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We study the coupling between shape changes and rotations of molecules in a random

environment. As a prototype of molecules or biopolymers that can undergo nontrivial confor-

mational transitions we consider a planar four-atomic molecule, with underdamped dynamics

of Langevin-type. In this simplified setting, we can extend the available gauge theory of semi-

flexible molecules to the stochastic setting which allows us to analyze and explain geometric

phase effects that arise from the internal motion of the molecule. Due to the stochastic nature

of the Langevin system, the internal dynamics contains temperature-dependent coriolis forces

that arise from the fluctuations of the angular momentum around its mean value zero. All

theoretical investigations are supplemented by numerical simulations, in which we specifically

investigate the dependence of the orientational shift on the parameters of the Langevin equa-

tion, i.e. friction coefficient, atomic masses, temperature, and the velocity of deformation of

the system. The numerical results confirm our theoretical findings. We further discuss various

extension of the analysis, e.g. to the overdamped limit or optimal control.

1. Introduction

Conformational transitions of molecules are essential in chemical reactions, self-
organization of nanomaterials and mechanical functions of biomolecules. Even
though significant advancements have been made in both theoretical and com-
putational methods for molecular dynamics, a quite fundamental issue intrinsic to
the dynamics of flexible bodies seems to be highly unexplored, that is, the geomet-
ric phase effect. As is known, a cat can change its orientation in space while it is
falling. This effect, known as the falling cat effect, is interesting because the cat
achieves the flip-flop under the conditions of zero total angular momentum [10].
The falling cat effect is a typical instance of the fact that changes in the shape
of a flexible body can give rise to changes in its orientation [15]. Geometric phase
effects of this kind are known in engineering and utilized in the attitude control
of mechanical systems, such as space robots and satellites [11]; similar geometric
phases are known to play a crucial role in the propulsion of micro-organisms or fishs
in fluids [17]. In terms of the conformational dynamics of molecules, however, little
attention has been paid to the role of such geometric phase effects; cf. [21, 22]. In
point of fact many methodologies of molecular dynamics try to disregard geomet-
ric phases by invoking explicit approximations or conventions, such as the Eckart
conditions [4, 18], that exclude coupling between internal vibrations of molecules
and and their orientation.
The purpose of this study therefore is to understand and quantify geometric
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phase effects in the stochastic dynamics of molecules. Specifically, we plan to ad-
dress the following questions: (1) How can we separate the shape dynamics and
rotations of molecules in solvents? (2) Can we employ symmetry reduction tools
as in geometric mechanics to obtain reduced shape dynamics? (3) Do the geomet-
ric objects on shape space known in geometric mechanics, such as curvature and
gauge potentials, play a role in the Langevin dynamics of molecules? (4) What is
the relationship between the Fixman potential and the geometry of shape space?

2. Gauge theory of semiflexible molecules in a random environment

Before we discuss stochastic dynamical properties of molecular systems, we briefly
analyze the kinematics of flexible or semi flexible (i.e. with fixed bond lengths)
molecules. Molecules can be modelled as systems of, say, n point-like particles that
interact via smooth or non-smooth potentials. If no external forces are present
all forces involved are equivariant under overall translations and rotations of the
molecule. As a consequence, of the 3n degrees of freedom that the molecule pos-
sesses, three can be eliminated on the basis of translational invariance and two
more on the basis of rotational invariance [13]. Note that, although the rotation
group is three-dimensional, the fact that rotations around the three principal axes
do not commute in general allows only for the elimination of two rotational de-
grees of freedom. A notable exception is when the molecule has zero total angular
momentum, in which case all three rotational degrees of freedom can be removed;
see [14] and the references therein.
One might be tempted to think that, because of the symmetry, rotations do not

play a role for the conformational dynamics of a molecule that involves only internal
degrees of freedom. This view is supported by the fact that the typical visualization
tool for molecular dynamics trajectories remove overall translations and rotations
by aligning the molecules with respect to their initial reference configuration, using
rigid body transformations (i.e., translations and rotations) or that some molecular
dynamics algorithms use explicit coordinate conventions by which the coupling
between internal variables and rotations and translations is removed (cf. [20]).
Nevertheless it is well-known that internal and external coordinates are coupled,
in that shape changes of a multibody system can give rise to a change of orientation
[13]. The most prominent example is the example of a falling cat that can turn itself
right-side-up as it falls, no matter which way up it was initially and without having
angular momentum.

Geometric phase and gauge potential Another example of shape-orientation cou-
pling is the semi-flexible planar molecule depicted in Figure 1, which configurations
are completely specified by the two bond angles α and β, the orientation of the
central bond with respect to one of the coordinate axes and the centre of mass;
the shape space of the molecule is the two-dimensional torus T2 = S

1×S
1. Figure

2 below shows a cyclic shape transformation of the molecule under zero angular
momentum that results in a change of orientation. The corresponding orbit in the
two-dimensional shape space is shown in Figure 3.
Let us analyze the example in detail. For simplicity we assume that the bond

lengths b > 0 between two neighbouring atoms are all equal and that all atoms
have the same mass m > 0. Without loss of generality we assume that the centre of
mass is at the origin of the space fixed coordinate system. To specify the orientation
of the molecule we introduce a body-fixed frame by an orthogonal 2 × 2 matrix
Q = (ex, ey) where the x-axis of the frame, ex, is parallel to the vector connecting
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Figure 1. Semiflexible four-atomic molecule in the plane and the coordinate and body-frame conventions

particle 2 and 3, whereas the y-axis, ey, is orthogonal to ex and centred between
atoms number 2 and 3. The positions of the four atoms with respect to the body
frame are then given by

r1 = (−b/2− b cosα, b sinα)T

r2 = (−b/2, 0)T

r3 = (b/2, 0)T

r4 = (b/2 + b cosβ, b sinβ)T .

