Konrad-Zuse-Zentrum
fur Informationstechnik Berlin

TakustraRe 7
D-14195 Berlin-Dahlem
Germany

CH. SCHUTTE*, W. HUISINGA*T

On Conformational Dynamicsinduced by
L angevin Processes

*Konrad-Zuse-Zentrum fiir Informationstechnik Berlin (ZIB), Germany. Internet:
http://www.zib.de/MDGroup

fsupported by the Deutsche Forschungsgemeinschaft (DFG) Schwerpunkt “Ergoden-
theorie, Analysis und effiziente Simulation dynamischer Systeme” under Grant De 293

Preprint SC 99-25 (August 1999)



On Conformational Dynamics induced by Langevin
Processes

Ch. Schiitte and W. Huisinga

Konrad—Zuse—Zentrum Berlin
Takustr. 7, 14195 Berlin, Germany

August 12, 1999

Abstract

The function of many important biomolecules is related to their dy-
namic properties and their ability to switch between different confor-
mations, which are understood as almost invariant or metastable sub-
sets of the positional state space of the system. Recently, the present
authors and their coworkers presented a novel algorithmic scheme for
the direct numerical determination of such metastable subsets and the
transition probability between them [24]. Although being different in
most aspects, this method exploits the same basic idea as DELLNITZ
and JUNGE [5] in their approach to almost invariance in discrete dy-
namical systems: the almost invariant sets are computed via certain
eigenvectors of the Markov operators associated with the dynamical
behavior.

In the present article we analyze the application of this approach
to (high—friction) Langevin models describing the dynamical behavior
of molecular systems coupled to a heat bath. We will see that this
can be related to theoretical results for (symmetric) semigroups of
Markov operators going back to DAVIES [3, 4]. We concentrate on
a comparison of our approach in respect to random perturbations of
dynamical systems.

Keywords. Smoluchowski equation, Fokker Planck equation, semigroup
of Markov operators, canonical ensemble, small noise, first exit time, half
time period.
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1 Introduction

The chemically interesting function of many important biomolecules, like
proteins or enzymes, results from their dynamical properties, particularly



from their ability to undergo so called conformational transitions (cf. [27]).
In a conformation, the large scale geometric structure of the molecule is
understood to be conserved, whereas on smaller scales, the system may as
well rotate, oscillate or fluctuate. Recently, DEUFLHARD et al. demonstrated
that conformations can be understood as metastable or almost invariant sets
of the Hamiltonian system governing the molecular dynamics [6].

DELLNITZ and JUNGE demonstrated that such metastable or almost in-
variant sets of discrete dynamical systems with small random perturbations
can be identified numerically via certain “dominant” eigenvectors of the
Markov operator associated with the perturbed system [5].

By transferring this idea to statistical mechanics, SCHUTTE et al.[24]
showed that the almost invariant sets of dynamical fluctuations in statistical
molecular ensembles can be determined via the “dominant” eigenvectors of
a specific class of Markov operators associated with discrete time continuous
space Markov chains [24, 23]. It has been demonstrated that, even for larger
biomolecules, the eigenvectors of interest can be computed efficiently and
allow to identify the desired almost invariant sets [23, 7]. This allows for
the first time to identify dynamical conformations of molecular ensembles
including their stability life spans and the rate of transitions between them
[12].

Although being different in most algorithmic aspects, the two approaches
are both based on the same three fundamental concepts first introduced in
[5]: (1) some set B is called almost invariant if it is almost certain (with
respect to the invariant probability measure of the system) to find the sys-
tem in B initially and again after a discrete observation time step; (2) the
presence of m almost invariant sets results in a cluster of m eigenvalues A
(of a specific Markov operator) with absolute value close to one, while the
remaining part of the spectrum is contained in some disc with radius sig-
nificantly smaller than one. The almost invariant sets can be determined
via the eigenvectors corresponding to these eigenvalues A; (3) these eigen-
vectors are computed via a Galerkin discretization of the Markov operator;
the entries of the resulting discretization matrix are evaluated via appropri-
ately chosen short—term trajectories of the (randomly perturbed) dynamical
system under investigation.

