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Abstract

A decomposition of a molecular conformational space into sets or functions (states) allows for

a reduced description of the dynamical behavior in terms of transition probabilities between these

states. Spectral clustering of the corresponding transition probability matrix can then reveal

metastabilities. The more states are used for the decomposition, the smaller the risk to cover

multiple conformations with one state, which would make these conformations indistinguishable.

However, since the computational complexity of the clustering algorithm increases quadratically

with the number of states, it is desirable to have as few states as possible. To balance these two

contradictory goals, we present an algorithm for an adaptive decomposition of the position space

starting from a very coarse decomposition. The algorithm is applied to small data classification

problems where it was shown to be superior to commonly used algorithms, e. g., k-means. We also

applied this algorithm to the conformation analysis of a tripeptide molecule where six-dimensional

time series are successfully analyzed.
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I. INTRODUCTION11

One challenging aspect in the simulation of biomolecules is the high dimensionality of the12

corresponding conformation space. The position states of a molecular system as individual13

consecutive snapshots from a trajectory can be represented as a set of points in the confor-14

mational space. Typically this conformational space is high-dimensional, which renders a15

rigorous analysis in terms of individual states impossible. Under the assumption, that the16

potential energy surface is separated by well defined energy barriers, collections of similar17

states (metastabilities) can be defined. In the conformational space these metastabilites are18

characterized as subsets, where the dynamical system spends a long time before it switches19

to another metastability. Within each metastable set the dynamics is fast mixing (cf. Fig.20

1)2122

This set based point of view of metastabilities differs from the classical definition of con-23

formations as minima of the free energy landscape because it also takes into account entropic24

barriers. Usually, there exist many more energy minima than metastabilities. Multiple min-25

ima can well belong to one metastability if there are frequent transitions between these26

minima. The identification of metastabilities together with their life times and transition27

patterns is essential for the analysis of a system’s long term behavior. Initiated by the pio-28
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FIG. 1. Sketch of a potential energy along some reaction coordinate. The potential has four local

minima but only three metastable states for moderately high temperature separated by the vertical

dashed lines.
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neering work of Dellnitz, Deuflhard, and Schütte, a multi-scale method, called conformation29

dynamics, has been developed [1–4]. Its main objective is the identification of metastabil-30

ities together with their life times and transition patterns. This approach of partitioning31

the state space and interpreting transition between these sets as a realization of a Markov32

Chain (Markov State Models), has been quite successful [5–14]. In this mixed determin-33

istic/stochastic approach, the dynamics is modeled as a Markov process in a discretized34

finite state space, which results in a nearly decomposable transition probability matrix. By35

considering the transition probabilities as similarities between the states, the application of36

a cluster algorithm reveals the metastabilities. The aggregation of single molecular configu-37

rations into a small number of states in the molecule’s position space is necessary for a large38

amount of configurational data obtained, e. g., from molecular dynamics simulations where39

intuitive point-wise clustering becomes impossible due to high complexity. If the states are40

chosen in a näıve way, it might happen that one state covers two or more metastabilities.41

When applying a cluster algorithm relying on the transition probabilities between the states42

only these conformations cannot be detected, since the transition behavior within the states43

is disregarded. Thus, the more states we use for the decomposition, the smaller the risk to44

cover multiple conformations with one state. However, since the computational complexity45

of most clustering algorithm increases quadratically with the number of states, it is desirable46

to have a small number of states. Moreover, the estimated transition probabilities might be-47

come statistically unreliable the smaller the states and the fewer configurations per state are48

available. In the last few years this problem has been addressed by many authors combined49

with a strategy to find the best trade off between accuracy and complexity [15–19].50

Based on a coarse decomposition of the state space, we propose an adaptive scheme, which51

accounts for geometric as well as for dynamical aspects of the states in each portion of the52

decomposition. Our idea is to decompose the object space Ω by a Voronoi tessellation, to53

build the transition probability matrix based on these sets, and to apply the robust Perron54

Cluster Cluster Analysis (PCCA+) [6] in order to identify the metastabilities. PCCA+ is55

the successor of the PCCA method ([3]), where the primal version only allowed for a ”hard”56

clustering and the latter allows for a fuzzy clustering [20]. At this point our procedure is57

similar to the automatic state decomposition algorithm proposed by Chodera et al. [15].58

In contrast to Ref. [15], we use an adaptive refinement scheme to detect and refine exclu-59

sively those partitions that contain metastabilities. This refinement is not only based on60
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the geometric similarity between objects in one cell, but also relies on intracell transition61

probabilities. Thus, only partitions that actually contain more than one metastabilities will62

be refined. Thereby, we avoid the risk of missing conformations that are covered by the63

same state, while having a minimal set of partitions at the same time. In the following we64

will first explain, how the metastable clusters are derived from a given partitioning, and65

subsequently describe the adaptive partitioning scheme in detail.66

II. STATE SPACE DECOMPOSITION BY MEMBERSHIP BASIS FUNCTIONS67

We seek for a clustering method that combines geometric and dynamic aspects. To do so

a suitable decomposition of the position space Ω is needed. In the literature (e. g. Ref. [3]),

a discretization of Ω into Voronoi cells is used to compute transition probabilities between

different subsets of the position space. However, for our purposes such a discretization is

not sufficient, since only the dynamic aspects are mirrored, whereas the geometric aspects

are unaccounted. This is possible, if the discretization of the position space Ω is not based

on sets but on membership functions having values between zero and one and thus allowing

for the computation of an overlap matrix providing the geometric information.

