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1 Institut für Mathematik, Freie Universität Berlin, Arnimallee 6, 14195 Berlin, Germany
2 Konrad-Zuse Zentrum, Takustraße 7, 14195 Berlin, Germany

* Author to whom correspondence should be addressed; E-Mail, Tel. and Fax number of the
corresponding author.

Version July 23, 2013 submitted to Entropy. Typeset by LATEX using class file mdpi.cls

Abstract: A good deal of molecular dynamics simulations aims at predicting and1

quantifying rare events, such as the folding of a protein or a phase transition. Simulating2

rare events is often prohibitive, especially if the equations of motion are high-dimensional,3

as is the case in molecular dynamics. Various algorithms have been proposed for efficiently4

computing mean first passage times, transition rates or reaction pathways. This article5

surveys and discusses recent developments in the field of rare event simulation and outlines6

a new approach that combines ideas from optimal control and statistical mechanics. The7

optimal control approach described in detail resembles the use of Jarzynski’s equality for8

free energy calculations, but with an optimized protocol that speeds up the sampling, while9

(theoretically) giving variance-free estimators of the rare events statistics. We illustrate the10

new approach with two numerical examples and discuss its relation to existing methods.11

Keywords: rare events, molecular dynamics, optimal pathways, stochastic control, dynamic12

programming, change of measure, cumulant generating function13

1. Introduction14

Rare but important transition events between long lived states are a key feature of many systems15

arising in physics, chemistry, biology, etc. Molecular dynamics (MD) simulations allow for analysis16

and understanding of the dynamical behaviour of molecular systems. However, realistic simulations for17

interesting (large) molecular systems in solution on timescales beyond microseconds are still infeasible18

even on the most powerful general purpose computers. This significantly limits the MD-based analysis19

of many biological equilibrium processes, because they often are associated with rare events. These rare20
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events require prohibitively long simulations because the average waiting time between the events is21

orders of magnitude longer than the timescale of the transition characterizing the event itself. Therefore,22

the straightforward approach to such a problem via direct numerical simulation of the system until a23

reasonable number of events has been observed is impractically excessive for most interesting systems.24

As a consequence rare event simulation and estimation are among the most challenging topics in25

molecular dynamics.26

In this article we consider typical rare events in molecular dynamics for which conformation changes27

or protein folding may serve as examples. They can be described in the following abstract way: The28

molecular system under consideration has the ability to go from a reactant state given by a set A in its29

state space (e.g. an initial conformation) to a product state described by another set B (e.g. the target30

conformation). Dynamical transitions from A to B are rare. The general situation we will address is as31

follows:32

• The system is (meta)stable, with the sets A and B being two of its metastable sets in the sense that33

if the system is put there it will remain there for a long time; transitions between A and B are rare34

events.35

• The setsA andB are separated by an unknown and, in general, rough or diffusive energy landscape36

(that will be denoted by V ).37

In addition, we will assume that the system under consideration is in equilibrium with respect to the
stationary probabability density

µ(x) =
1

Z
exp(−βV (x)).

We are interested in characterizing the transitions leading from A into B, that is, we are interested in the38

statistical properties of the ensemble of reactive trajectories that go directly from A to B (i.e. start in A39

without returning to A before going to B). In other words we are interested in all trajectories comprising40

the actual transition. We would like to41

• know which parts of state space such reactive trajectories visit most likely, i.e., where in state42

space do we find transition pathways or transition channels through which most of the probability43

current generated by reactive trajectories flows, and44

• characterize the rare event statistically, i.e. compute the transition rate, the free energy barrier, the45

mean first passage time or even more elaborated statistical quantities.46

The molecular dynamics literature on rare event simulations is rich. Since the 1930s transition state47

theory (TST) [1,2] and extensions thereof based on the reactive flux formalism have provided the main48

theoretical framework for the description of transition events. TST can, however, at best deliver rates and49

does not allow to characterize transition channels. It is based on partitioning the state space into two sets50

with a dividing surface in between, leaving set A on one side and the target set B on the other, and the51

theory only tells how this surface is crossed during the reaction. Often, it is difficult to choose a suitable52

dividing surface and a bad choice will lead to a very poor estimate of the rate. The TST estimate is then53

extremely difficult to correct, especially if the rare event is of the diffusive type where many different54

reaction channels co-exist. Therefore, many techniques have been proposed that try to go beyond TST.55
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These different strategies approach the problem by sampling the ensemble of reactive trajectories or56

by directly searching for the transition channels of the system. Most notable among these techniques are57

(1) Transition Path Sampling (TPS) [3], (2) the so-called String Methods [4], or optimal path approaches58

[5–7] and variants thereof, and (3) techniques that follow the progress of the transition through interfaces59

like Forward-Flux Simulation (FFS) [8], Transition Interface Sampling (TIS) [9], or the Milestoning60

techniques [10,11], and (4) methods that drive the molecular system by external forces with the aim61

of making the required transition more frequent while still allowing to compute the exact rare event62

statistics for the unforced system, e.g. based on Jarzynski’s and Crook’s identity [12,13]. All of these63

methods consider the problem in continuous state space, i.e. through reactive trajectories or transition64

channels in the original state space of the molecular system. They all face substantial problems, e.g. if65

the ensemble of reactive trajectories and/or transition channels of the system under consideration are too66

complicated (multi-modal, irregular, essentially high dimensional), or they suffer from too large variance67

of the underlying statistical estimators.68

Our aim is (A) to review some of these methods based on a joint theoretical basis, and (B) to outline69

a new approach to the estimation of rare event statistics based on a combination of ideas from optimal70

control and statistical mechanics. In principle this approach allows for a variance-free estimation of rare71

event statistics in combination with much reduced simulation time. The rest of the article is organized as72

follows: We start with a precise characterization of reactive trajectories, transition channels and related73

quantities in the framework of Transition Path Theory (TPT) in Section 2. Then, in Sections 3–4, we74

discuss the methods from classes (1)-(3) and characterize their potential problems in more detail. In75

Section 5 we consider methods of type (4) as an introduction to the presentation of the new optimal76

control approach that is outlined in detail in Sections 6–7, including some numerical experiments.77

Alternative, inherently discrete methods like Markov State Modelling that discretize the state space78

appropriately and try to compute transition channels and rates a posteriori based on the resulting discrete79

model of the dynamics will not be discussed herein and are considered in the article [14] in a way related80

to the presentation at hand.81

2. Reactive Trajectories, Transition Rates, and Transition Channels82

Since our results are rather general, it is useful to set the stage somewhat abstractly. We shall consider83

a system whose state space is Rn and denote by Xt the current state of the system at time t. For example,84