In this contribution we consider (high—friction) Langevin models of molec-
ular motion under the influence of a heat bath and apply the first two con-
cepts mentioned above to this type of dynamics. In this case, the Markov
operators that describe the dynamical fluctuations, are given by the evolu-
tion semigroup of a Fokker—Planck equation associated with the Langevin
equation. This will allow us to compute the dominant eigenvectors of these
Markov operators via the Fokker Planck operator generating the semigroup
and, thus, entirely without any trajectory simulation. Moreover, we will
show that this new approach leads exactly to the situation already discussed
by DAVIES [3, 4] in the early 80’s.



We will concentrate on the comparison of this approach with some re-
lated aspects on random perturbations of dynamical systems as originating
from the work of FREIDLIN and WENTZELL [9]. For example, we will discuss
the relation between the first exit time from some domain (Sec. 4) and its
characterization as almost invariant in the above sense (Sec. 5).

2 Classical Molecular Dynamics

In classical molecular dynamics (cf. textbook [1]), a molecule is modelled
by a separable total energy or Hamilton function

H(g.p) = 30" M 'p + V(q), (1)

where ¢ and p are the corresponding positions and momenta of the atoms, M
the diagonal mass matrix, and V a differentiable potential. The Hamilton
function H is defined on the phase space I' € R2%. Realistic MD-simulations
typically include a large number N of atoms resulting in d = 3N spatial
coordinates. Thus, the dimension of I' is 2d = 6/N. The corresponding
canonical equations of motion

¢g=M"'p, p=—gradV(q) (2)

describe the dynamics of the molecule. In the following we set M = Id for
brevity. In most cases, the phase space is simply given by I' = Q x R, We
will call © C RY the position space of the system.

Statistical Mechanics

Due to measurement uncertainties it is in principle impossible to determin-
ing the precise initial state—all the positions and momenta— of the entire
molecule. Thus, when modelling physical reality, we are forced to propagate
a collection of trajectories which “samples” the distribution of possible initial
states. In this sense, we always have to simulate an ensemble of molecular
systems which represents the distribution of possible initial states determined
via the initial measurement. Then, every comparison of later measurements
with simulation results will concern mean or expectation values and not any
single system in the ensemble. Hence, we now consider an ensemble of sys-
tems described by a time dependent probability density f = f(z,t) in the
phase space.

Most experiments on molecular systems are performed under the equilib-
rium conditions of constant temperature, particle number, and volume. The
corresponding stationary density is the canonical density associated with the
Hamilton function H

1
) = — exp(— x with Z = xp (— x)) dx
fonla) = 5 exp(-BH(a)). with Z= [ exp () do.

3



where 8 = 1/kpT, with T being the system’s temperature and kg the Boltz-
mann’s constant. Since H was assumed to be separable, f... is a product

o) = - o (500 ) e (CoV@L

e e

=P(p) =09(q)

where we normalize P and Q so that

'/'P(p)dp = / Q(q)dg = 1. (4)

3 Langevin Dynamics

The canonical ensemble cannot be simulated via time averages over long—
term simulations of the pure Hamiltonian dynamics (2) of any single molec-
ular system from the ensemble, since for every single system the energy is
conserved. In order to get the dynamical behavior of a typical system within
the ensemble one has to remodel the equation of motion under the restriction
that the canonical density is the unique invariant density of the remodelled
dynamics.