(2.1)

The angular momentum with respect to the body frame is given by

L = Θ
�
ω +A1α̇+A2β̇

�
(2.2)

where Θ is the moment of inertia, ω = θ̇ is the angular velocity of the body frame,
with θ being the angle between the body-fixed and reference coordinate axes and

Q =

�
cos θ − sin θ
sin θ cos θ

�

(Note that ω = ey · ėx = −ėy ·ex.) With some little algebra, the coefficients A1 and
A2 of the gauge potential that will be defined later on, can be explicitly computed:

A1 =
3 + 2 cosα+ cos(α+ β)

10 + 4 cosα+ 4 cosβ + 2 cos(α+ β)

A2 =
3 + 2 cosβ + cos(α+ β)

10 + 4 cosα+ 4 cosβ + 2 cos(α+ β)
.

The condition of zero angular momentum is equivalent to the vanishing of the term
in the parenthesis in (2.2) which, using that dθ = ωdt implies that

dθ = −(A1dα+A2dβ) . (2.3)

Now suppose that c : [0, T ] → T2, c = (α,β) is a curve on the torus, i.e. in shape
space. If the curve is closed—which amounts to a cyclic shape change—we can
compute the net change of the orientation of the tetramer by integrating (2.3) over
the closed curve, say, γ = {c(t) : 0 ≤ t ≤ T, c(0) = c(T )}, i.e.,

∆θ = −
�

γ
(A1dα+A2dβ)

For the cyclic shape change depicted in Figure 3, the net change in orientation
under zero angular momentum is found to be ∆θ = 11.786◦. A series of snapshots
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Figure 2. Cyclic shape change of four atoms confined to the plane at zero angular momentum.

of the molecule is shown in Figure 2; as can be seen, the molecule rotates while
undergoing a shape transformation. That is, even though the curve may be closed
in shape space, it does not closed in configuration space.
An important aspect of our little example is that the orientational shift is a purely

geometric effect, called Berry phase or Hannay-Berry phase that is well-known in
quantum mechanics [2, 16]. It is moreover intrinsic, in that it is independent of
the choice of frame or reference configuration. Here we are interested in the case
that the molecules are embedded in a solvent of, say, water molecules that can be
described by random noise and dissipation acting on the molecule. The question
then is whether the geometric phase persists under these conditions, especially if
the noise is spatially isotropic, so that the angular momentum of the molecule is
zero on average.

2.1. Langevin dynamics of a semiflexible molecule

We go back to a generic flexible molecule, consisting of n atoms moving in a d-
dimensional configuration space where d = 2 in case of a planar molecule and
d = 3 otherwise. The phase space then is U × Rnd, with U ⊂ Rnd denoting the
nd-dimensional configuration space of the molecule. For simplicity we assume that
all particles have the same mass m > 0. Now let

H : U ×Rnd → R , H(q,p) =
1

2m

n�

i=1

|pi|2 + V (q) (2.4)

denote the system Hamiltonian where V : U → R is a smooth potential that is
bounded from below and pi ∈ Rd is the momentum of the i-th particle, conjugate
to qi. We suppose that the dynamics are governed by a Langevin equation of the
form (using the usual physics notation for Itô stochastic differential equations)

q̇i =
∂H

∂pi

ṗi = −∂H

∂qi
− γ

∂H

∂pi
+ σξi(t) , i = 1, . . . , n ,

(2.5)

where ξ = (ξ1, . . . , ξn) is nd-dimensional Gaussian white noise and γ,σ > 0 are
scalar friction and noise coefficients. Without loss of generality we assume that
σ > 0 and that 2ϑγ = σ

2 for some ϑ > 0, which implies that the unique ergodic
stationary distribution of the Langevin equation has the density

ρ(q,p) =
1

Z
exp(−ϑ

−1
H(q,p)) . (2.6)
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Figure 3. Shape transformation shown in Figure 2: closed curve on the 2-torus.

