv� = A�v� in D; v�(�; t = 0) = Q� in D; (13)v�(�; t) = 0; on @D for all t � 0in appropriate function spaces.In [9] the problem for v is solved asymptotically via a certain variationalproblem; the statements of Thm. 4.1 result from this approach. We observethat v� is governed by nearly the same PDE as u� merely with Dirichletboundary conditions instead of transparent ones.For every initial position q, the function v�(q; T ) decays exponentiallywith t, i.e., v�(q; t) = Q�(q) prob �� �q > t� / exp(��� t);where �� is given by the bottom of the spectrum of the operator �AD� ,with AD� denoting the Fokker-Planck operator associated with the Dirichletboundary conditions in (13).Whenever the domainD satis�es the assumption of Thm 4.1, the bottomof �AD� is asymptotically given bylim�!0 �2 log �� = 2  Vbarrier; (14)where Vbarrier is the same as in Thm 4.1, cf. [9, Thm. 7.4 in Chap. 6].8



5 Identi�cation of Almost Invariant SetsWe are herein only interested in considering transition probabilities whichare suitable for an experimental determination. In most experiments onbiomolecular systems, one has only access to an ensemble of molecules|in contrast to a single molecule|and can measure only at discrete pointsin time|in contrast to a permanent measurement. Therefore, we do notcharacterize the metastability of a subset B � 
 in terms of the mean exittime � �q from B but proceed in a di�erent way.5.1 Measurable Transition ProbabilitiesThe typical (experimental) measurement process for any kind of transitionprobabilities is the following two{step experiment for given subsets B;C �
: 1. Pre-Selection: Select from the canonical ensemble Q at t = 0 all sys-tems with q 2 B. This selection prepares a new ensemble with densityfB(q) = �ZB Q(q) dq��1 �B(q)Q(q):2. Transition-Counting: After an observation time span � , determine therelative frequency of systems in the ensemble fB that are located inC. Since we assume that all systems evolve due to the Smoluchowskiequation (7), this relative frequency is equal toZB fB(q) prob (Qqt 2 C) dqThus, the transition probabilities induced by the Smoluchowski dynamics inthe canonical ensemble have to be de�ned byw(B;C; t) = �ZB Q dq��1 ZB Q(q) prob (Qqt 2 C) dq;which by means of the semigroup Pt associated with the Smoluchowski pro-cesses can be rewritten asw(B;C; t) = �ZB Q dq��1 ZC Pt(�BQ) dq: (15)Thus, we may try to apply the basic algorithmic scheme explained inthe introduction: Determine the almost invariant sets of the Smoluchowskidynamics in the canonical ensemble via the dominant eigenfunctions of thesemigroup Pt. Since Pt is generated by the Fokker{Planck operator Af dueto (8), we may reduce this problem to the eigenfunctions associated withthe lowest eigenvalues of Af . 9



5.2 Transformation into a Schr�odinger ProblemFor convenience, we set  = 1 and assume that the potential V is scaledappropriately. Thus, there is only one parameter (�) left, since the inversetemperature is given by � = 2=�2.Associated with the Smoluchowski equation (7), there is another semi-group of Markov operators fexp(tAb)gt�0 de�ned by theKolmogorov{backward{equation 2@tu = 0BB@�22 �q � rqV � rq| {z }=Ab 1CCA u; u(�; t = 0) = f:The \backward" Fokker{Planck operator Ab is related to the \forward"operator Af by conjugacy, i.e.,Af Q = QAb: (16)Using (16), it is easy to prove that Ab is self{adjoint with respect to theweighted scalar producthu; viQ = Z u(q)�v(q)Q(q)dqfor u; v 2 L2Q(
) = ff : R jf j2Qdq <1g. In a similar way, one proves thatAf is self{adjoint in L2Q�1 . In order to identify almost invariant sets, wecould apply results for metastable states of symmetric Markov semigroupsdue to Davies [3, 4]. However, here we proceed in a di�erent way andexploit the fact, that the Fokker{Planck operators can be related to thewell{established theory of Schr�odinger operators.De�ne pQ = 1Z exp(��2V ) and As = pQ�1AfpQ = pQAbpQ�1, thusAs = �22 �q � 12�2 (rqV )2 + 12�qV:Formally, the operator �As is of the form of a Schr�odinger operator for acertain potential U :H = �As = ��22 �q + U(q); U(q) = 12�2 (rqV )2 � 12�qV (17)and it is well{known that H is self{adjoint in L2(
) for a large class ofpotentials [21].Since all operators from above are conjugate to each other, we mayinvestigate the spectrum of any one operator to get spectral information forthe remaining two. In the following, we will concentrate on the Schr�odingeroperator.For the Hamiltonian operator H de�ned in (17) we have the followingcharacterization of its spectrum in L2(
):10