One approach involves a thermal embedding of the molecular system into
the dynamical description. Most commonly one assumes that the thermal
embedding is due to a heat bath surrounding the molecule and that the
influence of the heat bath can be modelled by an additional random force
acting on the molecular system. The corresponding equation of motion is
the Langevin equation

¢=p  p=-gradV(q) — yp + oW, (5)

which describes the dynamics of the molecule under influence of the Brow-
nian motion of the heat bath and an additional damping that equilibrates
the energy. Here, W = W (t,w) denotes a 3N dimensional Wiener process
with mean zero and correlation (W (t)W(s)) = §(t — s)Id. In order to force
the canonical density with inverse temperature § to be the invariant density
we have to choose the damping constant  relative to the noise amplitude o
according to

2y
B =— (6)
See [1] for details of the remodelling step.

3.1 High Friction Limit

For many practical investigations, this Langevin model is simplified by the
high friction limit [1, 22] which results in the Smoluchowski equation or high



friction Langevin equation:
v§ + gradV(q) = o W. (7)

Every family of solution processes {Q;°}i>o of (7) for given initial positions
qo constitutes a Markov process P;. The evolution of an ensemble of systems
u(q,t) induced by (7) is determined by the Cauchy problem given by the
well-known Fokker—Planck or Kolmogorov—forward equation:

2
Yo = %Aq +YVV -V +7A)V | u (8)

-/

—af
with initial distribution u(q,t = 0) = f(q). Thus, the semigroup P; is
generated by the Fokker Planck operator Ay, i.e.,

P, = exp(tAy)

and u(q,t) = P.f(q). The stationary density of the Fokker-Planck equation
(8) is the canonical position density O:

8= i—z, 0 = %exp(fﬁV) = A;Q = 0and PO =0,
and, again under certain conditions on the potential, this is the unique
normalized stationary density and the semigroup P; is asymptotically stable,
ie., Pf — Q for t — oo and for every normalized position densities f €
L'(Q) [11, 15, 25]. In fact, in many situations the convergence P,f — Q is
even exponentially fast [2]. Due to this properties, the Langevin equation
is the most prominent stochastic model for the heat bath driven relaxation
of molecular ensembles to the canonical ensemble.

3.2 Metastability

The most popular example for the existence of almost invariant sets in the
dynamical behavior of Smoluchowski processes is the double-well potential

Vinla) = 3 (¢~ 1)? )
with one—dimensional position space 2 = R. Fig. 1 illustrates the typical
dynamical behavior of the process which is connected to the existence of the
two almost invariant sets By = (—o00,0) and By = (—00,0).

For applications to complex systems, the main computational prob-
lem is the following:
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Figure 1: Illustration of a typical trajectory of the Smoluchowski equation for the double-
well potential Vg, with white noise amplitude o = 0.5 and friction constant v = 1. The
dynamics is characterized by certain sudden jumps between the two potential wells (around
q = *£1). (Results of numerical experiments using discretizations of (7) due to [14, 19]).

In most realistic applications, the almost invariant sets are un-
known and it is impossible to efficiently determine them via an-
alyzing the structure of the potential energy function. The al-
gorithmic problem discussed herein is how to identify the most
significant almost invariant sets in this situations.

But even if we assumed that the almost invariant sets have already been
determined, the question remains how to compute the rate of transitions
between them. Before we explain how the “main computational problem”
can be attacked (see Sec. 5), we summarize some results concerning the
probability to leave the neighborhood of some local minimum of the poten-
tial energy function V', which is a almost invariant set whenever the noise
amplitude o is small enough.

4 Small Noise Asymptotics

Let us consider the behavior of the solution process of the Smoluchowski
equation (7) for the case of small noise amplitudes o = €. Since the inverse
temperature is then given by 3 = 2v/e, its limit corrresponds to the limit of
zero temperature. Suppose that {Qf’g}tzg denotes the corresponding family
of Smoluchowski Markov processes started in g at time ¢ = 0.

Let our potential V' be twice continuously differentiable, let gg € €
be one of its local minima, and D some domain with sufficiently smooth



boundary dD containing ¢q in its interior but no other minimum of V' (no
other minimum in DU dD). Without loss of generality we may assume that
V(qo) = 0.