Here Z is a normalizing constant that normalizes the total probability to one:

�

U×Rnd

ρ(q,p) dqdp = 1

2.2. Coordinate expressions: Shape and rigid body motion of the tetramer

We now want to repeat the procedure discussed in the previous section for our
four-atomic model molecule for the case of Langevin dynamics, i.e., we consider
the case d = 2 and n = 4. The aim is to arrive at an explicit form of the Langevin
equation of the tetramer in terms of shape coordinates and rotation and translation
coordinates, from which one can read off the geometric phase that the molecule
undergoes during shape transformations.1

It is helpful to bear in mind that the Langevin equation (2.5) is covariant un-
der point transformations: Given a coordinate transformation F : X → Q with
q = F (x) it follows that the Langevin equation in terms of the new configuration
variables x and their conjugate momenta y is again of the form [7]

ẋi =
∂H̃

∂yi

ẏi = −∂H̃

∂xi
−

3�

j=1

γ̃ij
∂H̃

∂yj
+

3�

j=1

σ̃ijξj , i = 1, . . . , n ,

(2.7)

where H̃(x,y) is the Hamiltonian expressed in the new coordinates

x = F
−1(q) and y = (∇F (F−1(q))Tp

and γ̃ = ∇F
T
γ∇F , σ̃ = ∇F

T
σ are the new friction and noise coefficients. It can

be readily seen that the transformed coefficients satisfy

2ϑγ̃ = σ̃σ̃ . (2.8)

Note, however, that γ̃ and σ̃ may depend on the new coordinates x.
We now proceed in two steps. Firstly, we split off the translational degree of

freedom, that turns out to be irrelevant for the subsequent analysis, in a second
step we divide the phase space into rotational and shape coordinates; as one might
expect the two latter are intrinsically coupled which gives rise to a geometric phase.

1The restriction to planar molecules is to keep the notation transparent and to avoid unnecessary technical

details, such as non-canonical coordinates or anholonomic frames; see [13] for a discussion of the general

case.
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Step one: translations. To handle translations we introduce mass-weighted Jacobi
coordinates that are popular in quantum mechanics [23] and celestial mechanics [1]
and that turn out to be a convenient choice as they diagonalize the kinetic energy.
The idea is to form pairwise clusters of atoms and to use their barycentres as new
coordinates; this step is then iterated, building pairs between the barycentres and
so on. Specifically, calling G the linear transformation that defines the Cartesian
coordinates q = (q1, . . . , q4) in terms of the Jacobi vector ρ = (ρ1,ρ2,ρ3) plus the
centre of mass R, it follows that the Hamiltonian can be split according to [22]

H̃(ρ,R,π,P ) =
1

2M
|P |2 + 1

2
|π|2 + Ṽ (ρ) ,

where Ṽ (ρ) = V (G(ρ,R)) is the potential expressed in the Jacobi coordinates and
M is the total mass. In our the case the first three mass-weighted Jacobi vectors
and the centre of mass read

ρ1 =

�
m

2
(q2 − q1)

ρ2 =

�
m

2
(q4 − q3)

ρ3 =
√
m

�
1

2
(q1 + q2)−

1

2
(q3 + q4)

�

R =
q1 + q2 + q3 + q4

4
,

and it can be readily checked that, with this choice of coordinates, the translational
motion separates from the rest of the Hamiltonian, and thus can be ignored in
the following. Transforming noise and friction coefficients is now straightforward:
Letting J ∈ R4×3 denote the constant Jacobian of the linear map ρ �→ G(ρ, ·), and
noting that JT

J = m
−1Id3×3 we have

γ̃ =
γ

m
, σ̃ =

σ√
m

In terms of the Jacobi coordinates ρ = (ρ1,ρ2,ρ3) and their conjugate momenta
π = (π1,π2,π3), the Langevin equation reads

ρ̇i =
∂H̃

∂πi

π̇i = −∂H̃

∂ρi
− γ̃

∂H̃

∂πi
+ σ̃ξi , i = 1, . . . , 3 ,

(2.9)

where

H̃(ρ,π) =
1

2
|π|2 + Ṽ (ρ)

is the original Hamiltonian without the translational part.

Remark. In general the fact that the Hamiltonian can be separated does not imply
that friction and noise coefficients are block diagonal or even diagonal, i.e., the
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centre of mass motion can still be coupled to the other degrees of freedom via
friction and noise. This is the case when not all atomic masses are equal, even
though γ,σ in the Langevin equation (2.5) are scalar. That is, even though the
transformation to Jacobi coordinates removes the masses from the kinetic energy
of the Hamiltonian, it renders potential energy and the dissipative forces to be
mass dependent. But as the coupling between the centre of mass and the three
Jacobi vectors is linear, the mean value of the linear momentum P associated with
the centre of mass is zero in equilibrium, and it is always safe to ignore its motion.1

Step two: shape coordinates and rotations. In general it requires 3n − 6 coor-
dinates to specify the shape of a fully flexible n-atomic molecule. In our case we
assume that the bonds are rigid and that the molecule is confined to the plane,
leaving 5 degrees of freedom in total (2 shape coordinates, 2 for translation, 1
for rotation). Ignoring translations, we have only 3 degrees of freedom left, and
we can fully specify the Jacobi vectors ρ1, . . . ,ρ3 by the two shape coordinates
s = (α,β) and the orientation θ. We adopt the following convention and express
any configuration of our molecule by

ρi = Q(θ)ρ̃i(s) , i = 1, 2, 3 ,

where Q is a 2 × 2 rotation matrix that specifies the relative orientation θ of the
body frame, and ρ̃ is the collection of Jacobi vectors in the body fixed frame, i.e.,

ρ̃1 = b

�
m

2
(cosα, − sinα)T

ρ̃2 = b

�
m

2
(cosβ, sinβ)T

ρ̃3 = b
√
m

�
−1− 1

2
(cosα+ cosβ),

1

2
(sinα− sinβ)

�T

(2.10)

Hamiltonian in shape and rotation coordinates. To derive the Langevin equation
in shape coordinates, we need a coordinate expression of the Hamiltonian. To this
end, we note that1

ρ̇i = Q̇ρ̃i +Q∇ρ̃iṡ ,

or, in the body frame,

Q
T ρ̇i = ω × ρ̃i +∇ρ̃iṡ .