Xt may be the set of instantaneous positions and momenta of the atoms of a molecular system. We85

assume that the system is ergodic with respect to a probability (equilibrium) distribution µ, and that we86

can generate an infinitely long equilibrium trajectory {Xt}t≥0. The trajectory will go infinitely many87

times from A to B, and each time the reaction happens. This reaction involves reactive trajectories that88

can be defined as follows: Given the trajectory {X(t)}t≥0, we say that its reactive pieces are the segments89

during which Xt is neither in A or B, came out of A last and will go to B next. To formalize things, let90

t+AB(t) = smallest s ≥ t such that X(s) ∈ A ∪B
t−AB(t) = largest s ≤ t such that X(s) ∈ A ∪B
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Then the trajectory {X(t)}t≥0 is reactive for all t ∈ R where R ⊂ [0,∞) is defined by the requirements

Xt 6∈ A ∪B, Xt+AB(t) ∈ B and Xt−AB(t) ∈ A ,

and the ensemble of reactive trajectories is given by the set

R = {Xt : t ∈ R},

where each specific continuous piece of trajectory going directly from A to B in the ensemble belongs91

to a specific interval [t1, t2] ⊂ R.92

Given the ensemble of reactive trajectories we want to characterize it statistically by answering the93

following questions:94

(Q1) What is the probability of observing a trajectory at x 6∈ (A ∪B) at time t, conditional on t ∈ R?95

(Q2) What is the probability current of reactive trajectories? This probability current is the vector field96

jAB(x) with the property that given any separating surface S between A and B (i.e. the boundary97

of a region that contains A but not B), the surface integral of jAB over S gives the probability flux98

of reactive trajectories between A and B across S.99

(Q3) What is the transition rate of the reaction, i.e. what is the mean frequency kAB of transitions from100

A to B?101

(Q4) Where are the main transition channels used by most of the reactive trajectories?102

Question (Q1) can be answered easily, at least theoretically: The probability density to observe any
trajectory (reactive or not) at point x is µ(x). Let q(x) be the so-called committor function, that is the
probability that the trajectory starting from x reaches first B rather than A. If the dynamics is reversible,
then the probability that a trajectory we observe at state x is reactive is q(x)(1 − q(x)), where the first
factor appears since the trajectory must go to B rather than A next, and the second factor appears since
it needs to come from A rather than B last. Now the Markov property of the dynamics implies that the
probability density to observe a reactive trajectory at point x is

µAB(x) ∝ q(x)(1− q(x))µ(x),

which is the probability of observing any trajectory in x times the probability that it will be reactive (the103

proportionality symbol ∝ is used to indicate identity up to normalization).104

2.1. Transition Path Theory (TPT)105

In order to give answers to the other questions, we will exploit the framework of transition path
theory (TPT) which has been developed in [15–18] in the context of diffusions and has been generalized
to discrete state spaces in [19,20]. In order to review the key results of TPT let us consider diffusive
molecular dynamics in an energy landscape V : Rn → R:

dXt = −∇V (Xt)dt+
√

2ε dBt , X0 = x . (1)
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Here Bt denotes standard n-dimensional Brownian motion, and ε > 0 is the temperature of the system.106

Under mild conditions on the energy landscape function V we have ergodicity with respect to the107

stationary distribution µ(x) = Z−1 exp(−βV (x)) with β = 1/ε. The dynamics is reversible with respect108

to this distribution, i.e. the detailed balance condition holds. We assume throughout that the temperature109

is small relative to the largest energy barriers, i.e., ε � ∆Vmax. As a consequence, the relaxation of the110

dynamics towards equilibrium is dominated by the rare transitions over the largest energy barriers.111

For this kind of dynamics, questions (Q2) and (Q3) have surprisingly simple answers: The reactive
probability current is given by

jAB(x) = εµ(x)∇q(x),

where ∇q denotes the gradient of the committor function q. Based on this, the transition rate con be
computed by the total reactive current across an arbitrary separating surface S:

kAB =

∫
S

nS(x)jAB(x)dσS(x)

where nS denote the unit normal vector on S pointing towards B and σS the associated surface element.
The rate can also be expressed by

kAB = ε

∫
(A∪B)c

(∇q(x))2µ(x)dx,

where (A ∪ B)c denotes the entire state space excluding A and B. Given the reactive current, we can
even answer question (Q4): The transition channels of the reaction A→ B are the reagions of (A∪B)c

in which the streamlines of the reactive current, i.e. the solutions of

d

dt
xAB(t) = jAB

(
xAB(t)

)
, xAB(0) ∈ A

are exceptionally dense.112

Figure 1 illustrates these quantities for the case of a 2d three well potential with two main wells (the113

bottoms of which we take as A and B in the following) and a less significant third well. The three114

main saddle points separating the wells are such that the two saddle points between the main wells115

and the third well are lower in energy than the saddle point between the main wells, such that in the116

zero temperature limit we expect that almost all reactive trajectories take the route through the third117

well across the two lower saddle points. We observe that the committor functions for low and higher118

temperatures exhibit smooth isocommittor lines separating the sets A and B, as expected. The transition119

channels computed from the associated reactive current also show what one should expect: For lower120

temperature the channel through the third well and across the two lower saddle points is dominant, while121

for higher temperature, the direct transition from A to B across the higher saddle point is preferred.122

These considerations can be generalized to a wide range of different kinds of dynamics in continuous123

state spaces including e.g. full Langevin dynamics, see [15–18].124

This example illustrates that TPT in principle allows to quantify all aspects of the transition behavior
underlying a rare event. We can compute transition rates exactly and even characterize the transition
mechanisms if we can compute the committor function. Deeper insight using the Feynman-Kac formula
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yields that the committor function can be computed as the solution of a linear boundary value problem,
which for diffusive molecular dynamics reads

LqAB = 0 in (A ∪B)c, qAB = 0 in A, qAB = 1 in B,

where the generator L has the following form

L = ε∆−∇V (x) · ∇, (2)

where ∆ =
∑

i ∂
2/∂x2

i denotes the Laplace operator. This equation allows the computation of qAB125

in relatively low-dimensional spaces, where the discretization of L is possible based on finite element126

methods or comparable techniques. In realistic biomolecular state spaces this is infeasible because of127

the curse of dimensionality. Therefore, TPT gives a complete theoretical background for rare event128

simulation but its application in high dimensional situations is still problematic. As a remedy, a discrete129

version of TPT has been developed [19,20], which can be used in combination with Markov State130