Whenever € is sufficiently small, the invariant density Q of the process
will be exponentially close to zero in D excluding a small neighborhood of
qo, i.e., the system will be with overwhelming probability near ¢y and far
from OD. Nevertheless, the trajectories of the process QF‘ leave D with
probability one. We are interested in the asymptotic behavior of the exit
time from D. Such questions have been discussed in detail, e.g., by FREIDLIN
and WENTZELL, see [9], to which we will refer in the following.

In order to present their results for the Smoluchowski equation, let 77
denote the first exit time of the process Q7 from D,

7, = inf{t: e oD}, forqeD.

It can be shown that the exit of the process happens with probability
close to one near the point of minimal potential energy along 0D. That is,
suppose that gmin is the unique point on the boundary 0D with

Vbarrier = V(qmin) = qrélé% V(q)

Then, the following theorem holds:

THEOREM 4.1 [9, Thms. 2.1, 3.1., 4.1., and 4.2 of Chap. 4] Let the above
assumptions on 'V, D, and 0D hold. In addition, let the boundary be chosen
such that its exterior normal n = n(q) satisfies n(q)-VV(q) > 0. Then, the
exit time asymptotically scales like

2
!ij}%prob (eﬂf(‘/barrierfa) < 7—; < eﬁs(vharrier'l'a)) e 17 /66 = €—’2y, (10)

for arbitrary a > 0 and ¢ € D. The mean exit time 7'_5 over the process Q9°
then satisfies

. 92 —
lgr(l) € log7{ = 279 Vharrier-

Moreover, the process leaves D near qmin in the sense that, for every § > 0,
we have

li b( ©E_ g 5) — 1 11
lim prob (|Q7 — gmin| < (11)

The condition (n(q), VV(q)) > 0 guarantees that the trajectories of the
(unperturbed) dynamical system yg+ VV = 0 converge to the potential en-
ergy minimum at gg whenever started on dD. Thus, the condition excludes
limit cycles of the dynamical system.



In addition to these results for the limit e — 0, full asymptotic expansions
up to arbitrary orders in € have been constructed, cf. FLEMING and JAMES
[8].

If gmin is not the unique minimum on 9D, the exit takes place at all min-
ima at 0D, and the probability of exit near each minimum can be estimated
asymptotically [9, Chap. IV, Sec. 3], .

4.1 Connection to Eigenvalue Problems

There are also results concerning the distribution of exit times of the process
in some bounded domain D C € (which should have sufficiently smooth
boundary dD but can be arbitrary otherwise). The following results are of
particular interest: The weighted probability to find the process in D at
time ¢ (after starting it at ¢ € D at ¢t = 0) is denoted by

ue(q,t) = Qe(q) prob Q) € D),

while we denote the weighted probability for the process to leave D later
than time ¢ by

ve(q,t) = Qe(q) prob (g >t).

Let A, denote the Fokker—Planck operator Ay from (8) for 0 = €. According
to [9, 8], the two weighted probabilities u, and v, can be computed via PDEs
generated by A.:

728tu6 = Acu, in Q, ue('at = 0) = Q “XD> (12)

v*0w, = Aw, in D, v (,t=0) = Q. in D, (13)
ve(-,t) = 0, on 9D for allt >0

in appropriate function spaces.

In [9] the problem for v is solved asymptotically via a certain variational
problem; the statements of Thm. 4.1 result from this approach. We observe
that v, is governed by nearly the same PDE as u. merely with Dirichlet
boundary conditions instead of transparent ones.

For every initial position ¢, the function v.(q,T) decays exponentially
with ¢, i.e.,

ve(q,t) = Qc(q) prob (17 > 1) oc exp(—Act),

where ). is given by the bottom of the spectrum of the operator —A”,
with AP denoting the Fokker-Planck operator associated with the Dirichlet
boundary conditions in (13).

Whenever the domain D satisfies the assumption of Thm 4.1, the bottom
of —AP is asymptotically given by

lim 62 log )\E =2 Y Vbarriera (14)
e—0

where Viuprier 18 the same as in Thm 4.1, cf. [9, Thm. 7.4 in Chap. 6].