In the last line, we have introduced [ω×] = Q
T
Q̇ = −Q̇

T
Q, ω = (ω,ω)T as the

skew-symmetric 2× 2 matrix defined by

[w×] =

�
0 −w1

w2 0

�
,

1More precisely, given that 2ϑγ̃ = σ̃σ̃ we have E[P ] = 0 where E[·] is the expectation over all realizations

of the driving white noise process. As a consequence, E[R] is a conserved quantity.
1In the usual abuse of notation, we denote velocity vectors by an overdot, i.e., vρ = ρ̇
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where the skew-symmetry is implied by the fact that Q
T
Q = I. Note that, by

definition, [w×]v = w × v is the cross product between two vectors w,v ∈ R2.
To proceed it is convenient to express the total energy in terms of positions and
velocities, rather than positions and momenta. We find2

E =
1

2

3�

i=1

|ρ̇i|2 + Ṽ (ρ)

=
1

2

3�

i=1

�
∂ρ̃i

∂sk

∂ρ̃i

∂sl
ṡkṡl + 2(ω × ρ̃i)

T (∇ρ̃iṡ) + |ω × ρ̃i|2
�
+ Ṽ (s)

=
1

2

3�

i=1

�
∂ρ̃i

∂sk

∂ρ̃i

∂sl
ṡkṡl + 2(ω × ρ̃i)

T (∇ρ̃iṡ) + |ω × ρ̃i|2
�
+ Ṽ (s)

=
1

2

3�

i=1





∂ρ̃i

∂sk

∂ρ̃i

∂sl
ṡkṡl + 2ωT

2�

j=1

ρ̃i ×
�
∂ρ̃i

∂sj

�
ṡj + |ω × ρ̃i|2




+ Ṽ (s)

=
1

2
ṡ
T
G(s)ṡ+ ωBṡ+

1

2
Θω

2 + Ṽ (s)

where we have used the convention Ṽ (ρ) = Ṽ (s, θ) = Ṽ (s) and introduced the
shorthands G = (Gij)ij=1,2, B = (B1, B2) and Θ > 0 with

Gij =
3�

k=1

�
∂ρ̃k

∂si

�T
∂ρ̃k

∂sj
, Bi =

2�

l=1

3�

k=1

ρ̃k,l ×
�
∂ρ̃k,l

∂si

�
, Θ =

3�

k=1

|ρ̃k|2

Note that the total energy depends on θ only via the angular velocity ω = θ̇. For
reasons that will become clear in a second it is now convenient to introduce the
gauge potential A = (A1, A2) by A = Θ−1

B and define the 3× 3 metric tensor

g =

�
G A

TΘ
ΘA Θ

�
=

�
1 0
A 1

�T �
C 0
0 Θ

��
1 0
A 1

�
. (2.11)

Here C = G − A
TΘA is the intrinsic shape space metric; it is intrinsic in that it

does not depend on how the body frame is attached to the molecule, a property
sometimes referred to as gauge independence [13]. The total energy now is

E =
1

2
ṡ
T
C(s)ṡ+

1

2Θ
L
2 + Ṽ (s) , (2.12)

with L = ω+Aṡ being the angular momentum with respect to the body frame, in
accordance with (2.2). Notice that under the condition of zero angular momentum,
L = 0, the total energy still depends on the moment of inertia Θ via the shape
space metric C.
The Hamiltonian can now be easily computed. Defining the conjugate momenta

2Note that |ρ̇i|2 = |QT ρ̇i|2, i.e., the kinetic energy is the same in the body frame or in the lab frame.
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(u, η) to shape coordinates s and the angle θ in the canonical way,

u =
∂E

∂ṡ
, η =

∂E

∂ω
,

and using the factorization (2.11),

g
−1 =

�
1 0
−A 1

��
C

−1 0
0 Θ−1

��
1 0
−A 1

�T

,

we find

H̃ =
1

2
(u−A

T
L)TC−1(u−A

T
L) +

1

2Θ
L
2 + Ṽ (s) , (2.13)

where we have taken advantage of the fact that the angular momentum L is indeed
the conjugate momentum to θ, i.e., it holds that L = η.

Remark. When the configuration space is 3-dimensional, i.e. when d = 3, a popu-
lar choice for describing the overall orientation of the molecule is in terms of Euler
angles. There are two problems with this choice: firstly, the angular momenta are
not conjugate to the Euler angles, secondly, Euler angles lead to singularities in the
parameterization of the rotation group (as any other 3-dimensional global param-
eterization). As fas as we know, the problem of non-conjugacy cannot be avoided,
which, however, is mainly a problem for the physical interpretation of the falling
cat effect, rather than for its mathematical analysis. The second problem can be
overcome by using singularity-free coordinate charts, e.g. unit quaternions or rota-
tion matrices. But because these parameterizations are based on embeddings of the
3-dimensional rotation group into a higher-dimensional space (e.g. 4-dimensional
in case of the unit quaternions), they involve additional constraints that would
make the mathematical analysis of the Langevin equation more involved.