Theorem 5.1 ([21, Thm. XIII.67], [20, Thm. VII.1]) Let U 2 L1loc(Rd)be bounded from below and suppose that V ! 1 for jqj ! 1. Moreover,set 
 = Rd . Then, H has purely discrete spectrum and a complete set ofeigenfunctions. Moreover, the semigroup exp(�tH) associated with As =�H also has purely discrete spectrum in L2(
) which is given by�(exp(�tH)) � fexp(��t) : � 2 �(H)g [ f0g:Illustrating Example For the double-well potential Vdw we haveU(q) = � 4�2V (q) � 3� q2 + 1Fig. 2 presents the dependence of U on the value of �.
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Figure 2: Illustration of the transformed potential U (dashed line) for Vdw (solid line)and di�erent values of �.Figure 3 and the following table show highly accurate numerical compu-tations of the lowest eigenvalues 0 = �0 < �1 < : : : and the corresponding11



eigenvectors of the Hamiltonian H for di�erent values of �.� �0 �1 �2 �3 �4 hEi0:25 0 < 10�7 1:894 3:460 3:532 0:04730:50 0 0:015 1:655 2:756 3:956 0:1971:00 0 0:374 3:002 5:830 9:322 0:7092:00 0 1:584 7:098 13:687 21:654 2:426Remark 5.2 All the numerical results presented herein are based on highlyaccurate �nite di�erence discretizations of the eigenvalue problem for thecorresponding self{adjoint operator H. The resulting discrete eigenvalueproblem is solved via subspace{oriented iterative eigenproblem solvers, cf.[16]. In this article, we will restrict our attention to low{dimensional exam-ples in order to illustrate some fundamental aspects and problems of compu-tational characterization of metastability. Whenever one is really interestedin computing the lowest eigenvalues of the operator H for highly dimensional(molecular) systems, one has to apply other discretization techniques. Mostpopular Schr�odinger eigenproblem solvers (like DVR techniques [18] or vari-ational basis set expansions [26]) are restricted to at most seven degrees offreedom, i.e., to relatively small systems. However, Quantum Monte Carlotechniques seem to be applicable to really large systems [10, 17].5.3 Decay of Transition ProbabilitiesThe weighted scalar products allows to rewrite our de�nition (15) of thetransition probabilities between B � 
 and C � 
 in a symmetric form:w(B;C; t) = h�CQ ; etAf (�BQ) iQ�1h�BQ; �BQiQ�1 = h�C ; etAb�B iQh�B ; �BiQ :Exploiting exp(tAs) = pQ�1 exp(tAf )pQ;we �nd that, in terms of the usual L2-scalar product h�; �i,w(B;C; t) = h�CpQ; e�tH(�BpQ)ih�BpQ;�BpQi :Let V be such that U satis�es the assumptions of Thm. 5.1. Then H hasa purely discrete spectrum which is bounded from below. The lowest eigen-value � = 0 corresponds to the eigenvector pQ. Let �k be its eigenvaluesin increasing order and let �k be the associated eigenvectors such thatH�k = �k�k; k = 0; 1; 2; : : :12