Let us consider a canonical ensemble (constant number of particles, constant volume and

constant temperature), where, the positions q and the momenta p of all atoms are given

according to the Boltzmann distribution:

π(q, p) ∝ exp(−βH(q, p)).

Here β = 1/kBT is the inverse temperature T multiplied with the Boltzmann constant kB68

and H denotes the Hamiltonian function which is given by H(q, p) = V (q) + K(p), where69

V (q) is the potential andK(p) is the dynamic energy. The canonical density can be split into70

a distribution of momenta π(q) and positions η(p) where π(q) ∝ exp(−βV (q)) and η(p) ∝71

exp(−βK(p)). In the forthcoming we assume, that the states {qi}i stem from a molecular72

dynamics simulation (trajectory) being π distributed.73

For the discretization step, we use n radial basis functions with nodes {q̂1, . . . , q̂n} with74

the Gaussian similarity measure exp(−α d(i, j)2) where the parameter α controls the width75

of the neighborhoods and d(i, j) = ‖qi − qj‖l2 =
√∑d

k=1(qik − qjk)
2. Following the partition76

of unity method of Shepard [21] we obtain:77
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ϕi(qk) =
exp(−α d(qk, q̂i)

2)∑n

j=1 exp(−α d(qk, q̂j)
2)
, i = 1, . . . n. (1)

The basis functions can be interpreted as membership functions since they are non-negative

ϕi(q) > 0, ∀q ∈ Ω, i = 1, . . . , n (2)

and form a partition of unity

n∑

i=1

ϕi(q) = 1, ∀q ∈ Ω. (3)

The basis function ϕi can be interpreted as a relaxation of a Voronoi cell with center at q̂i.

In the limit case as α→ ∞ the Voronoi discretization is recovered. The shape parameter α

determines the overlap Mij between two basis functions ϕi and ϕj defined as

Mij :=

∫
Ω
ϕi(x)ϕj(x)π(x)dx∫
Ω
ϕi(x)π(x)dx

≈

∑N

k=1 ϕi(qk)ϕj(qk)∑N

k=1 ϕi(qk)
=: K

(0)
ij . (4)

The larger α, the smaller is the overlap, as illustrated in Fig. 2. The example is based78

on a small, artificial 2-dimensional (2D) data set that is partitioned by two basis functions79

depending on different α values. The left part shows how points in-between the two partitions80

share their membership and thus create an overlap between the two soft partitions, indicated81

by the orange color. In the middle we show how the partition with large α becomes almost82

characteristic (Voronoi cells). According to the colorization of the data points, we have a83

very distinct separation and thus only a very small overlap. In the right panel of the figure84

one can see the partitioning with small α–value. Consequently, all data points have almost85

the same membership values for both clusters, indicated by the same color orange.86

In the context of geometric clustering the membership values of the basis functions rep-

resent the similarity of the given data point qk to the current representative node q̂i with

respect to the similarity to the rest of the nodes, i.e. for each state q ∈ Ω we calculate the

relative similarity to all nodes {q̂1, ..., q̂n} (see Sec. 1). Instead of seeking for a dynamic

similarity only, by using a Voronoi discretization, we introduce the dynamic similarity which

accounts for the geometric as well as dynamic aspects between the different states. Before

we explain our similarity indicator, we need to introduce a time discretization parameter τ .

Now and in the forthcoming we assume that the states qi are given by a classical molecular
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FIG. 2. Soft partitioning of a small, artificial data set by two membership functions. The center

nodes q̂1 and q̂2 of the corresponding membership functions ϕ1 and ϕ2 are depicted only in the

left picture as black crosses, but have the same position in all three data sets. In each picture

the data points are colored by their membership to a respective partition. Red for the upper left

partition and yellow for the lower right partition, orange for intermediate cases. From left to right:

α = 2, 100, 0.1

dynamics trajectory of a system, that is a sequence of points in the phase space which are

connected in time with a time step h (typically in the order of femtoseconds). By choosing

τ = ñh , ñ ≫ 1 we do not consider each state of the trajectory but only every ñth step.