Modelling, see [21].131

2.2. Transition Path Sampling (TPS)132

TPS has been developed in order to sample from the probability distribution of reactive trajectories
in so-called ”path space”, which means nothing else than the space of all discrete or continuous paths
starting in A and ending up in B equipped with the probability distribution generated by the dynamics
through the ensemble of associated reactive trajectories. Let PT denote the path measure on the space
of discrete or continuous trajectories {Xt}0≤t≤T of length T . The path measure of reactive trajectories
then is

PAB
T ({Xt}0≤t≤T ) =

1

ZAB
1A(X0)PT ({Xt}0≤t≤T )1B(XT ),

where 1A denotes the indicator function of set A (that is, 1A(x) = 0 if x 6∈ A and = 1 otherwise).133

TPS is a Metropolis Monte-Carlo (MC) method for sampling PAB
T ({Xt}0≤t≤T )) that exploits explicit134

information like (3) regarding the path measure PT [22,23]. It delivers an ensemble of reactive135

trajectories of length T that (under the assumption of convergence of the MC scheme) is representative136

for PAB
T and thus allows to compute respective expectation values like the probability to observe a137

reactive trajectory or the reactive current. However, its potential drawbacks are obvious: (1) A typical138

reactive trajectory is very long and rather uninformative (cf. Fig. 1), i.e. the computational effort of139

generating an entire ensemble of long reactive trajectories can be prohibitive, (2) convergence of the140

MC scheme in the extremely high dimensional path spaces can be very poor, and (3) the limitation to a141

pre-defined trajectory length T can lead to biased statistics of the TPS ensemble. Advanced TPS schemes142

try to remedy these drawbacks by combining the original TPS idea with interface methods [9].143
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Figure 1. Top left panel: Three-well energy landscape V as described in the text. Top right
panel: Typical reactive trajectory in the three-well landscape. Middle left panel: Committor
functions qAB for diffusion molecular dynamics with relatively high temperature ε = 0.6

for the sets A (main well, right hand side) and B (main well, left hand side). Middle right
panel: Committor qAB for the low temperature case ε = 0.15. Bottom left panel: Transition
channels for ε = 0.6. Bottom right panel: Transition channels for ε = 0.15. For details of
the computations underlying the pictures see [20].
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3. Finding Transition Channels144

Whenever a transition channel exists, one can try to approximate the principal curve in the center of145

the transition channel instead of sampling the ensemble of reactive trajectories. If this principal curve146

is a rather smooth object then such a method would not suffer from the extensive length of reactive147

trajectories. Several such methods have been introduced; they differ with respect to the definition of the148

principal curve.149

3.1. Action-based Methods150

Rather than sampling the probability distribution of reactive pathways, one can try to obtain a
representative or dominant pathway, e.g. by computing the pathway that has maximum probability
under PT . For the case of diffusive molecular dynamics the path measure PT has a probability density
with respect to a (fictitious) uniform measure on the space of all continuous paths in Rn, which reads

`(ϕ) = exp

(
− 1

2ε
Iε(ϕ)

)
,

where Iε is the Onsager-Machlup action

Iε(ϕ) =

∫ T

0

{
1

2
|ϕ̇(s)|2 +

1

2
|∇V (ϕ(s))|2 − ε∆V (ϕ(s))

}
dt . (3)

The form of the path density ` has led to the idea that by minimizing the Onsager-Machlup action151

over all continuous paths ϕ : [0, T ] → Rn going from A to B one can find the dominant reactive path152

ϕ∗ = argminϕ I
ε(ϕ), often also called optimal path or most probable path. The hope is that this path on153

one hand contains information on the transition mechanism and on the other hand is much smoother and154

easier to interpret than a typical reactive trajectory.155

In [7] a direct approach to this question using gradient descent methods has been given for diffusive156

molecular dynamics, raising issues regarding the correct interpretation of the minimizers of Iε (that need157

not exist) as most probable paths. In [5] the dominant reaction pathway method has been outlined which158

uses a simplified version of the Onsager-Machlup functional that leads to a computationally simpler159

optimization problem and is applicable to large-scale problems, e.g., protein folding [6]. But even if the160

globally dominant pathways can be computed and the optimization does not get stuck in local minima,161

the resulting pathways in general do not allow to gain statistical information on the transition (like rates,162

currents, mean first passage times).163

Another action-based method that has been introduced in [24] is the MaxFlux method which seeks
the path that carries the highest reactive flux among all reactive trajectories of a certain length. The idea
is to compute the path of least resistance by minimizing the functional

L(ϕ) =

∫ T

0

exp
(
ε−1V (ϕ(s))

)
ds .

Several algorithmic approaches for the minimization of the resistance functional L have been proposed,164

e.g. a path-based method [25], discretization of the corresponding Euler-Lagrange equation based165

on a mean-field approximation of it [26] or a Hamilton-Jacobi-based approach using the method of166
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characteristics [27]. Minimizing L for different values of T then yields a collection of paths, each of167

which carries a certain percentage of the total reactive flux. The method is useful if the temperature is168

small, so that the reactive flux concentrates around a sufficiently small number of reactive pathways.169

3.2. String Method and Variants170

There are several other methods that entirely avoid the computation of reactive trajectories but try to
reconstruct the less complex transition channels or pathways instead, analysing the energy landscape of
the system. One group of such techniques like the Zero Temperature String method [28] or the Nudged
Elastic Band method [29] concentrate on the computation of the minimal energy path (MEP), i.e. the path
of lowest potential energy between (a point in)A and (a point in)B. Under diffusive molecular dynamics
and for vanishing temperature the MEP is the path that transitions take with probability one [30]. It turns
out that the MEP in this case is the minimizer of the Onsager-Machlup action (3) in the limit ε→ 0. For
non-zero temperature and a rugged energy landscape the MEP will in general be not very informative
and must be replaced by a finite-temperature transition channel. This is done by the finite-temperature
string (FTS) method [31] based on the following considerations: Firstly, the isocommittor surfaces Γα,
α ∈ [0, 1], of the committor q are taken as natural interfaces that separate A from B. Secondly, each
Γα is weighted with the stationary distribution µ to find reactive trajectories crossing it at a certain point
x ∈ Γα,

ρα(x) =
1

Zα
q(x)(1− q(x))µ(x), Zα =

∫
Γα

q(x)(1− q(x))µ(x)dσα(x).