3. Langevin equation in shape space

We want to derive the Langevin equation in shape and angular coordinates. Calling
x = (s, θ) and y = (u, L), the Langevin equation is (2.7) with H̃ given by (2.13)
and coordinate dependent friction and noise coefficients given by

γ̃ =
γ

m

�
G A

TΘ
ΘA Θ

�
, σ̃ =

σ√
m

�
C

1/2
A

TΘ1/2

0 Θ1/2

�

Even though the angular momentum is no longer a conserved quantity as in the
deterministic case discussed in Section 2, it is zero on average when the system is
in equilibrium. This property follows from (2.6) which implies that the stationary
distribution of the Langevin equation (2.7) has the density

ρ̃(x,y) =
1

Z̃
exp(−ϑ

−1
H̃(x,y)) ,

which shows that L is Gaussian with zero mean. Here Z̃ is again a normalization
constant for the translation-reduced probability density.
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Geometric phase. To study the effect of the internal motion of the molecule on
its orientation, we write down the equation for the conjugate pair (θ, L),

θ̇ = (AC−1
A

T −Θ−1)L−AC
−1

u

L̇ = − γ

m
L+ σ

�
Θ

m
ξ ,

(3.1)

where ξ is one-dimensional Gaussian white noise. From the second equation of (3.1)
we recognize L as the Ornstein-Uhlenbeck process. Keeping the other variables
fixed—we remind the reader that the equation for L is still coupled to the shape
equations, for Θ = Θ(s)—it follows that L is a Gaussian process with mean

E[L(t)] = e
− γt

m L(0)

and variance

E[(L(t)−E[L(t)])2] =
σ
2Θ

2γ

�
1− e

− 2γt
m

�
.

We see that E[L(t)] quickly converges to 0 whenever γ/m is not too small. If
moreover the temperature ϑ = σ

2
/(2γ) in the system is small, then L will have

small variance too, which justifies to set L = 0 in the first equation of (3.1), by
which we obtain the following result

θ̇ ≈ −AC
−1

u . (3.2)

But under the condition of zero angular momentum, we have that ṡ = C
−1

u, hence
(3.2) is stochastic reformulation of (2.3) for the Langevin equation. Our findings
will be confirmed by numerical studies in Section 4 below.
Finally, replacing L and L

2 in the Langevin equation by its stationary mean and
covariance, we obtain the Langevin equation on shape space

ṡ =
∂K

∂u

u̇ = −∂K

∂s
− γ

m
C
∂K

∂u
+

σ√
m
C

1/2ζ ,
(3.3)

where ζ is two-dimensional uncorrelated Gaussian white noise and

K(s, u) = −ϑ log

�

S1×R
ρ̃(s, θ, u, L) dθdL

is the shape space free energy. The free energy is not, as one could guess from the
deterministic case, the Hamiltonian for L = 0. It rather contains an additional
temperature-dependent correction term that mimics coriolis-type forces arising
from the random fluctuations of the angular momentum L (see the discussion
in Sec. 3.1 below).
Using the fact that the equilibrium momentum distribution is Gaussian and

completing the square in the expression for the kinetic energy, we find

K =
1

2
u
T
G

−1
u+ Uϑ(s) . (3.4)
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with the pseudo-metric tensor G that is induced by the embedding of shape space
into the Cartesian coordinate space of the semi-flexible molecule, i.e. the restriction
of the Euclidean metric to the submanifold T2 ⊂ R4, and the effective potential

Uϑ = Ṽ +
ϑ

2
log(Θ−1 +AC

−1
A

T ) . (3.5)

(We have omitted additive constants in the potential.) The metric coefficient and
thus the free energy can be computed explicitly, but as the actual coordinate ex-
pressions of the metric tensor are not very informative, involving trigonometric
functions, they have been moved to the appendix.

Remark. An equivalent representation of the correction potential F := Uϑ − Ṽ

is obtained by using the Woodbury identity [6, Sec. 2.1.3] for the inverse of the
Schur-complement-like matrix Θ−1 +AC

−1
A

T :

F = −ϑ

2
log(Θ−ΘAG

−1
A

TΘ) .

3.1. Discussion of the temperature-dependent correction potential

It is interesting to note that even though the Langevin dynamics under equilibrium
conditions (2.8) satisfies L = 0 on average, or, more precisely E[L] = 0, the free
energy K is very different from the zero-angular momentum Hamiltonian, viz.,

H̃|L=0 =
1

2
u
T
C

−1
u+ V (s) ,

where C = G− A
TΘA. The reason for this is that a random variable L is almost

surely constant if and only if it has zero variance, i.e. if and only if E[L2] = 0. But
this is not the case here, for L is approximately Gaussian with variance proportional
to ϑ, which may not be small.
As has been discussed in [13], the pseudo-metric tensor G that appears in the

kinetic energy of the effective Hamiltonian K does depend on the frame and thus
has no intrinsic meaning as a shape space metric tensor, whereas C is independent
of the chosen frame or reference configuration of the molecule. Here it is the tem-
perature dependent, so-called Fixmann potential that guarantees that the resulting
shape space equilibrium distribution is gauge invariant, even though the effective
Hamiltonian is not. Indeed, by definition of the free energy, it follows that

exp(−ϑ
−1

K) =

�

S1×R
exp(−ϑ

−1
H̃) dθdL

which entails

exp(−ϑ
−1

U)
√
detG ∝ exp(−ϑ

−1
V )

�
det g .