where the �k may be repeated according to their multiplicity. Moreover,assume that we can compute the coe�cients bk and ck, k = 0; 1; : : : , of theexpansions �BpQ = 1Xk=0 bk�k; and �CpQ = 1Xk=0 ck�k:Then, the transition probabilities may be computed due to:w(B;C; t) = P1k=0 c�kbk e�t�kP1k=0 jbkj2 : (18)Half-Time Periods. According to our de�nitions, the probability to staywithin some set B � 
 is given by w(B;B; t). Due to (18), this probabilityto stay within decays from its initial value w(B;B; 0) = 1 exponentially tothe asymptotic valuew1(B) = limt!1w(B;B; t) = jb0j2P1k=0 jbkj2 :For classifying the rate of convergence, we de�ne the half-time period �Bassociated with B viaw(B;B; �B) � w1(B) = 1e 0@w(B;B; 0)| {z }=1 �w1(B)1A ; (19)with e denoting Euler's constant. Since w(B;B; t)�w1(B) decays strictlymonotonic in t, �B is uniquely de�ned. Simple algebraic calculations using(18) show that �B satis�es1Xk=1 jbkj2 [1 � exp(1� �k�B)] = 0: (20)5.4 Almost Invariant SetsWe are interested in almost invariant sets of the stochastic motion, i.e., setsB � 
 for which the decay w(B;B; t)! w1(B) is as slow as possible.Let us �rst consider the case where the second{lowest eigenvalue �1 issigni�cantly close to �0 = 0 and well separated from the remaining part ofthe spectrum by a spectral gap, i.e., �k � �1 for all k > 1. Since for everysubsets B with b1 6= 0 the decay is asymptotically governed by exp(��1t),the main di�erence is connected to the magnitude of jb1j2 = jh�B ;�1ij2.Since hpQ;�1i = 0, the eigenvector �1 must take positive and negativevalues and the subset B � 
, for which jb1j2 is maximal, is given by the signof �1: either B = ��11 (R+) or B = ��11 (R�):13



This motivates the decomposition of 
 into two almost invariant sets, B;C �
 with C = 
 n B, being separated by the zeros of the eigenvector �1associated with �1. Moreover, these sets have the property that only theleading two coe�cients, b0 and b1, or c0 and c1, respectively, are signi�cantlylarger than zero while all other coe�cients almost vanish. Together with(20), this property gives us that the half-time period is approximately givenby the inverse of the second eigenvalue:�B � ��11 as well as �C � ��11 :For example, we may again consider the double{well potential Vdw fromabove. For � = 0:5, we �nd �1 = 0:015 � �2, and the coe�cient of the twoalmost invariant sets B = (0;1) and B = (�1; 0) satisfyjb0j2 = 0:2500; jb1j2 = 0:2485; and jbkj2 < 5 � 10�4; 8k > 1:Thus, the half{time period can be estimated by �(0;1) � 1=�1 � 67.The general case. Let us consider the case wherem eigenvalues �1; : : : ; �mare signi�cantly close to �0 = 0 and �k � �1 for all k > m. If the potentialU is smooth, the eigenfunctions �k associated with the �k, k = 1; : : : ;m,are smooth functions of q. The problem of identifying almost invariant setsfrom these eigenvectors �k, k = 1; : : : ;m, has been studied in di�erent set-tings, for example in [3, 7]. We will herein shortly explain and illustratethe algorithm proposed in [7]: Therefore, we consider the Hilbert spaceL2Q(
) where the Fokker{Planck operator Ab and the associated semigroupof Markov operators are self{adjoint. The analytical investigation in [7]reveals that |whenever the noise amplitude � is small enough| the eigen-vectors uk = pQ�1�k of Ab are just \perturbed step functions"uk � mXj=0 �kj �Bj ; (21)where the Bj � 
 are the desired almost invariant sets (see [7] for details andFig. 3 for illustration). If (21) were an identity, the Bj could be identi�eduniquely via the sign structure s : 
! f+1;�1; 0gm given bys(q) = (sk(q))k=1;::: ;m; sk(q) = sign (uk(q)) :Up to sets of measure zero, the Bj would be the sets on which the sign struc-ture s is constant (since the eigenvectors have to be orthogonal!). Since (21)holds only approximately, the algorithmic strategy is to identify the \core"sets of the Bj via sign structures and assign the remaining positions tothese cores in order to construct a decomposition of 
 into almost invari-ant subsets. The details of this identi�cation algorithm (including an errorestimation scheme) can be found in [7].14