The idea of the FTS method is that the ensemble of reactive trajectories can be characterized by this171

distribution on the isocommittor surfaces. Third, one assumes that for each α the probability density ρα172

is peaked in just one point ϕ(α) and that the curve ϕ = ϕ(α), α ∈ [0, 1] defined by the sequence of these173

points forms the center of the (single) transition channel. More precisely, one defines ϕ(α) = 〈x〉Γα174

where the average is taken according to ρα along the respective isocommittor surface Γα. Fourth, it175

is assumed that the covariance Cα = 〈(x − ϕ(α)) ⊗ (x − ϕ(α))〉Γα—which defines the width of the176

transition channel—is small, which implies that the isocommittor surfaces can be locally approximated177

by hyperplanes Pα. The computation of the FTS string ϕ then is done by approximating it via ϕ(α) =178

〈x〉Pα , where the average is computed by running constrained dynamics on Pα while iteratively refining179

the hyperplanes Pα; see [32] for details. Later extensions [33] remove the restrictions resulting from the180

hyperplanes by using Voronoi tesselations instead.181

The FTS method allows to compute single transition channels in rugged energy landscapes as long as
these are not too extended and rugged. Compared to methods that sample the ensemble of reactive
trajectories, it has the significant advantage that the string—that is, the principal curve inside the
transition channel—is rather smooth and short, as compared to the typical reactive trajectories. The
FTS further allows to compute the free energy profile F = F (α) along the string,

F (α) = −β−1 log

∫
Pα

µ(x)dσα(x),

that characterizes the transition rates associated with the transition channel (at least in the limits of the182

approximations invoked by the FTS).183
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4. Computing Transition Rates184

The computation of transition rates can be performed without computing the dominant transition185

channels or similar objects. There is a list of rather general techniques, with Foward Flux Sampling186

(FFS) [8], Transition Interface Sampling (TIS) [9] and Milestoning [10] as examples, that approximate187

transition rates by exploring how the transition progresses from one to the next interface that separate A188

from B.189

4.1. Forward Flux Sampling (FFS)190

The first step of FFS is the choice of a finite sequence of interfaces Ik, k = 1, . . . , N , in state space
between A and B = IN . The transition rate kAB comes as the product of two factors: (1) the probability
current JA of all trajectories leaving A and hitting I1, and (2) the probability

P(B|I1) =
N−1∏
j=1

P(Ik+1|Ik)

that a trajectory that leaves I1 makes it toB before it returns toA; here P(Ik+1|Ik) denotes the probability191

that a trajectory starting in Ik makes it to Ik+1 before it returns to A. FFS first performs a brute-force192

simulation starting in A which yields an ensemble of points at the first interface I1 yielding an estimate193

for the flux JA (the number of trajectories hitting I1 per unit of time). Second a point from this ensemble194

on I1 is selected at random and used to start a trajectory which is followed until it either hits the next195

interface I2 or returns toA; this gives P(I2|I1). This procedure then is iterated from interface to interface.196

Finally the rate kAB = JA · P(B|I1) is computed. Variants of this algorithm are described in [34] and197

[35], for example.198

FFS has been demonstrated to be quite general in approximating the flux of reactive trajectories199

through a given set of interfaces; it can be applied to equilibirium as well as non-equilibirium systems200

and its implementation is easy. The interfaces used in FFS are, in principle, arbitrary. However, the201

efficiency of the sampling of the reactive hitting probabilities P(Ik+1|Ik) crucially depends on the choice202

of the interfaces. In practice the efficiency of FFS will drop dramatically if one does not use appropriate203

surfaces, and totally misleading rates may result from this. Ideally, one would like to choose these204

surfaces so as to optimize the computational gain offered by FFS, but how to do so is not clear. The205

same is true for TIS that couples TPS with progressing from interface to interface.206

4.2. Milestoning Milestoning [10] is similar to FFS in so far as it also uses a set of interfaces Ik,207

k = 1, . . . , N that separate A and B = IN . In contrast to FFS and TIS, the fundamental quantities in208

Milestoning are the hitting time distributions K±i (τ), i = 1, . . . , N − 1, where K±i (τ) is the probability209

that a trajectory starting at t = 0 at interface Ii hits Ii±1 before time τ . Trajectories that make it to210

milestone Ii must come from milestones Ii±1, and vice versa. In the original algorithm these distributions211

are approximated as follows [10]: For each milestone Ii one first samples the distribution µ constrained212

to Ii. Based on the resulting sample, we start a trajectory from each point which is terminated when it213
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reaches one of its two neighboring milestones Ii±1. The hitting times are recorded and collected into two214

distributions K±i (τ).215

These local kinetics are then compiled into the global kinetics of the process: For each i, one defines216

Pi(t) as the probability that the process is found between Ii−1 and Ii+1 at time t and that the last milestone217

hit was Ii. Milestoning is based on a (non-Markovian) construction of Pi(t) from the K±i (τ). Its218

efficiency comes from two sources: (1) It does not require the computation of long reactive trajectories219

but only short ones between milestones (which therefore should be ’close enough’). (2) It is easily220

parallelizable. Its disadvantage is the dependence on the milestones that have to be chosen in advance:221

It can be shown that Milestoning with perfect sampling allows to compute exact transition rates or mean222

first passage times if the interfaces are given by the isocommittor surfaces (which in general are not223

known in advance) [36]; if the interfaces are chosen inappropriately the results can be rather misleading.224

5. Nonequilibrium Forcing and Jarzynski’s Identity225

The computation of reliable rare event statistics suffers from the enormous lengths of reactive226

trajectories. One obvious way to overcome this obstacle is to force the system to exhibit the transition227

of interest on shorter timescales. So can we drive the molecular system to make the required transition228

more frequently but still compute the exact rare event statistics for the unforced system?229

As was shown by Jarzynski and others, nonequilibrium forcing can in fact be used to obtain230

equilibrium rare event statistics. The advantage seems to be that the external force can speed up the231

sampling of the rare events by biasing the equilibrium distribution towards a distribution under which232

the rare event is no longer rare. We will shortly review Jarzynski’s identity before discussing the matter233

in more detail.234

5.1. Jarzynski’s Identity Jarzynski’s and Crook’s formulae [12,13] relate the equilibrium Helmholtz free
energy to the nonequilibrium work exerted under external forcing: Given a system with energy landscape
V (x), the total Helmholtz free energy can be defined as

F = −β−1 logZ with Z =

∫
exp(−βV (x))dx .