The latter is equivalent to

detG

det g
∝ Θ−ΘAG

−1
A

TΘ
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Figure 4. Square rooted matrix volumes of ambient space metric tensor g (left panel) and induced shape

space metric tensor G (right panel). The scaling of the z-axis is arbitrary.

and highlights the interpretation of the Fixman potential as an entropic correction
that accounts for the difference between the matrix volumes of the induced shape
space metric G and its ambient space metric (2.11). We refer to the seminal article
[5] by Fixman (to whom the potential owes his name) or the related works [3, 9] for
a discussion of the Fixman potential related to the realization of holonomic con-
straints. It should be stressed that the free energy as well as the Fixman potential
are generally gauge-dependent, as has been discussed in, e.g., [8].
The square roots of the matrix volumes elements of both restricted (i.e., con-

strained) metric and full tensor are shown in Figure 4. The entropic meaning of
the matrix volume is such that, if the molecular potential Ṽ is ignored, regions
of large matrix volume correspond to regions of high probability in the configu-
rational ensemble, just because these configurations make up a larger part of the
possible configurations of a molecule that is free to rotate otherwise; in our case
the entropically least favourable (i.e. least likely) configuration is the configuration
α = β = 0, when the molecule is completely straight. Note that the actual form of
the induced metric tensor G is arbitrary, as it changes with the choice of the body
frame.1 For comparison, Figure 5 shows the Fixman potential that has four well
pronounced minima where the full system (including rotations) has large entropic
wells that correspond to a large matrix volume.

Remark. The fact that that the free energy K is different from the symmetry-
reduced Hamiltonian H̃|L=0 also underlines that it matters whether we first remove
the heat bath in the Langevin equation (2.5) equation by setting γ,σ = 0 and then
factor out the orientation and translation variables, in accordance with what is
done for deterministic systems, or remove the heat bath afterwards. In the latter
case the factor multiplying the Fixman potential can be replaced by the average
kinetic energy per degree of freedom in the microcanonical ensemble, in accordance
with the equipartition theorem. The two operations do not commute, because the
underlying thermodynamic ensembles, microcanonical or canonical, are manifestly
different.

1Geometrically, the choice of frame corresponds to a 2-dimensional section in the 4-dimensional configu-

ration manifold of our semi-flexible molecule. One such choice, that even makes the section locally flat,

follows from the Eckart conventions [4], for which the induced metric is the Euclidean metric.

12
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Figure 5. Fixman potential F := Uϑ − Ṽ as a function of the two shape variables. The four wells of the

Fixman potential correspond to the most probable configurations around (α,β) = (±π/2,±π/2) that the

molecule adopts. (The scaling of the z-axis is arbitrary.)

4. Numerical tests

4.1. Falling cat effect in vacuum and in solvent

In this section, we carry out numerical simulations to test the formulations pre-
sented in the previous sections by taking the example of the prototypical model of
the four-atom molecule. We focus here on the coupling between the shape changes
and rotations of the planar four-atom chain under Langevin dynamics.

Numerical implementation. In our numerical study, the lengths of all the three
bonds are fixed to b. The two bending angles α and β are controlled by a scleronomic
constraint function for the bending angles. Thus, we solve the following under-
damped Langevin equations with constraints:

q̇ = v,

mv̇ = −γv −∇fbond(q)λbond −∇fangle(q, t)λangle + σξ(t)

0 = fbond(q)

0 = fangle(q, t) ,

(4.1)

where fbond, fangle are defined by

fbond(q) =




|q1 − q2|2 − b

2

|q2 − q3|2 − b
2

|q3 − q4|2 − b
2





fangle(q, t) =

�
(q3 − q2) · (q2 − q1)
(q4 − q3) · (q3 − q2)

�
−
�
b
2 cosα(t)
b
2 cosβ(t)

�
,

(4.2)

Here q and v are 8-dimensional position and velocity vectors, m is the atomic
mass, ξ is the vector of random forces (Gaussian white noise), γ is the friction
coefficient, σ =

�
2ϑ/γ the friction coefficient, λbond is the three-dimensional vector

of Lagrange multipliers for the constraint on the bond length, and λangle is a
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two-dimensional vector of Lagrange multipliers for the constraints for the bending
angles; fbond and fangle are the constraint functions for the bonds and for the
angles; the bending angles are controlled via the time-dependent constraint function
fangle(q, t). For the numerical integration of (4.1) we use the stochastic RATTLE
algorithm as described in [19]; cf. also [12]