Analogously to (4) we now can define the dynamic similarity as K
(Lτ)
ij between two basis

functions ϕi and ϕj for a time lag Lτ as

K
(Lτ)
ij :=

∑N

k=1 ϕi(qk)ϕj(qk+L)∑N

k=1 ϕi(qk)
, (5)

where qk is the k-th state of the system and qk+L is the (k + L)-th state of the molecular87

system. This indicator considers the similarity of basis functions. More precisely it is an88

estimate of the overlap between two basis functions. By normalization the matrix K(Lτ)
89

is stochastic and thus the entries K
(Lτ)
ij are bounded by 1. We now employ K(Lτ) as a90

refinement indicator in the following adaptive scheme.91

III. ADAPTIVE ALGORITHM AND TRANSITION MATRIX92

Since we use global basis functions, any initial partitioning covers the complete state space93

Ω. In order to use as few basis functions as possible, the nodes should be located only in the94

relevant parts of the object space, i.e., parts where many data objects are located. However,95

it is not possible to separate two different metastable sets in the process of clustering if96
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they are covered by only one basis function. Therefore all relevant parts of the object space97

(i.e. all clusters/metastabilities) must be covered sufficiently. That means, we want to avoid98

partitions that are99

• redundant: strongly overlapping basis functions, since they share the same substruc-100

ture,101

• uninformative outsiders: small separated basis functions, which contain only a very102

small amount of data points and have a poor overlap with other partial densities.103

With the following locally adaptive partitioning algorithm we aim to improve the initial104

selection of nodes and thus find an optimal soft partition of the object space. The main idea105

is to check each local basis function for the existence of further metastabilities and, if found,106

to refine the basis function by adding a user-defined number of s nodes that represent the107

metastable sets.108

For one specific basis function ϕi, the algorithm has the following structure.109

1. Select all states qj with ϕi(qj) > ϕt(qj) ∀t 6= i.110

2. Perform the k-means algorithm with s clusters on the selected objects: Choose k

cluster C = {C1, . . . ,Ck} which minimize

k∑

j=1

min
q̄∈Ω

∑

qa∈Cj

‖qa − q̄j‖.

Select the states nearest to the k computed centroids {q̄1, ..., q̄k} as new temporal nodes111

{q̃i1, . . . , q̃is} (Trials for the center of new basis functions.).112

3. Compute the dynamic similarity matrix K(Lτ) (5) based on the temporal set of basis

functions {ϕ̃i1, . . . , ϕ̃is} with

ϕ̃il(qk) =
exp(−α d(q̃il, qk)

2)∑s

j=1 exp(−α d(q̃ij, qk)
2)
, l = 1, . . . k.

4. Select from the trial nodes the ones for which

K
(Lτ)
ii > ρ, 1− ε ∼ ρ < 1, i = 1, . . . , k.

where ε > 0 close to zero.113
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5. Replace the primal center node qi of the basis function ϕi, by all accepted trial nodes.114

After a successful iteration, the complete partitioning is recomputed based on the updated

list of nodes, and the above algorithm is applied again to all newly added basis functions.

The iteration continues until no new basis functions are added. The resulting transition

probability matrix K(Lτ), can now be used to detect metastabilities in the set of basis func-

tions, i.e. calculating a coarse grained transition probability matrix Pc by applying spectral

clustering (PCCA+) as described in Section IV. We would like to give some detailed com-

ments on the proposed algorithm. If there are metastabilities within the basis function,

k-means will probably deliver center points in different metastable regions. It might hap-

pen that the points selected by the k-means routine represent molecular configurations with

low statistical weights. Therefore, the objects closest to the selected k-means center points

are selected as nodes for the temporal basis functions. Therefore it remains to be checked

whether the clusters proposed by the k-means algorithm really separate different metastable

sets. The k-means algorithm will always deliver a local partitioning into s clusters indepen-

dent of the actual amount of metastabilities covered by the basis function. Only in this case

the basis function will be refined. For this purpose, we consider the dynamic similarities

between the temporal basis functions. A new node qil generated by the k-means algorithm

will be only accepted if it’s temporal basis function has a self similarity larger than a certain

threshold ρ.

To show the influence of the threshold ρ on the number of basis functions, we performed

simulations on another synthetic 2D data set with three different thresholds (Fig 3). The

closer ρ approximates one, the fewer basis functions are needed and the increase of the num-

ber of basis functions is smaller than for lower thresholds.

In order to interpret the entries of matrix KLτ as transition probabilities we have to

minimize the overlaps between the basis functions (Voronoi tessellation). This can be ac-

complished by setting α→ ∞ such that each basis function ϕi becomes an indicator function

,i.e. ϕi = 1Ai
where

1Ai
(q) :=





1 if q ∈ Ai

0 otherwise
.

Thus the set Ai corresponds to basis function ϕi. This allows us now to compute the

transition probabilities independently of the shape parameter α which leads to the (set
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FIG. 3. Left: Data set partitioned with three different thresholds. Black crosses are the center

nodes of the basis functions. For threshold ρ = 0, 5/0.75/0.9 we obtained 17/11/7 partitions.

Right: Number of basis functions in dependence of the number of iterations.

based) transition probability matrix P τ
ij :

P τ
ij ≈

#[qk ∈ Ai, qk+1 ∈ Aj ]

#[qk ∈ Ai]
, i, j = 1, . . . N. (6)

On the basis of matrix P τ we are now in a position to describe the metastabilities as linear

combination of the basis functions {ϕi}i, i.e. each metastability CJ as a linear combination

of the basis functions {ϕi}
n
i=1:

CJ(q) =

n∑

i=1

GiJφi(q), J = 1, ..., nc. (7)

The matrix G relates the basis functions {ϕi}i to the conformations (CJ)J , i.e. we seek for

a linear combination of the coefficients gJ = [G1J , G2J , ..., GnJ ] such that the dynamics of

the system shows a metastable behavior. More precisely, the metastability criterion can be

given by

P τgJ ≈ gJ . (8)

9



FIG. 4. Eigenvectors (a1, ..., a1, b1, ..., b1, ...)
T , (a2, ..., a2, b2, ..., b2, ...)