Jarzynski’s equality [12] then relates the free energy difference ∆F = −β−1 log(Z1/Z0) between two
equilibrium states of a system given by an unperturbed energy V0 and its perturbation V1 with the work
W applied to the system under the perturbation: Suppose we set Vξ = (1 − ξ)V0 + ξV1 with ξ ∈ [0, 1],
and assume we set a protocol that describes how the system evolves from ξ = 0 to ξ = 1. If, initially,
the system is distributed according to exp(−βV0) then, by the second law of thermodynamics, it follows
that E(W ) ≥ ∆F where W is the total work applied to the system and E denotes the average over
all possible realizations of the transition from ξ = 0 to ξ = 1; equality is attained if the transition is
infinitely slow (i.e., adiabatically). Jarzynski’s identity now asserts that

∆F = −β−1 logE
[

exp(−βW )
]
.

Many generalizations exist: In [13], a generalized version of this fluctuation theorem, the so-called235

Crook’s formula, for stochastic, microscopically reversible dynamics is derived. In [37,38] it is shown236
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how one can compute conditional free energy profiles along a reaction coordinate for the unperturbed237

system, rather than total free energy differences between perturbed and unperturbed system.238

Algorithmic application prohibitive. Despite the fact that Jarzynski’s and Crook’s formulae are239

used in molecular dynamics applications [39], their algorithmic usability is limited by the fact that240

the likelihood ratio between equilibrium and nonequilibrium trajectories is highly degenerate, and the241

overwhelming majority of nonequilibrium forcings generate trajectories that have almost zero weight242

with respect to the equilibrium distribution that is relevant for the rare event. This leads to the fact that243

most rare event sampling algorithms based on Jarzynski’s identity have prohibitively large variance.244

Recent developments have reduced this problem by sampling just the reversible work processes based245

on Crook’s formula but could not fully remove the problem of large variance. Because of this, we will246

approach the problem of variance reduction subsequently.247

5.2. Cumulant Generating Functions248

In order to demonstrate how to improve approaches based on the idea of driving molecular systems
to make rare events frequent, we first have to introduce some concepts and notation from statistical
mechanics: Let W be a random variable that depends on the sample paths of (Xt)t≥0, i.e. on molecular
dynamics trajectories of the system under investigation. Further let P be the underlying probability
measure on the space of continuous trajectories as introduced in Section 2.2 (but without the restriction
to a given length T ). We define the cumulant generating function (CGF) of W by

γ(σ) = −σ−1 logE[exp(−σW )] , (4)

where σ is a non-zero scalar parameter and E[f ] =
∫
f dP denotes the expectation value with respect

to P . Note that the CGF is basically the free energy at inverse temperature β as in Jarzynski’s formula,
but here is considered as a function of the independent parameter σ.1 Taylor expanding the CGF about
σ = 0, we observe that γ(σ) ≈ E[W ]− σ

2
E[(W −E[W ])2], hence, for sufficiently small σ, the variance

is decoupled from the mean. Moreover it follows by Jensen’s inequality that

γ(σ) ≤ E[W ] ,

where equality is achieved if and only if W is almost surely constant, in accordance with the second law249

of thermodynamics.2250

Optimal reweighting The CGF admits a variational characterization in terms of relative entropies. To
this end let Q be another probability measure so that P is absolutely continuous with respect to Q, i.e.
the likelihood ratio dP/dQ exists and is Q-integrable. Then, using Jensen’s inequality again,

−σ−1 log

∫
e−σW dP = −σ−1 log

∫
e−σW+log( dP

dQ
) dQ

≤
∫ {

W + σ−1 log

(
dQ

dP

)}
dQ ,

1Definition (4) differs from the standard CGF only by the prefactor σ−1 in front.
2This is the case, e.g., when W is the work associated with an adiabatic transition between thermodynamic equilibrium

states.
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which, noting that the logarithmic term is the relative entropy (or Kullback-Leibler divergence) between
Q and P , can be recast as

γ(σ) ≤
∫
W dQ+H(Q‖P ) . (5)

where

H(Q‖P ) = σ−1

∫
log

(
dQ

dP

)
dQ (6)

and we declare that H(Q‖P ) =∞ if Q does not have a density with respect to P . Again it follows from
the strict convexity of the exponential function that equality is achieved if and only if the new random
variable

Z = W + σ−1 log

(
dQ

dP

)
is Q-almost surely constant. This gives us the following variational characterization of the cumulant251

generating function that is due to [40]:252

Variational formula for the cumulant generating function. Let W be bounded from above, with
E[exp(−σW )] <∞. Then

γ(σ) = inf
Q�P

{∫
W dQ+H(Q‖P )

}
, (7)

where the infimum runs over all probability measures Q that have a density with respect to P . Moreover
the minimizer Q∗ exists and is given by

dQ∗ = eγ(σ)−σW dP .

6. Optimal driving from control theory253

When Xt denotes stochastic dynamics such as (1), the above variational formula admits a nice254

interpretation in terms of an optimal control problem with a quadratic cost. To reveal it we first need255

some technical assumptions.256

(A1) We define Q = [0, T ) × O where T ∈ [0,∞] and O ⊂ Rn is a bounded open set with smooth
boundary ∂O. Further let τ <∞ be the stopping time

τ = inf{t > t0 : (t,Xt) /∈ Q} ,

i.e. τ is the stopping time that either t = T or Xt leaves the set O, whichever comes first.257

(A2) The random variable W is of the form

W =
1

ε

∫ τ

0

f(Xt) dt+
1

ε
g(Xτ ) ,

for some continuous and nonnegative functions f, g : Rn → R which are bounded from above and258

at most polynomially growing in x (compare Jarzysnki’s formula).259
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(A3) The potential V : Rn → R in (1) is smooth, bounded below, and satisfies the usual local Lipschitz260

and growth conditions.261

We consider the conditioned version of the moment generating function (which is just the exponential of
the cumulant generating function):

ψσ(x, t) = E[exp(−σW )|Xt = x] . (8)

By the Feynman-Kac theorem, ψσ solves the linear boundary value problem(
A− σ

ε
f
)
ψσ = 0

ψσ|E+ = exp
(
−σ
ε
g
) (9)

where E+ is the terminal set of the augmented process (t,Xt), precisely E+ = ([0, T )× ∂O) ∪
({T} ×O), and