5 Identification of Almost Invariant Sets

We are herein only interested in considering transition probabilities which
are suitable for an experimental determination. In most experiments on
biomolecular systems, one has only access to an ensemble of molecules—
in contrast to a single molecule and can measure only at discrete points
in time—in contrast to a permanent measurement. Therefore, we do not
characterize the metastability of a subset B C {2 in terms of the mean exit
time T_(; from B but proceed in a different way.

5.1 Measurable Transition Probabilities

The typical (experimental) measurement process for any kind of transition
probabilities is the following two—step experiment for given subsets B,C C
Q:

1. Pre-Selection: Select from the canonical ensemble Q at t = 0 all sys-
tems with ¢ € B. This selection prepares a new ensemble with density

f5la) = (/B 0(0) dq)l xi(a) Qa).

2. Transition- Counting: After an observation time span 7, determine the
relative frequency of systems in the ensemble fp that are located in
C. Since we assume that all systems evolve due to the Smoluchowski
equation (7), this relative frequency is equal to

/B f1() prob (QF € O) dg

Thus, the transition probabilities induced by the Smoluchowski dynamics in
the canonical ensemble have to be defined by

—1
(B, C,1) = ( / qu) | ey prob (Qf € €)

which by means of the semigroup P; associated with the Smoluchowski pro-
cesses can be rewritten as

w(B,C,t) = (/Bqu>l /CPt(XBQ)dQ- (15)

Thus, we may try to apply the basic algorithmic scheme explained in
the introduction: Determine the almost invariant sets of the Smoluchowski
dynamics in the canonical ensemble via the dominant eigenfunctions of the
semigroup P;. Since P; is generated by the Fokker-Planck operator A; due
to (8), we may reduce this problem to the eigenfunctions associated with
the lowest eigenvalues of Ay.



5.2 Transformation into a Schrodinger Problem

For convenience, we set v = 1 and assume that the potential V is scaled
appropriately. Thus, there is only one parameter (o) left, since the inverse
temperature is given by 8 = 2/02.

Associated with the Smoluchowski equation (7), there is another semi-
group of Markov operators {exp(tAy) };>0 defined by the Kolmogorov—-backward-
equation

The “backward” Fokker—Planck operator A; is related to the “forward”
operator Ay by conjugacy, i.e.,

Ay Q= QA (16)

Using (16), it is easy to prove that A, is self adjoint with respect to the
weighted scalar product

<mwg—/ﬁmrmmqm@

for u,v € LQQ(Q) ={f: [f|?Qdg < oo}. In a similar way, one proves that
Ay is self-adjoint in LQQ,l. In order to identify almost invariant sets, we
could apply results for metastable states of symmetric Markov semigroups
due to DAVIES [3, 4]. However, here we proceed in a different way and
exploit the fact, that the Fokker—Planck operators can be related to the
well established theory of Schrédinger operators.

Define /O = + exp(—5V) and A, = V@ 'A;v/Q = vV0A4,/Q ', thus

o? 1
A= B g

Formally, the operator —A; is of the form of a Schrodinger operator for a
certain potential U:

1
(V,V)? + 54V,

2
H= 4= TA 100 U= 55(VV)? AV (7
o 2
and it is well-known that H is self-adjoint in L?(Q) for a large class of
potentials [21].

Since all operators from above are conjugate to each other, we may
investigate the spectrum of any one operator to get spectral information for
the remaining two. In the following, we will concentrate on the Schrodinger
operator.

For the Hamiltonian operator H defined in (17) we have the following
characterization of its spectrum in L?(Q):

10



THEOREM 5.1 ([21, Thm. XIIL67], [20, Thm. VIL.1]) Let U € L} (R?%)

loc
be bounded from below and suppose that V. — oo for |q| — oo. Moreover,

set @ = R*. Then, H has purely discrete spectrum and a complete set of
eigenfunctions. Moreover, the semigroup exp(—tH) associated with Ay =
—H also has purely discrete spectrum in L*(Q) which is given by

o(exp(—tH)) C {exp(—At): A€ o(H)} U{0}.