T ... of the transition matrix

P . The rows of these eigenvectors (a1, a2, a3, ...), (b1, b2, b3, ...) are piecewise constant and can be

interpreted as vertices of a simplex.

IV. SPECTRAL CLUSTERING BY PCCA+115

Having introduced the description of the metastable sets as linear combinations of the116

sets {Ai}i by (7) and the metastability criterion by (8), we now aim at a coarse grained117

matrix PC giving the transition probabilities between the metastable sets, which can be118

described as a linear combination of the (Ai)i . In earlier works, e.g. [22], the degree of119

membership of each set (Ai) to a metastable state was confined to either one (membership)120

or zero (no membership). This condition could be relaxed [6] and is briefly presented in the121

following.122

In case of a decomposable Markov chain or, equivalently, a disconnected similarity graph,123

an appropriate permutation of objects according to their connectedness results in a block-124

diagonal matrix P τ with nC blocks. This matrix has an nC-fold eigenvalue λ = 1. The125

corresponding eigenvectors X = [x1, . . . , xnC
] are piecewise constant on the blocks and can126

thus be used to identify the clusters. In fact, the rows of X can be considered as vertices of127

an (nC −1)-dimensional simplex. Every object can be assigned to one of the nC vertices and128

thus to one of the nC clusters (cf. [6]). Generally, the matrix P τ constructed from practical129130

data is not decomposable. However, if there are nC hidden clusters, P has a cluster of131

eigenvalues 1 = λ1 > λ2 > . . . > λnC
> 1− ε near the Perron eigenvalue λ1 = 1 [6, 23].132

The rows yi of the corresponding eigenvectors still nearly form a simplex. Since the133

first eigenvector is always constant, the rows can be considered as vertices of a (nC − 1)-134
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dimensional simplex, cf. Fig. 4.135

The goal of PCCA+ is to identify the vertices of a simplex σnC−1 such that all points yi136

are located within the simplex. Then every point yi can be assigned to one of the nC vertices137

and thus to one of the nC clusters by a certain membership vector gJ = [G1J , ..., GnJ ] .138

The identification of such a simplex is equivalent to finding a non-singular transformation

matrix A such that

G = XA

and139

(1a) Gij ≥ 0 ∀i ∈ {1, . . . , n}, j ∈ {1, . . . , nC}140

(positivity),141

(1b)
∑nC

J=1GiJ = 1 ∀i ∈ {1, . . . , n}142

(partition of unity).143

Among the feasible transformation matrices we search for a matrix A such that the resulting

membership vectors gI are as metastable as possible. Metastability is expressed by the fact

that the diagonal elements of PC are as close as possible to 1 (the probability to leave a

metastable set, given by the sum of the off-diagonal elements, is as low as possible). It has

been shown that instead of maximizing the metastability a maximization of the crispness of

the membership functions is also possible [24]. This aims at a clustering which also allows for

an interpretation of PC as a Markov Chain. Crispness means that the columns {G:j}j=1,...,n

should be as close to indicator vectors as possible (crispness). We can measure this crispness

by

I(A;X, π) =
1

nC

nC∑

I=1

〈gI , gI〉π
〈gI , e〉π

≤ 1, (9)

where e denotes the vector with all entries equal to 1. The closer I(A;X, π) to one the more

crisp is the decomposition into metastabilities. In the PCCA+ algorithm this is achieved by

maximizing the objective function I(A;X, π). One has to maximize a convex function with

linear constraints, which is not a trivial task. However, the optimization problem can be

solved by the Nelder-Mead [25] algorithm provided that a good initial guess forA is available.

This starting guess is obtained by the inner simplex algorithm as described in [26]. Once the

membership functions gi have been computed, one can compute a coarse grained transition
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probability matrix Pc by projecting the original matrix P τ onto the metastabilities [27],

Pc = (G⊤πDG)
−1G⊤πDPG = A−1ΛA, (10)

where πD denotes a diagonal matrix with the vector π on the diagonal and Λ denotes a144

diagonal matrix with the eigenvalues λ1, . . . , λnC
on the diagonal. The matrix Pc is not145

necessarily a stochastic matrix because it can get negative entries when the membership146

functions χi are far from being characteristic. However, Pc has row sum one and is the147

correct propagator for densities restricted to the metastabilities [27]. In contrast to P τ ,148

a set-based transition matrix Pc preserves the Markov property in a “better way”: Under149

the assumption that the trajectory reaches equilibrium within a conformation (metastable150

subset) before exiting from it, the probabilities of transitions to any other conformation151

is independent of all but the previous conformation, i. e., there is no memory of earlier152

conformations. Only if this condition is met, the dynamics can be modeled by a Markov153

chain which allows for long time simulations [15, 28–31]. For critical remarks on the validity154

of such models see Ref. [32].155

Since the number of clusters nC is unknown in advance, it is recommended to run the156

cluster algorithm several times with different input values for nC and to choose the “best”157

solution. Since I(A;X, π) ≤ 1, we choose the number nC for which I(A;X, π) is maximal.158