A =
∂

∂t
+ L (10)

is the backward evolution operator associated with Xt and L the generator of the dynamics as
introduced in (2). Assumptions (A1)–(A3) guarantee that (9) has a unique smooth solution ψσ for all
σ > 0. Moreover the stopping time τ is almost surely finite which implies that

0 < c ≤ ψσ ≤ 1

for some constant c ∈ (0, 1).262

Log transformation of the cumulant generating function. In order to arrive at the optimal control
version of the variational formula (7), we introduce the logarithmic transformation of ψσ as

vσ(x, t) = − ε
σ

logψσ(x, t) ,

which is analogous to the CGF γ except for the leading factor ε and the dependence on the initial
condition x. As we will show below, vσ is related to an optimal control problem. To see this, remember
that ψσ is bounded away from zero and note that

− ε
σ
ψ−1
σ Aψσ = Avσ − σ|∇vσ|2 ,

which implies that (9) is equivalent to

Avσ − σ|∇vσ|2 + f = 0

vσ|E+ = g .

Equivalently,

min
α∈Rn
{Avσ + α · ∇vσ +

1

4σ
|α|2 + f} = 0

vσ|E+ = g ,
(11)

where we have used that

−σ|y|2 = min
α∈Rn

{
α · y +

1

4σ
|α|2
}
.

(For the general framework of change-of-measure techniques and Girsanov transformations and their263

relation to logarithmic transformations, we refer to [41, Sec. VI.3].)264
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Optimal control problem. Equation (11) is a Hamilton-Jacobi-Bellman (HJB) equation and is
recognized as the dynamic programming equation of the following optimal control problem: minimize

J(u, x) = E

[∫ τ

0

{
f(Xt) +

1

4σ
|ut|2

}
dt+ g(Xτ )

∣∣∣∣Xt = x

]
(12)

over a suitable space of admissible control functions u : [0,∞)→ Rn and subject to the dynamics

dXt = (ut −∇V (Xt)) dt+
√

2εdWt . (13)

Form of optimal control. In more detail one can show (e.g., see [41, Sec. IV.2])) that assumptions
(A1)–(A3) above imply that (11) has a classical solution (i.e. twice differentiable in x, differentiable in t
and continuous at the boundaries), which satisfies vσ(x) = minu J(u, x), i.e.

vσ(x, t) = E

[∫ τ

t

{
f(Xs) +

1

4σ
|u∗s|2

}
ds+ g(Xτ )

∣∣∣∣Xt = x

]
, (14)

where u∗ is the unique minimizer of J(u, ·) that is given by the Markovian feedback law

u∗t = α∗(Xt, t)

with

α∗ = argmin
α∈Rn

{
α · ∇vσ +

1

4σ
|α|2
}
.

The function vσ is called value function or optimal-cost-to-go for the optimal control problem (12)–265

(13). Specifically, vσ(x, t) measures the minimum cost needed to drive the system to the terminal state266

when started at x at time t. We briefly mention the two most relevant special cases of (12)–(13).267

6.1. Case I: the exit problem268

We want to consider the limit T → ∞. To this end call τO = inf{t > 0: Xt /∈ O} the first exit time
of the set O ⊂ Rn. The stopping time τ = min{T, τO} then converges to τO, i.e.

min{T, τO} → τO .

As a consequence (using monotone convergence), vσ converges to the value function of an optimal
control problem with cost functional

J∞(u, x) = E

[∫ τO

0

{
f(Xt) +

1

4σ
|ut|2

}
dt+ g(XτO)

∣∣∣∣Xt = x

]
(15)

In this case vσ = minu J∞ is independent of t and solves the boundary value HJB equation

min
α∈Rn
{Lvσ + α · ∇vσ +

1

4σ
|α|2 + f} = 0

vσ|∂O = g .
(16)
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6.2. Case II: finite time horizon optimal control269

If we keep T <∞ fixed while letting O grow such that diam(O)→∞, where diam(O) = sup{r >
0: Br(x) ⊂ O, x ∈ O} is understood as the maximum radius r > 0 that an open ball Br(·) contained in
O can have, it follows that

min{T, τO} → T

In this case vσ converges to the value function with a finite time horizon and cost functional

JT (u, x) = E

[∫ T

0

{
f(Xt) +

1

4σ
|ut|2

}
dt+ g(XT )

∣∣∣∣Xt = x

]
(17)

Now vσ = minu JT is again a function on Rn × [0, T ] and solves the HJB equation

min
α∈Rn
{Avσ + α · ∇vσ +

1

4σ
|α|2 + f} = 0

vσ(x, T ) = g(x) ,
(18)

with a terminal condition at time t = T .270

6.3. Optimal control potential and optimally controlled dynamics271

The optimal control u∗ that minimizes the functional in (12) is again of gradient form and given by

u∗t = −2σ∇vσ(Xt, t)

as can be readily checked by minimizing the corresponding expression in (11) over α. Given vσ, the
optimally controlled dynamics reads

dXt = −∇U(Xt, t)dt+
√

2εdWt , (19)

with the optimal control potential

U(x, t) = V (x) + 2σvσ(x, t) . (20)

In case when T →∞ (case I above), the biasing potential is independent of t.272

Remarks. Some remarks are in order.273

(a) Monte-Carlo estimators of the conditional CGF

γ(σ;x) = −σ−1 logE[exp(−σW )|X0 = x] ,

that are based on the optimally controlled dynamics have zero variance. This is so because the274

optimal control minimizes the variational expression in (7), but at the minimum the random275

variable inside the expectation must be almost surely constant (as a consequence of Jensen’s276

inequality and the strict convexity of the exponential function). Hence we have a zero-variance277

estimator of the conditional CGF.278
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(b) The reader may now wonder as to whether it is possible to extract single moments from the CGF279

(e.g., mean first passage times). In general this question is not straightforward to answer. One280

of the difficulties is that extracting moments from the CGF requires to take derivatives at σ = 0,281

but small values of σ imply strong penalization which renders the control inactive and thus makes282

the approach inefficient. Another difficulty is that reweighting the controlled trajectories back283

to the original (equilibrium) path measure can increase the variance of a rare event estimator, as284

compared to the corresponding estimator based on the uncontrolled dynamics. As yet, the efficient285

calculation of moments from the CGF by either extrapolation methods or reweighing is an open286

question and currently a field of active research (see, e.g., [42,43])287

(c) Jarzynski’s identity relates equilibrium free energies to averages that are taken over an ensemble
of trajectories generated by controlled dynamics, and the reader may wonder whether the above
zero-variance property can be used in connection with free energy computations à la Jarzynski.
Indeed we can interpret the CGF as the free energy of the nonequilibrium work

Wξ =

∫ T

0

f(Xt, ξt) dt

where f is the nonequilibrium force exerted on the system under driving it with some prescribed
protocol ξ : [0, T ]→ R; in this case the dynamics Xt depends on ξt as well, and writing down the
HJB equation according to (18) is straightforward. But even if we can solve (18) we do not get
zero-variance estimators for the free energy

F (ξT )− F (ξ0) = −β−1 logE[exp(−βWξ)] .