Illustrating Example For the double-well potential Vg, we have

g

4
Ulg) = <—2V(q) 3) ¢+ 1
Fig. 2 presents the dependence of U on the value of o.
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Figure 2: Illustration of the transformed potential U (dashed line) for Vi (solid line)
and different values of o.

Figure 3 and the following table show highly accurate numerical compu-
tations of the lowest eigenvalues 0 = A\g < A; < ... and the corresponding

11



eigenvectors of the Hamiltonian H for different values of o.

o )\0 )\1 >\2 >\3 >\4 <E>
025 0 | <10 7[1.894 | 3.460 | 3.532 | 0.0473
0.50 | 0 | 0.015 |1.655| 2.756 | 3.956 || 0.197
1.00 | 0 | 0.374 |3.002 | 5.830 | 9.322 || 0.709
2001 0 1.584 | 7.098 | 13.687 | 21.654 || 2.426

REMARK 5.2 All the numerical results presented herein are based on highly
accurate finite difference discretizations of the eigenvalue problem for the
corresponding self adjoint operator H. The resulting discrete eigenvalue
problem is solved via subspace—oriented iterative eigenproblem solvers, cf.
[16]. In this article, we will restrict our attention to low dimensional exam-
ples in order to illustrate some fundamental aspects and problems of compu-
tational characterization of metastability. Whenever one is really interested
in computing the lowest eigenvalues of the operator H for highly dimensional
(molecular) systems, one has to apply other discretization techniques. Most
popular Schriodinger eigenproblem solvers (like DVR techniques [18] or vari-
ational basis set expansions [26]) are restricted to at most seven degrees of
freedom, i.e., to relatively small systems. However, Quantum Monte Carlo
techniques seem to be applicable to really large systems [10, 17].

5.3 Decay of Transition Probabilities

The weighted scalar products allows to rewrite our definition (15) of the
transition probabilities between B C 2 and C C  in a symmetric form:

“)(B’C’t) — <XCQ7 6tAf(XBQ)>Q*1 _ <XC’ etAbXB)Q‘

(xBQ,xBQ) o1 (xB,XB)o

Exploiting

exp(tAs) = \/@71 exp(tAf)\/@,

we find that, in terms of the usual L?-scalar product (-, -),

(xcvV@Q: ¢ " (x5VQ))
(XB\/Q, XB\/Q) '

Let V be such that U satisfies the assumptions of Thm. 5.1. Then H has
a purely discrete spectrum which is bounded from below. The lowest eigen-
value A = 0 corresponds to the eigenvector /@Q. Let A\, be its eigenvalues
in increasing order and let ®; be the associated eigenvectors such that

w(B,C,t) =

HO, = \®, k=0,1,2,...

12



where the Ay may be repeated according to their multiplicity. Moreover,
assume that we can compute the coefficients by and ¢, £k =0,1,..., of the
expansions

o] o]
XB\/@ = Zbkq)ka and X(j\/a = Z(Ek@k.
k=0 k=0

Then, the transition probabilities may be computed due to:

0o Lkp ‘ft)\k
w(B, 1) — 2k=0 ke (18)

> ono [br]?

Half-Time Periods. According to our definitions, the probability to stay
within some set B C ) is given by w(B, B,t). Due to (18), this probability
to stay within decays from its initial value w(B, B,0) = 1 exponentially to
the asymptotic value

- b
W (B) = lim w(B,B.t) = =s——-
For classifying the rate of convergence, we define the half-time period Tp
associated with B via

w(B,B,Tp) — we(B) = é w(B, B,0) —ws(B) |, (19)
=1

with e denoting Euler’s constant. Since w(B, B,t) — we(B) decays strictly
monotonic in ¢, 7p is uniquely defined. Simple algebraic calculations using
(18) show that 7p satisfies

> " [bkl* [1 = exp(1 — Ag7p)] = 0. (20)
k=1

5.4 Almost Invariant Sets

We are interested in almost invariant sets of the stochastic motion, i.e., sets
B C Q for which the decay w(B, B,t) — ws(B) is as slow as possible.