V. EXAMPLE159

A. Geometric Clustering of Simple 2D Examples160

A common practice to characterize newly derived clustering algorithms is to use simple161

two-dimensional data sets. In contrast to complex high-dimensional data sets, artificial162

2D examples can be directly represented in terms of two dimensional scatter plots, which163

is particularly useful for the comparison of different cluster algorithms. To evaluate the164

presented adaptive spectral clustering (ASC) algorithm we applied it to several classification165

problems and compared the results with the k-means (KM) [33] and the common-nearest-166

neighbor-cluster (CNN) [34] algorithm, which is a modified variant of the Jarvis-Patrick167

algorithm [35]. It is based on the local data-point density around a certain point i. In168

contrast to the original Jarvis-Patrick algorithm, the local density is measured by the number169

of common nearest neighbors within a certain cut-off distance from that point i. All three170
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clustering algorithms have been applied with varying parameters to each of the synthetic data171

sets to gain optimal results for any of the algorithms. For the CNN, both parameters, the172

nearest-neighbor-number cutoff and the nearest-neighbor-distance cutoff, had to be defined173

by the user prior to clustering. With regard to the adaptive spectral clustering, the threshold174

ρ was kept fixed at 0.9.175

We created five synthetic 2D data sets, that represent common geometrical classification176

problems. The data sets have been initially seeded with 5 nodes, and extended to 15 - 25177

basis functions by adaptive partitioning. Based on the soft partitions, the data sets were178

clustered by PCCA+. Note, that the classification of these examples is solely based on179

geometric similarity (4). A combination of dynamic and geometric similarity will be pre-180

sented in the following section when applying our algorithm to a conformational analysis181

of a tripeptide molecule. The results of each clustering algorithm applied to the test data182

sets are shown in Fig. 5. All three cluster algorithms successfully clustered the first data183

set. For the remaining ones, CNN and ASC gave similar results, whereas k-means could not184

resolve the underlying clusters.185

Obviously our adaptive spectral clustering algorithm is capable of handling typical geo-186187

metrical classification problems, like spherical shapes as well as elongated structures. More188

importantly, for all test cases our adaptive partitioning scheme decomposed the state space,189

such that all hidden clusters could by successfully identified by the subsequent clustering190

algorithm regardless of shape and structure. We thus receive a soft partition of the state191

space, that sufficiently covers all clusters/metastabilities with a minimal set of membership192

basis functions. The obtained set of basis functions can be subsequently used for geometric193

clustering, as done here with simple 2D examples; or for dynamic clustering as discussed194

in Sec. III and exemplified in the next section. Thereby, the clustering is performed on195

n << N basis functions, instead of a complete similarity matrix N × N , that is typically196

needed for spectral clustering, with N and n being the number of states and basis functions,197

respectively, c.f. Eqs. (1) - (4). Hence, the adaptive spectral clustering has a significantly198

reduced computational complexity, while obtaining the same or even slightly better results199

compared to other established clustering methods, like k-means or CNN.200
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FIG. 5. Results of three different clustering algorithms on various sets of 2D test data. Left:

k-means (KM). Middle: common-nearest-neighbor (CNN). Right: adaptive spectral clustering

algorithm (ASC) based on geometric similarity. The color of the data points indicates the assigned

cluster memberships. Note that for ASC the color of the points indicates the cluster with the

highest degree of membership.
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B. Application: Conformations of model tripeptide201

a. Choice of model system. As another application of the clustering algorithm, we202

study the conformational dynamics of ZAibProNHMe (benzyloxycarbonyl–aminoisobutyryl-203

L-prolyl-methylamide) tripeptide molecule (see Fig. 6) as a model system for the adaptive204

algorithms introduced above. For this molecule a relation between the conformational struc-205

tures and their mid–IR spectra has been established previously by means of density func-206

tional theory (DFT) and normal mode calculations [36, 37] and also preliminary work on207

adaptive spectral clustering has been published in [38]. In addition, the reason for this choice208

is that sequences of the rare amino acid Aib (α aminoisobutyric acid) and Pro (proline) are209

of considerable pharmaceutic interest as β sheet breakers in antibiotic peptides [39, 40]. For210

example, an Aib-Pro sequence occurs at the amino terminal of alamethicin, an antibiotic211

produced by trichoderma fungui, which can act as a voltage-dependent ionophore in cell212

membranes. Aib-Pro sequences are also found in other peptaibols which are used to reduce213

bacteria and fungal plant pathogens in the soil [41]. The combination of the two methyl214

groups (in Aib) and the steric restrictions introduced by the pyrrolidine ring (in Pro) cause215

a strong competition between γ (C7 ring) and β (C10 ring) turn structures in ZAibProNHMe216

[39], see Fig. 6, which are found at similar energies [36–38].217
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FIG. 6. Primary structure of ZAibProNHMe model peptide including definition of dihedral angles.