Motions in vacuum vs. motions in solvent. We have first tested the numerical
shape control scheme without noise nor friction, i.e. for γ = 0 and σ = 0. Figure
2 shows the results for the time evolution of the configuration of the four-atom
chain for the cyclic shape change prescribed in Fig. 3. Since noise and friction are
absent, this is regarded as the cyclic shape change in vacuum. The solid curve (red)
in the left panel of Figure 6 shows the time evolution of the orientation θ of the
body frame in the course of this cyclic shape change. We see that, after the cyclic
shape change, the orientation of the body frame differs from the initial one and
coincides with the theoretically predicted value θ = 11.786◦ as noted before. The
solid curve (red) in the right panel of Figure 6 shows the total angular momentum
of the system during the cyclic shape change. One can readily check that the the
total angular momentum L = 0 is strictly preserved throughout the process. All
these results confirm that our numerical implementation of the RATTLE algorithm
with time-dependent constraints works well and correctly reproduces the “falling
cat” effect.
Next we study the geometric phase effect and shape dynamics under Langevin

dynamics based on (4.1)–(4.2). The dotted curves in Figure 6(a) show the time
evolutions of the orientation of the body frame θ during the cyclic shape change
(see Figure 3) for 50 independent realization of the Langevin dynamics. For all
realizations the parameters were set as γ = 0.1, m = 1, and temperature ϑ = 1.
Because of the presence of noise, the time evolutions of θ are different for different
trajectories. However, we can clearly see the tendency that on average the stochastic
trajectories follow the deterministic trajectory under the conditions of zero total
angular momentum. Moreover the mean value of the final orientation of the body
frame, averaged over the 50 realizations, is almost the same as the theoretical value
θ = 11.786◦. Hence we conclude that the geometric phase effect survives even under
the noisy Langevin dynamics as equation (3.1) theoretically predicts. The dotted
curves in Fig. 6(b) are the time evolution of the total angular momentum of the
system for the same 50 realizations as in Figure 6(a). As expected the total angular
momentum is fluctuating around L = 0.

Dependence on Langevin parameters. We now study the dependence of the
“falling cat” effect on atomic masses m, friction γ, temperature ϑ, and the speed
of shape change. The solid curves (red) in Figure 7 show the distribution of the
final orientation of the body frame after the cyclic shape change for the parameter
values γ = 0.1, m = 1, and ϑ = 1. Note that solid red curves in Figure 7 are the
same. The total time for completing the cyclic shape change is 1000 (in absolute
units) where each of the four steps of the shape change in Figure 3 (from (a) to
(e)) takes 250 time units. We see from the solid curves in Figure 7 that the final
distribution of the orientation of the body frame is roughly a Gaussian, whose peak
in located at around θ = 11.786◦, which is the predicted geometric phase under
zero angular momentum. We regard this result for the parameter values of γ = 0.1,
m = 1, and ϑ = 1 as a “benchmark”.
We have then investigated how the distribution of the final orientation of the

body frame after the cyclic shape changes for various Langevin parameters. Figure
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Figure 6. On-average preservation of the total angular momentum. The thick solid line (red) in (a) shows

time vacuum evolution of the orientation of the body frame under a cyclic shape change described in Figure

3. The thick solid line (red) in (b) is the corresponding time evolution of the total angular momentum of

the system, which is zero throughout the process. The blue dotted lines in (a) show 50 typical realization

of the orientation of the body frame under cyclic shape change and Langevin dynamics. The blue dotted

lines in (b) show the corresponding total angular momenta.
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Figure 7. Distributions for the final orientation of the body frame θ after the cyclic shape change under

Langevin dynamics for different parameters: (a) is for different friction coefficient, (b) is for different atomic

masses, (c) is for different temperature, (d) is for varying shape change rates.

7(a) compares the final distribution of the body frame for the three different values
of friction coefficient, γ = 0.01 (green), γ = 0.1 (red), and γ = 1 (blue). All other
parameters are set to the “benchmark” values defined above, i.e. m = 1, and ϑ = 1.
We see from Figure 7(a) that the width of the distribution of the final orientation
of the body frame becomes wider as the friction coefficient increases. Thus strong
friction seems to obscure the geometric phase effect.
Figure 7(b) compares the distributions of the final orientation of the body frame

for the three different values of atomic masses, m = 0.1 (green), m = 1 (red),
m = 10 (blue). As opposed to the friction coefficient, large masses of atoms make
the geometric phase effect stand out. That is, the atomic masses have the behave
inversely to the friction coefficients which is plausible as they appear as γ/m in the
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shape-rotation transformed Langevin equation.
Figure 7(c) displays the distributions of the final orientation for the three different

temperatures, ϑ = 0.1 (green), ϑ = 1 (red), and ϑ = 10 (blue). We observe that
the effect of temperature resembles the effect of the friction coefficient, which is in
accordance with the fuctuation-dissipation theorem: high temperature corresponds
to high noise in the Langevin dynamics, so that the orientation dynamics becomes
essentially a the random walks on S

1; the orientation samples its invariant measure
(which is the Haar measure on SO(3) for a three-dimensional molecule).
Finally Figure 7(d) shows the distributions of the orientations for different rates

at which the cyclic shape change is done. The distributions in green, red, and blue
are the results for the cyclic shape changes that took tcyc = 100, tcyc = 1, 000,
and tcyc = 10, 000 units of time. The distribution in green is the result for the
fastest shape change and that in blue corresponds to the slowest shape change.
We clearly see that fast shape change of the system preserves the geometric phase
effect well, whereas it totally vanishes if the shape change of the system is slow. This
behaviour can be explained by noting that the orientation is basically adiabatic
with respect to to the parameter change in shape space. It is noteworthy that also
the net amount of orientational shift depends on the velocity of shape change in
the Langevin dynamics. This is different from the dynamics in vacuum, where the
net orientational shift does not depend on the velocity of shape change.