The reason for this is simple: Jarzynski’s formula requires that the initial conditions are chosen
from an equilibrium distribution, say, π0 the equilibrium distribution corresponding to the initial
value ξ0 of the protocol, but optimal controls are defined point-wise for each state (t,Xt) and

−β−1 log

∫
Rn

E[exp(−βWξ)|X0 = x] dπ0(x)

6= −β−1

∫
Rn

logE[exp(−βWξ)|X0 = x] dπ0(x) .

In other words:
F (ξT )− F (ξ0) 6=

∫
Rn
Vβ(x, 0) dπ0(x) .

(d) A similar argument as the one underlying the derivation of the HJB equation from the linear288

boundary value problem yields that Jarzynski’s formula can be interpreted as a two-player289

zero-sum differential game (cf. [44]).290

7. Characterize Rare Events by Optimally Controlled MD291

Now we illustrate how to use the results of the last section in practice. We will mainly consider the292

case discussed in Sec. 6.1 regarding the statistical characterization of hitting a certain set.293
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7.1. First passage times294

Roughly speaking, the CGF encodes information about the moments of any random variable W that
is a functional of the trajectories (Xt)t≥0. For example, for f = ε and T →∞ we obtain the CGF of the
mean first exit time from O, i.e.,

−σ−1 logEx[exp(−στO)] = min
u

Eu
x

[
τO +

1

4σ

∫ τO

0

|ut|2 dt
]

where we have introduced the shorthand Ex[·] = E[·|X0 = x] to denote the conditional expectation when
starting at X0 = x and the superscript “u” to indicate that the expectation is understood with respect to
the controlled dynamics

dXt = (ut −∇V (Xt)) dt+
√

2εdWt ,

where E = E0 denotes expectation with respect to the unperturbed dynamics.295

7.2. Committor probabilities revisited296

It is not only possible to use the moment generating function to collect statistics about rare events in
terms of the cumulant generating function, but also to express the committor function directly in terms
of an optimal control problem (see Section 2.1 for the definition of the committor qAB between to sets A
and B). To this end, let σ = 1 and suppose we divide ∂O into two sets B ⊂ ∂O and A = ∂O \ B (i.e.,
τO is the stopping time that is defined by hitting either A or B). Setting

f = 0 and g(x) = −ε log 1B(x)

reduces the moment generating function (8) to

ψ1(x) = Ex[1B(XτO)]

or, in more familiar terms,

ψ1(x) = P[XτO ∈ B ∧ XτO /∈ A|X0 = x] = qAB(x).

According to (15) the corresponding optimal control problem has the cost functional

J(u) = E

[
1

4

∫ τO

0

|us|2 ds− ε log 1B(XτO)

]
,

which amounts to a control problem with zero terminal cost when ending up inB and an infinite terminal
cost for hitting A. Therefore the HJB equation for v = v1 has a singular boundary value at A; it reads

min
α∈Rn
{Lv + α · ∇v +

1

4
|α|2} = 0

v|A =∞ , v|B = 0 .

Setting v(x) = −ε log qAB(x) yields the equality

− log qAB(x) = min
u

Eu

[
1

4ε

∫ τO

0

|us|2ds− log 1B(XτO)

∣∣∣∣x0 = x

]
.
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In this case, the optimally controlled dynamics (19) is of the form

dXt = −∇UAB(Xt)dt+
√

2εdWt ,

with optimal control potential
UAB(x) = V (x)− 2ε log qAB(x).

Remarks. Some remarks on the committor equation follow:297

(a) The logarithmic singularity of the value function at “reactant state”A has the effect that the control298

will try to avoid running back into A, for there is an infinite penalty on hitting A. In other299

words, by controlling the system we condition it on hitting the “product state” B at time t = τO.300

Conditioning a diffusion (or general Markov) process on an exit state has strong connection with301

Doob’s h-transform that can be considered a change-of-measure transformation of the underlying302

path measure that forces the diffusion to hit the exit state with probability one [45].303

(b) The optimally controlled dynamics has a stationary distribution with a density proportional to

exp(−βUAB(x)) = q2
AB(x) exp(−βV (x)),

where we used β = 1/ε.304

7.3. Algorithmic Realization For the exit problem (”Case I” above), one can find an efficient algorithm
for computing the conditional CGF γ(σ;x) or, equivalently, the value function vσ(x) in [46]. The idea
of the algorithm is to exploit that, according to (19)–(20), the optimal control is of gradient form. The
latter implies that the value function can be represented as a minimization of the cost functional over
time-homogeneous candidate functions C for the optimal bias potential, in other words,

vσ(x) = min
C

Ex

[∫ τO

0

{
f(Xt) +

1

4σ
|∇Ct|2

}
dt+ g(XτO)

]
, (21)

where the expectation E is understood with respect to the path measure generated by

dXt = − (∇C(Xt) +∇V (Xt)) dt+
√

2εdWt .

Once the optimal C has been computed, both value function and CGF can be recovered by setting

vσ(x) = −C(x)

2σ
and γ(σ;x) = −C(x)

2εσ
.

The algorithm that finds the optimal C works by iteratively minimizing the cost functional for
potentials C from a finite-dimensional ansatz space, i.e.