[37]

b. Minimum energy structures In the present work the ZAibProNHMe peptide in218

vacuo is modeled in terms of the MMFF force field [42, 43]. The parameterization is achieved219

with the help of the tool EPOS, which is a part of the amiraMol libraries [44]. As a first220

step to characterize the conformational landscape, minimum energy structures have been221

obtained using the conjugate gradient method [45], starting from the minimum energy con-222
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formations of our previous DFT calculations [37]. Our results are given in Tab. I where we223

use the notation of Refs. [36, 37]. The γ (A) and β (I, II’) turn structures differ mainly224

in the ψ2 angle while up- and down-puckering of the pyrrolidine ring (U, D) can be distin-225

guished from the values of the angles χ1, χ2. Furthermore, the various A structures (A1,226

A2, ...) differ essentially in their Aib orientations specified by torsion angles φ1, ψ1 where227

primed and unprimed structures denote sign changes of those angles. All major classes of228

conformations found in our previous quantum chemical DFT based calculations (see Tab. I229

and supplementary material of Ref. [37]) also represent local minima of the MMFF model,230

with very similar values of the dihedral angles. Even the relative energies are in most cases231

within a few kJ/mol from the previous DFT results, as indicated in the last column of Tab.232

I. Notable exceptions are the II’bU and the A3bU, A5bD, A5’bD, and A6’bD structures233

where the MMFF energies are more than 10 kJ/mol higher than the corresponding DFT234

values. Of particular importance is a rather broad basin encompassing A1bD, A2’bD, IbU,235

and IbD conformations, the first and last of which represent the global minima of the DFT236

and MMFF potential energy surface. Within that basin, interconversion between γ and β237

turn structures is expected to accessible at relatively low energies. In addition to the A-type238

conformers with all peptide bonds being in trans position, also D-type conformers with the239

three ω angles being cis-trans-cis are found in our T = 900 K trajectory discussed below.240

They are not included in our Tab. I because all φ, ψ Ramachandran angles deviate by no241

more than a few degrees from those of the corresponding A-type structures.242

c. Clustering of trajectory data The clustering methods introduced in the previous243

sections shall be illustrated here for a molecular dynamics simulation of the ZAibProNHMe244

model peptide. To this end, a 39 ns trajectory is generated using the ZIBgridfree software245

package [46]. The size of the time step is h = 1.3 fs and we use every 60th step of the246

trajectories in the further data processing, i.e. τ = ñh = 78fs. We employ the Nose-247

Hoover algorithm [47, 48] to approximately sample a canonical (NV T ) ensemble for T =248

900 K. While we are aware that this temperature is not realistic in peptide chemistry we249

have chosen this rather high value because the barriers between different conformations250

of a peptide are typically much higher in the gas phase than in aqueous solutions. In251

addition, when comparing with our 600K trajectory (not shown here) we found that the252

900K simulation displays not only more conformational freedom but also a richer hierarchy253

of conformations which renders this case more challenging for our clustering algorithms.254
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Conformation φ1 ψ1 φ2 ψ2 χ1 χ2 ∆EMMFF ∆EDFT

A1bD 176 174 -80 75 30 -38 2.2 0.0

A2bD 60 46 -81 76 30 -38 3.9 2.9

A2’bD -58 -44 -80 72 34 -36 0.1 1.9

A2’bU -60 -41 -74 77 -11 30 10.5 1.7

A3bD 70 -167 -81 72 34 -36 12.4 9.9

A3bU 70 -167 -75 76 -13 31 24.3 13.1

A3b’D -73 169 -81 75 31 -37 10.1 11.8

A4bD -172 52 -79 73 31 -39 6.3 11.0

A4b’D 173 -52 -79 76 30 -38 7.0 10.2

A5bD 77 -101 -83 68 34 -38 28.5 13.1

A5b’D -75 110 -81 76 32 -37 26.7 11.5

A6bD -139 53 -79 77 30 -38 12.7 10.9

A6b’D 118 -50 -81 75 33 -36 22.8 11.8

IbD -56 -40 -81 -9 32 -37 0.0 1.9

IbU -57 -34 -69 -24 -22 36 2.9 2.2

II’bD 72 -169 -83 51 36 -37 12.9 11.7

II’bU 65 -149 -69 -18 -28 37 24.3 15.5

TABLE I. Minimum energy structures for ZAibProNHMe model tripeptide from MMFF force

field: Dihedral angles (φ,ψ, χ in degrees) and relative energies (∆E in kJ/mol). An (n = 1, 2, . . .,

indicating different Aib orientations) are all–trans (ω0,1,2 ≈ 180) conformations of γ turn structures,

where the prime denotes an inversion of the signs of φ1 and ψ1. Classes I and II’ are β turn

structures. U,D indicate up- and down puckering of the Pro ring. In all cases, the Z–cap is in b

orientation. For comparison, DFT results from Ref. [37] are shown in the last column.