4.2. Probability distribution in shape space

We have further sampled the probability distribution in shape space. We numeri-
cally simulate the Langevin dynamics of the four-atom molecule in Figure 1 using
the RATTLE algorithm, but, this time, we impose only the constraints for the bond
lengths, fbond(q) and remove the bending angle constraints fangle(q, t). Figure 8
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Figure 8. Probability distribution in shape space in the Langevin dynamics of the four-atom molecule in

Fig. 1. This result should be compared with Figure 4.

shows the result for the empirical shape space probability distribution which nicely
agrees with the theoretical prediction (see Figure 4). The empirical distribution ex-
hibits four pronounced peaks around (α,β) = (±π/2,±π/2), a finding which is is
consistent with the four minima of the Fixman potential shown in Figure5. The
probability distribution in Figure 8 is also consistent with Fig. 5 in that the straight
configuration of the molecule, where α = β = 0 has the lowest entropy.

5. Conclusions and future directions

We have studied geometric phase effects in small molecular cluster in a stochastic
heat bath. As a simple model system that displays interesting geometric behaviour
during conformational transitions we have analysed the Langevin dynamics of a
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semiflexible, planar four-atomic molecule, which internal configurations are com-
pletely specified by its two bond angles. Following the symmetry-reduction pro-
cedure that is usually employed for deterministic Hamiltonian systems (i.e. in

vacuo), we have derived a symmetry-reduced Langevin equation by eliminating
overall translation and rotation component. The main difference here is that the
angular momentum of the molecule is not a conserved quantity, and hence the sys-
tem cannot be reduced by setting the angular momentum constant (typically zero).
If, however, the system is in equilibrium (i.e., when friction and noise coefficients
in the Langevin equation satisfy the fluctuation-dissipation relation), the angu-
lar momentum is Gaussian with stationary mean and variance, in case of which
the angular momentum is conserved on average. The symmetry-reduced Langevin
equation is then obtained by averaging over the stationary fluctuations. We found
that the resulting free energy is different from its reduced deterministic counter-
part; one of the features of the free energy is a temperature dependent correction
potential (Fixman potential) that arises from the averaging procedure and mimics
the influence of the eliminated angular motion; moreover the free energy is, other
than the reduced Hamiltonian in the deterministic setting, gauge dependent and
changes with the definition of the body frame that is attached to the molecule.
We have numerically verified that at low friction, the stochastic system behaves
basically as the deterministic “falling cat”. The geometric phase is sharply peaked
around its predicted value. But in contrast to the vacuum situation, the falling cat
effect depends on the rate at which the shape is changes. Specifically, we found that
the phase distribution becomes broader as the rate goes down which may have sig-
nificant implication for the control of such systems (depending on whether controls
are fast or slow). We have further observed that the falling cat effect is obscured
at high friction, but it is unclear whether the phase distribution becomes just too
broad to get statistically significant data or whether is the effect disappears in the
overdamped limit.
Future research should be devoted to a careful analysis of the overdamped equa-

tion and its reduction; an interesting question could be whether, e.g., the order
of the limiting procedure and the symmetry reduction matters, or if the orien-
tational degree of freedom play a role during conformational transitions and can
reduce metastability. Another interesting question in this respect is the control of
conformational transitions by external forcing, especially the question whether an
optimal control strategy for the molecule’s shape has to take into account overall
rotations. Last but not least, it remains to generalize our considerations to the
3-dimensional case and more general multibody systems.
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Appendix A. More coordinate expressions

Both the intrinsic shape space metric and the shape space free energy can be
computed directly. The metric tensor G that is induced on the shape space T2 by
restricting the Euclidean metric has the components

G11 = G22 =
3mb

2

4
, G12 = G21 =

mb
2

4
cos(α+ β) .

Together with the explicit expressions for the gauge potential,

A1 =
3 + 2 cosα+ cos(α+ β)

10 + 4 cosα+ 4 cosβ + 2 cos(α+ β)

A2 =
3 + 2 cosβ + cos(α+ β)

10 + 4 cosα+ 4 cosβ + 2 cos(α+ β)
,

and the moment of inertia,

Θ = mb
2

�
5

2
+ cosα+ cosβ +

1

2
cos(α+ β)

�
,
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the coefficients of the intrinsic metric on shape space are readily found to be

C11 =
3mb

2

4
− mb

2(3 + 2 cosα+ cos(α+ β))2

40 + 16 cosα+ 16 cosβ + 8 cos(α+ β)

C22 =
3mb

2

4
− mb

2(3 + 2 cosβ + cos(α+ β))2

40 + 16 cosα+ 16 cosβ + 8 cos(α+ β)

C12 =
mb

2 cos(α+ β)

4
− mb

2(3 + 2 cosα+ cos(α+ β))(3 + 2 cosβ + cos(α+ β))

40 + 16 cosα+ 16 cosβ + 8 cos(α+ β)

C21 = C12 .
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