C(x) =
M∑
j=1

ajϕj(x)

with appropriately chosen ansatz functions ϕj . The iterative minimization is then carried out on the M -305

dimensional coefficient space of the a1, . . . , aM . With this algorithm we are able to compute the optimal306

control potential for the exit problem in the two interesting cases: first passage times and committor307

probabilities (as outlined in Sections 7.1 and 7.2).308
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Remark. The minimization algorithm for the value function belongs to the class of expectation-309

maximization algorithms (although here we carry out a minimization rather than a maximization), in310

that each minimization step is followed by a function evaluation that involves computing an expectation.311

In connection with rare events sampling and molecular dynamics problems a close relative is the adaptive312

biasing force (ABF) method for computing free energy profiles, the latter being intimately linked with313

cumulant generating functions or value functions (cf. Section 5). In ABF methods (or its variants, such as314

metadynamics or Wang-Landau dynamics), the gradient of the free energy is estimated on the fly, running315

a molecular dynamics simulation, and then added as a biasing force to accelerate the sampling in the316

direction of the relevant coordinates [47,48]. The biasing force eventually converges to the derivative of317

the free energy, which is the optimal bias for passing over the relevant energy barriers that are responsible318

for the rare events [49].319

7.4. Numerical Examples320

In our first example we consider diffusive molecular dynamics as of (1) with ε = 0.1 and V being321

the 5-well potential shown in Fig. 2. We first consider the CGF of the first passage time as discussed322

in Section 7.1. The resulting optimal control potential as of (20) is displayed in Fig. 2 for different σ.323

As the set O we take the whole state space except a small neighbourhood of its global minimum of V ,324

so that its complement Oc is identical to the vicinity of the global minimum and the exit time τO is the325

first passage time to Oc. Fig. 2 shows that the optimal control potential alters the original potential V326

significantly in the sense that for σ > 0 the set Oc is the bottom of the only well of the potential, so that327

all trajectories started somewhere else will quickly enter Oc.328

Figure 2. Five-well potential (left) and associated optimal control potential for the first
passage time to the target set Oc given by a small ball around the main minimum x1 (right)
for different values of σ (right). ε = 0.1.

This case is instructive: For the unperturbed original dynamics the mean first passage time Ex(τO)329

takes values of around 10.000 for x > −2. For the optimally controlled dynamics the mean first passage330

times into Oc are less than 5 for σ = 0.1, 0.5, 1.0 so that the estimation of Ex(τO) resulting from the331

optimal control approach requires trajectories that are a factor of at least 1.000 shorter then the ones we332

would have to use by direct numerical simulation of the unperturbed dynamics.333

Figure 3 shows the optimal control potentials for computation of the committor qAB as described in334

Section 7.2. We observe that the optimal control potential exhibits a singularity at the boundary of the335
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basin of attraction of the set A. That is, it prevents the optimally controlled dynamics from entering the336

basin of attraction of A and thus avoids the waste of computational effort by unproductive returns to A.337

Figure 3. Optimally corrected potential for the case of J being the committor qAB for B
being the set around an 0.1-ball around the main minimum x1 of the potential. Left panel:
A=ball with radius 0.1 around the highest minimum x3. Right panel: A=ball with radius 0.1
around the second lowest minimum x2.

In our second example we consider two-dimensional diffusive molecular dynamics as of (1) with the338

energy landscape V being the 3-well potential shown in Fig. 1. In Fig. 4 the optimal control potential339

for computing the committors qAB between the two main wells for two different temperatures ε = 0.15340

and ε = 0.6 are displayed. As in our former experiment we observe that the optimal control potential341

prevents the dynamics from returning to A; in addition it flattens the third well significantly such that342

the optimally controlled dynamics in any case quickly goes into B. For ε = 0.15 a TPS sampling of343

reactive trajectories between the two main wells, precisely from A to B with A and B as indicated in344

Fig. 4, results in an average length of 367 for reactive trajectories based on the original dynamics. For345

the optimally controlled dynamics we found an average length of 1.3.346

Figure 4. Optimally corrected potential for the three well potential shown in Fig. 1 for the
committor qAB for the medium temperature ε = 0.6 case (left) and the low temperature
ε = 0.15 case (right) and for the sets A (ellipse in main well, right hand side) and B (ellipse
in main well, left hand side).



Version July 23, 2013 submitted to Entropy 22 of 25

8. Conclusions347

We have surveyed various techniques for the characterization and computation of rare events348

occurring in molecular dynamics. Roughly, the approaches fall into two categories: (a) methods that349

approach the problem by characterizing the ensemble of reactive trajectories between metastable states or350

(b) path-based methods that target dominant transition channels or pathways by minimization of suitable351

action functionals. Methods of the first type, e.g. Transition Path Theory, Transition Path Sampling,352

Milestoning or variants thereof, are predominantly Monte-Carlo-type methods for generating one very353

long or many short trajectories, from which the rare event statistics can then be estimated. Methods354

that belong to the second category, e.g., MaxFlux, Nudged-Elastic Band or the String Method, are355

basically optimization methods (sometimes combined with a Monte-Carlo scheme); here the objectives356

are few (single or multiple) smooth pathways that describe, e.g. a transition event. It is clear that357

this classification is not completely unambiguous, in that action-based methods for computing most358

probable pathways can be also used to sample an ensemble of reactive trajectories. Another possible359

classification (with its own drawbacks) is along the lines of the equilibrium-nonequilibrium dichotomy360

that distinguishes between methods that characterize rare events based on the original dynamics361

and methods that bias the underlying equilibrium distribution towards a (nonequilibrium) probability362

distribution under which the rare events are no longer rare. Typical representatives of the second class363

are methods based on Jarzynski’s identity for computing free energy profiles. The problem often is that364

rare event estimators based on an ensemble of nonequilibrium trajectories suffer from large variances,365

unless the nonequilibrium perturbation is cleverly chosen.366

We have described a strategy to find such a cleverly chosen perturbation, based on ideas from optimal367

control. The idea rests on the fact that the cumulant generating function of a certain observable, e.g. the368

first exit time from a metastable set, can be expressed as the solution to an optimal control problem which369

yields a zero variance estimator for the cumulant generating function. The control acting on the system370

has essentially two effects: (1) under the controlled dynamics, the rare events are no longer rare, as a371

consequence of which the simulations become much shorter, (2) the variance of the statistical estimators372

is small (or even zero if the optimal control is known exactly). We should stress that, depending on the373

type of observable, the approach only appears to be a nonequilibrium method, for the optimal control is374

an exact gradient of a biasing potential, hence the optimally perturbed system satisfies detailed balance375

which is one criterion for thermodynamic equilibrium. Future research should address the question as376

to whether the approach is competitive for realistic molecular systems, how to efficiently and robustly377

extract information about specific moments rather than cumulant generating functions, and how to extend378

it to more general observables or the calculation of free energy profiles.379
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