The clustering techniques are applied to the time series of the six torsional coordinates255

ω0, φ1, ψ1, ω1, ψ2, ω2, see Fig 6. We omit here the Z–cap orientation as well as the ring256

puckering, are chemically relevant partly to keep our model calculations not unnecessarily257

complicated, but also because these degrees of freedom are essentially independent of the258

other backbone torsional angles, see our previous work [37]. Furthermore, it is noted that259
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φ2 is essentially blocked inside the Pro ring, see Fig. 6.260

The extraction of torsional angles from the molecular trajectory and the subsequent261

analysis by means of adaptive, spectral clustering has been carried out by our software262

package ”MetaStable” which is available via the SourceForge web site [49]. In the first step263

we examined the influence of the threshold ρ (section III) on the number of basis functions264

for the 900 K trajectory by setting the maximum number of iterations to three and observing265

the number of basis functions (Fig 7). We started with 40 seed nodes in a Voronoi tessellation266

and used a time lag of Lτ = 20 × 78 fs. As expected, the lower threshold leads to more267

basis functions which is in good agreement with the results from section III. As can be seen268

in the Figure 7 altering the threshold from 0.4 to 0.5 reduces the number of basis functions269

drastically, since with larger threshold the criterion for generating a new function becomes270

more demanding. We also computed the second largest eigenvalue of the transition matrix271

Pc, as an indicator for the inherent slowest time scale in the dynamics. No clear trend of272

increasing or decreasing of λ2 in dependence of the threshold or number of basis functions273

could be observed. However, the second largest eigenvalue decreases with longer lag time274

Lτ as shown in Figure 7. This result is in good agreement with theory since for a lag time275

which equals the original time step τ of the trajectory, each state would be a metastable276

state and thus λ2 = 1.277
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FIG. 7. Left: Log of the second largest eigenvalue of the transition matrix of ZAibProNHMe

according to the time lag Lτ . The slope of this graph is the implied time scale of the system,

which is about 230 ps. Right: Comparing the threshold ρ with the number of basis functions for

ZAibProNHMe at 900 K with 40 initial seeds and a time lag Lτ = 20× 0.078ps.

In the second step, the spectral clustering technique is applied to approximately deter-278

mine the eigenvectors of the transfer operator and hence detect the metastable regions of the279
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conformational space spanned by the ZAibProNHMe torsion angles. Here we use a partition-280

ing of the peptide’s conformational space generated for a time lag of Lτ = 64×0.078 ≈ 5 ps.281

Starting from 42 initial Voronoi seed functions, the basis is adaptively refined leading to 153282

basis functions after 3 iteration steps. Subsequently, we perform the metastability analysis283

by means of the PCCA+ technique. The spectrum of the corresponding transition matrix284

Pτ is shown in the upper part of Fig. 8. The second eigenvalue, λ2 = 0.97887, implying285

a time scale of 234 ps, characterizes the slowest dynamics. Separated by a small spectral286

gap, the following eigenvalues λ3 . . . λ9 are found between 0.92 and 0.72, with time scales287

between 60 and 15 ps. After another small gap, the eigenvalues λ10 . . . λ17 are lying between288

0.67 and 0.56, with time scales between 12 and 9 ps. After yet another, very pronounced289

gap, the remaining eigenvalues are below 0.4, with time scales of 5 ps and below.290

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

ei
ge

nv
al

ue
s 

λ i

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

cr
is

pn
es

s 
I/k

number of clusters

FIG. 8. Spectral clustering of 900K / 39 ns trajectory for ZAibProNHMe peptide by PCCA+

technique. Upper part: Spectrum of transition matrix PC . Lower part: Objective function /

crispness of decomposition into metastable sets. For clarity, only the first twenty states are shown.

Next, we consider the metastability criterion i.e. the objective function I(A;X, π) versus291

number of clusters, cf. (9). It can be seen that this indicator has a decreasing tendency.292

The two local maxima at nC = 10 and nC = 17 are based on the fact, that a decomposition293

into nC = 9 or nC = 13, 14, 15 appears to be unfavorable. Note that the maxima of the294

objective function are approximately (but not exactly) coinciding with the spectral gaps295

mentioned above. First, let us consider the case of two clusters which represents the most296
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metastable decomposition. Inspection of the time series of the torsional coordinates reveals297

that in the major cluster all three peptide bonds are in trans position, ω = ±180 deg,298

corresponding to the all–trans structures of class A and I listed in Tab. I. The minor cluster299

contains class D conformations where the first and third peptide bonds are in cis position,300

ω0 ≈ ω2 ≈ 0, ω1 ≈ ±180 deg. Note that these conformations do not play a role for peptides301

at room temperature but are found here due to the rather high temperature (T = 900302

K) of our test calculations. The weights of the two clusters are 0.887 and 0.113 which303

corresponds to a free energy difference of about 15 kJ/mol (by simple Boltzmann inversion).304