Let us first consider the case where the second-lowest eigenvalue \; is
significantly close to Ag = 0 and well separated from the remaining part of
the spectrum by a spectral gap, i.e., Ay > Ay for all £ > 1. Since for every
subsets B with by # 0 the decay is asymptotically governed by exp(—At),
the main difference is connected to the magnitude of |bi|? = [(xB, ®1)|?.
Since (vQ,®1) = 0, the eigenvector ®; must take positive and negative
values and the subset B C €, for which |b;|? is mazimal, is given by the sign
of (1)1:

either B=®'(R") or B=9"(R").

13



This motivates the decomposition of €2 into two almost invariant sets, B, C' C
Q with C = Q\ B, being separated by the zeros of the eigenvector ®;
associated with A{. Moreover, these sets have the property that only the
leading two coefficients, by and by, or ¢g and ¢y, respectively, are significantly
larger than zero while all other coefficients almost vanish. Together with
(20), this property gives us that the half-time period is approximately given
by the inverse of the second eigenvalue:

N aswellas 7o ~ AL

For example, we may again consider the double well potential Vi, from
above. For 0 = 0.5, we find A\; = 0.015 < A9, and the coeflicient of the two
almost invariant sets B = (0,00) and B = (—o0,0) satisfy

bo|> = 0.2500, |by|> = 0.2485, and |bp> <5-1071, VE> 1.

Thus, the half time period can be estimated by 7() o) = 1/A1 = 67.

The general case. Let us consider the case where m eigenvalues Ay, ... , Ay,
are significantly close to A\g = 0 and A\ > A for all £ > m. If the potential
U is smooth, the eigenfunctions ®; associated with the A\, £ = 1,... ,m,
are smooth functions of q. The problem of identifying almost invariant sets
from these eigenvectors ®;, k = 1,... ,m, has been studied in different set-
tings, for example in [3, 7]. We will herein shortly explain and illustrate
the algorithm proposed in [7]: Therefore, we consider the Hilbert space
LQQ(Q) where the Fokker Planck operator A, and the associated semigroup
of Markov operators are self-adjoint. The analytical investigation in [7]
reveals that  whenever the noise amplitude o is small enough the eigen-
vectors uy = \/@71(1% of Ay are just “perturbed step functions”

m

ug XY 0k X8, (21)
Jj=0

where the B; C ) are the desired almost invariant sets (see [7] for details and
Fig. 3 for illustration). If (21) were an identity, the B; could be identified
uniquely via the sign structure s : Q@ — {+1,—1,0}"" given by

s(q) = (3k(@)k=1,..m:  sk(q) = sign (ux(q)) -

Up to sets of measure zero, the B; would be the sets on which the sign struc-
ture s is constant (since the eigenvectors have to be orthogonal!). Since (21)
holds only approximately, the algorithmic strategy is to identify the “core”
sets of the B; via sign structures and assign the remaining positions to
these cores in order to construct a decomposition of €2 into almost invari-
ant subsets. The details of this identification algorithm (including an error
estimation scheme) can be found in [7].

14



Illustration for Three—Well Potential. Consider the three-well poten-
tial Vs given by

Vawl(g) = (¢ = 1)? — 1 + cg)’, (22)

with ¢ = 0.1, for example. Fig. 4 shows V and the associated potential U
for 0 =0.75 and v = 1.