Illustration for Three{Well Potential. Consider the three-well poten-tial V3w given by V3w(q) = �(q2 � 1)2 � 1 + cq�2 ; (22)with c = 0:1, for example. Fig. 4 shows V and the associated potential Ufor � = 0:75 and  = 1.The following table presents the lowest eigenvalues of the HamiltonianH for the three{well potential with � = 0:75 and  = 1:�0 �1 �2 �3 �40:000 0:072 0:234 2:450 6:768There are three eigenvalues �0; �1; �2 near and at � = 0 and we observe asigni�cant gap to the remaining eigenvalues. The eigenvectors �1 and �2associated with �1 and �2 are shown in Fig. 5. The associated eigenvec-tors of Ab, i.e., the reweighted eigenvectors uk = pQ�1uk, may in fact beinterpreted as perturbed step functions and we �nd thatq < �1:066 ) u1 > 0 and u2 > 0;�0:779 < q < 0:760 ) u1 < 0 and u2 < 0;0:760 < q ) u1 < 0 and u2 > 0:The corresponding behavior of the sign structure map s is indicated inFig. 5. Obviously, the subset C = (�1:066;�0:779) with sign structures = (+1;�1), a region with steep gradients between almost constant levels,is problematic. The identi�cation algorithm mentioned above assigns thepositions from C to the other sets and results in approximate almost invari-ant sets B1 = fq < �1:05g, B2 = f�1:05 < q < 0:76g, and B3 = fq > 0:76g.Let fukg denote the entire system of eigenvectors of H (in the sameorder as the eigenvalues). The corresponding expansion coe�cients jbkj2 =jh�k; �BpQij2 for the three almost invariant sets come out as:Bj jb0j2 jb1j2 jb2j2 jb3j2 jbkj2; k > 3 P1k=0 jbkj2(�1;�1:05) 0:014 0:104 0:001 < 10�4 < 10�4 0:120(�1:05; 0:76) 0:523 0:054 0:138 < 10�3 < 10�4 0:727(0:76;1) 0:025 0:008 0:117 0:001 < 10�4 0:153We observe that the half{time period of B = (�1;�1:05) is approximatelygiven by �B = 1=�1 � 13:9 while that of C = (0:76;1) is given by �C =1=�2 � 4:3. 15



5.5 Half{Time Periods versus Mean Exit TimesIt is clear from the de�nition, that the half{time period of the probabilityto stay in some set B as introduced above will in general be larger thanthe mean exit time from the B. We saw in Sec. 4.1 that (for every B withappropriate boundary) the latter one is connected to the lowest eigenvalueof the Fokker{Planck operator AB restricted to B with Dirichlet boundaryconditions on @B while the former one is connected to the lowest eigenvalues� > 0 of Af in L2Q�1(
).For a speci�c B, the lowest eigenvalue of AB can be related intrinsicallyto the structure of the potential energy function (cf. [9]). Under the as-sumption of Thm. 4.1, we even have the explicit formula (14) for small noiseamplitudes � = �.A comparable formula for the second{lowest eigenvalue �1 of Af inL2Q�1(
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Figure 3: Eigenvectors �0 = pQ and �1 to the lowest (top row) and second lowest(middle row) eigenvalues of the Hamiltonian H for the double{well potential Vdw anddi�erent values of � (left = 0.25 and right = 0.5). The pictures in the bottom row showthe \reweighted" second eigenvectors pQ�1�1 which converge to a step function for � ! 0(see Sec. 5.4 for interpretation). 18
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Figure 5: Eigenvectors �1 and �2 (top) and their reweighted versions ui = pQ�1�i(bottom) for the eigenvalues �1 and �2 of the Hamiltonian H for the three well potentialV3w. (The eigenvector corresponding to � = 0 can be found in Fig. 4).19