The lifetimes of the type D structures are on the order of a few 100 ps, thus qualitatively305

agreeing with the implicit time scale inferred from the second eigenvalue of the transition306

matrix. When choosing a decomposition into three clusters, the type D cluster splits up into307

two clusters with weights 0.084 and 0.029. While the former one still encompasses several,308

unresolved D structures, the latter one is essentially centered around the D2 local minimum309

energy structure (numbering of Aib orientations in analogy to that of the A structures as310

given in Tab. I). When choosing four clusters, the former D-cluster spawns off a cluster311

around the D2’ minimum, with a statistical weight of 0.012 only. When further increasing312

the number of clusters, also the major cluster encompassing the all–trans structures decays313

into sub-clusters.314

A typical case is the result for 10 clusters given in Fig. 9 where histograms of the most315

important dihedral angles (ω0, φ1, ψ1, ψ2) of the peptidic backbone are shown. As can be316

seen from the distribution of ω0 angles in the upper part of the figure, the five leading (and317

the tenth) clusters have all their peptide bonds in trans positions while for the remaining318

ones ω0 (as well as ω2, not shown) are in cis position. Their weights sum up to 0.889 and319

0.111, almost in coincidence with the results for only two clusters, which again confirms320

that the trans(A)–cis(D) flipping of the planar peptide bonds arrangements gives rise to the321

main metastability, i. e., the one with the longest implicit time scale. The lower part of Fig.322

9 reveals that all ten clusters exhibit rather broad distribution of ψ2 angles, encompassing323

both the regimes around ψ2 ≈ 80 (γ turn, type A, D) and ψ2 ≈ 0 (β turn, type I) so324

that these classes cannot be uniquely resolved on the basis of the present clustering of325

the torsional degrees of freedom. However, cluster #5, preferentially (but not exclusively)326

located in the type I regime, presents the only exception. In contrast, the assignment of the327

cluster memberships based on the Ramachandran angles φ1, ψ1 is essentially clear. While328
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the leading all–trans cluster #1 is still delocalized, clusters #2, #3, #4 can be assigned to329

A2’, A4’ and A2 structures, respectively, where #2 appears to contain also type I structures.330

This observation that A2’ and I cannot be clearly distinguished in our clustering procedures331

is in agreement with the broad basin and low barriers in the potential energy surface [37].332

A similar picture arises for the cis structures (type D). While cluster #6 corresponds to an333

unresolved mixture of several D structures, it is straightforward to assign clusters #7, #8,334

#9 to minimum energy structures D2, D4’, and D2’, respectively.335
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FIG. 9. Histograms of selected dihedral angles from 900K / 39 ns trajectory for ZAibProNHMe

peptide, decomposed into 10 clusters. From bottom to top: ω0, φ1, ψ1, ψ2. Coloring indicates

membership to the clusters, with weights given in the legend.

Although not explicitly included in our metastability decomposition of the (torsional!)336

state space, it is also instructive to look at the histogram of the O–H distances characterizing337
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the formation of γ or β turns through hydrogen bonds by closing 7– or 10–membered rings,338

respectively. Fig. 10 shows that most of the ten conformations detected in the metastability339

analysis of the torsional angles display wide distributions, encompassing both H–bonded340

(≈ 0.2 nm) as well as non–bonded situations. Nevertheless, a few tendencies can be seen in341

the upper part of that figure: Out of the all–trans clusters, #2 can form β turns, while #3,342

#4 as well as the type D (cis) conformations (#6...#9) are incompatible with this secondary343

structure element. The situation for the formation of γ turns is even less clear, see lower344

part of Fig. 10. While clusters #1...#8 do not exhibit clear preferences, only clusters #5345

and #10 are found at rather large O...H distances of 0.6 nm where H–bonding can be safely346

ruled out.347

Finally, it is mentioned that a further refinement of the decomposition beyond the case348

of ten clusters displayed in Fig. 9 and Fig. 10 does not necessarily lead to more detailed349

information. We investigated the situation for 17 clusters (local maximum of objective350

function in lower part of Fig. 8) and found an essentially unchanged picture. The important351

conformations are centered at the same potential minima as in the 10 cluster analysis, with352

the only exceptions of two new clusters centered in the A4 and D4 regions. All additional353

clusters bear statistical weights below 0.001 and are thus of no statistical significance.354

In summery, our scheme clearly reveals relations between the identified metastable clus-355

ters and minimum energy structures of the molecular system. Moreover, by changing the356

number of clusters , nC , a hierarchy of clusters has been identified. A coarse clustering only357

shows basins separated by high free energy barriers, while a fine clustering resolves more358

and more local minima of the PES.359

VI. CONCLUSION360

For high-dimensional data sets containing many single data points an adaptive clustering361

approach is proposed. This means, that the high-dimensional space is decomposed into362

subsets and these subsets are assigned to different clusters. The decomposition has to be363

fine enough to resolve the barriers between the clusters and coarse enough to provide locally364

enough statistical data to discriminate between densely populated and sparsely populated365

regions.366

The main idea of our adaptive approach is to decide, whether a given subset of the data367
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FIG. 10. Histograms of selected internuclear distances from 900K / 39 ns trajectory of ZA-

ibProNHMe peptide, decomposed into 10 clusters. O...H distance corresponding to formation
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weights given in the legend.

space has to be refined or not. Our approach is thus based on a discretization of the state368

space the main problem of which is the curse of dimensionality. While a method which,369

e. g., is based on a systematical splitting of the space along its coordinates, would suffer370

from this, our method circumvents a coordinate based splitting by using internal distances371

only. Solely the total number of sampled states, their pairwise distances, and the number372

of metastabilities determine its run time.373
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