The following table presents the lowest eigenvalues of the Hamiltonian
H for the three well potential with o = 0.75 and v = 1:

Ao A A2 A3 A4
0.000 | 0.072 1 0.234 | 2.450 | 6.768

There are three eigenvalues Ag, A1, A2 near and at A = 0 and we observe a
significant gap to the remaining eigenvalues. The eigenvectors ®; and @,
associated with A; and A9 are shown in Fig. 5. The associated eigenvec-

tors of Ay, i.e., the reweighted eigenvectors up = v/Q ug, may in fact be
interpreted as perturbed step functions and we find that

q < —1.066 = u1 > 0 and ug > 0,
—0.779 < ¢ < 0.760 = u1 < 0 and ug < 0,
0.760 < ¢ = u1 < 0 and ug > 0.

The corresponding behavior of the sign structure map s is indicated in
Fig. 5. Obviously, the subset C = (—1.066, —0.779) with sign structure
s = (+1,—1), a region with steep gradients between almost constant levels,
is problematic. The identification algorithm mentioned above assigns the
positions from C' to the other sets and results in approximate almost invari-
ant sets By = {g < —1.05}, By = {—1.05 < ¢ < 0.76}, and B3 = {q > 0.76}.

Let {uy} denote the entire system of eigenvectors of H (in the same
order as the eigenvalues). The corresponding expansion coefficients |by|? =
(@1, x5V Q)|? for the three almost invariant sets come out as:

B; [bol> | [baf* | 162 | [Bs® | [bkl? K>3 | 3202 10k
(—o0,—1.05) [ 0.014 | 0.104 | 0.001 | <107* | <104 0.120
(—1.05,0.76) | 0.523 | 0.054 | 0.138 | <1073 | <1074 0.727
(0.76,00) | 0.025 | 0.008 | 0.117 | 0.001 <10 0.153

We observe that the half-time period of B = (—o0, —1.05) is approximately
given by 75 = 1/)\; =~ 13.9 while that of C = (0.76,00) is given by 7¢ =
1/ 00 ~ 4.3,
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5.5 Half-Time Periods versus Mean Exit Times

It is clear from the definition, that the half time period of the probability
to stay in some set B as introduced above will in general be larger than
the mean exit time from the B. We saw in Sec. 4.1 that (for every B with
appropriate boundary) the latter one is connected to the lowest eigenvalue
of the Fokker—Planck operator A? restricted to B with Dirichlet boundary
conditions on 0B while the former one is connected to the lowest eigenvalues
A>0o0f Apin L7 ().

For a specific B, the lowest eigenvalue of A? can be related intrinsically
to the structure of the potential energy function (cf. [9]). Under the as-
sumption of Thm. 4.1, we even have the explicit formula (14) for small noise
amplitudes o = e.

A comparable formula for the second lowest eigenvalue A; of A; in
L2Q,1 () seems to be not available in general. One knows that, asymp-
totically for o = e, the eigenvalue Ay = A\ (e€) scales like

lim e log A () = A,
e—0

with some constant A < 0, whose intrinsical dependency on the potential
V seems to be unknown [13]. However, in specific situations, the value of
A can be constructed: for example, the symmetry of double-well potential
implies that A = 2V},,rier = 1 in this case.
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Figure 3: Eigenvectors ®; = /O and ®; to the lowest (top row) and second lowest
(middle row) eigenvalues of the Hamiltonian H for the double well potential Vg, and
different values of o (left = 0.25 and right = 0.5). The pictures in the bottom row show

the “reweighted” second eigenvectors v/ Q71<I>1 which converge to a step function for o — 0
(see Sec. 5.4 for interpretation).
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Figllre 4: Left: Three well potential Vi, due to (22) with ¢ = 0.1 and corresponding

ground state /@ for o = 0.75 and v = 1. Right: Associated potential U.
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Figure 5: Eigenvectors ®; and ®, (top) and their reweighted versions u; = \/§71~I>i
(bottom) for the eigenvalues A; and A; of the Hamiltonian H for the three well potential
Vaw. (The eigenvector corresponding to A = 0 can be found in Fig. 4).
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