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Abstract

The article surveys the development of novel mathematical concepts
and algorithmic approaches based thereon in view of their possible ap-
plicability to biomolecular design. Both a first deterministic approach,
based on the Frobenius-Perron operator corresponding to the flow of the
Hamiltonian dynamics, and later stochastic approaches, based on a spa-
tial Markov operator or on Langevin dynamics, can be subsumed under
the unified mathematical roof of the transfer operator approach to effec-
tive dynamics of molecular systems. The key idea of constructing specific
transfer operators especially taylored for the purpose of conformational
dynamics appears as the red line throughout the paper. Different steps
of the algorithm are exemplified by a trinucleotide molecular system as a
small representative of possible RNA drug molecules.
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1 Introduction

In recent years, biomolecular design has attracted considerable attention both
in the scientific and in the economic world. A few years ago, a research group at
ZIB, partly supported by the DFG research program described in this volume,
has started to work in this field. The problem of biomolecular design exhibits a
huge discrepancy of time scales: those relevant from the pharmaceutical point of
view are in the seconds, whereas present computations reach into the nanosecond
regime at most. The reason for this is twofold: First, all available numerical
integrators allow stepsizes of at most some femtoseconds only [38, 33]. Second,
trajectory-oriented simulations are ill-conditioned after, say, a few thousand
integration steps [1]. As a consequence, whenever dynamical informations (and
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not only averages of physical observables) are wanted—which is actually the case
in biomolecular design—then only short term trajectories should be exploited.
This message seems to be in direct contradiction to the desired aim of long term
prediction in biomolecular design.

Aware of this seemingly contradiction, the ZIB group got inspired by work
of DELLNITZ and co-workers [10, 9] on almost invariant sets of dynamical
systems—within the same DFG research program. As documented in [11], the
key idea was to interpret almost invariant sets in phase space as chemical con-
formations. Within chemistry, the latter term describes metastable global states
of a molecule wherein the large scale geometric structure is conserved over long
time spans. As it turned out, the chemists’ dominant interest was anyway just
in these conformations, their life spans, and their patterns of conformational
changes. Therefore, our first approach [11] followed the line of the original pa-
per by DELLNITZ AND JUNGE [10]: chemical conformations were identified via
eigenmodes corresponding to an eigenvalue cluster of the Frobenius-Perron oper-
ator associated with the deterministic flow of the Hamiltonian system. However,
upon keeping a clear orientation towards the design of biomolecular systems, the
computational techniques based on this first approach appeared to be unsatis-
factory for reasons of both lack of theoretical clarity and sheer computational
complexity: The theoretical justification of the approach requires the introduc-
tion of artificial stochastic perturbations of the dynamics [10] regardless of any
(physical) interpretation. Moreover, the computational techniques from [10, 11]
are suitable only, if the objects of interest are rather low-dimensional, whereas
the search for conformations will have to include the entire high-dimensional
phase space of the molecular dynamics. Therefore, an almost complete remod-
elling with special emphasis on both physical interpretation and dimensionality
of the problem turned out to be necessary in view of biomolecular applications.

In order to define conformations as experimentally determinable objects, con-
cepts of Statistical Physics needed to be included. In addition, the remodelling
had to include the aspect that chemical conformations are purely spatial ob-
jects determined via molecular geometry. These insights gave rise to the study
of “spatial” Markov operators beyond the Frobenius-Perron operator as well as
the associated Markov chains replacing the Hamiltonian dynamics [35, 34]. The
thus arising special Markov operator was shown to exhibit all the desirable theo-
retical properties needed as a basis for efficient, algorithms. Moreover, a Galerkin
approximation of this Markov operator in a weighted L2-space naturally led to
the replacement of the original (expensive) subdivision techniques [9] by newly
developed (cheap) Hybrid Monte Carlo (HMC) methods called reweighted adap-
tive temperature HMC, or short ATHMC [16]. On the basis of suggestions by
AMADEI ET AL. [2], an algorithm for identifying the essential molecular degrees
of freedom has been worked out that drastically reduces the eigenvalue cluster
problem even in larger molecular systems see [22]. With these algorithmic im-
provements the applicability of our approach to realistic biomolecules came into
reach. By applying the above ideas to the stochastic Langevin model of molec-
ular dynamics [36], we succeeded to show that the fruitful coupling between the
concepts of Statistical Physics and the transfer operator approach to effective
dynamics can be exploited in a much more general framework.

The purpose of the present article is to survey what has been achieved, and to
gain further insight from that. As will be shown subsequently, we are now able
to subsume both our first deterministic approach [11] and the different stochastic



approaches [35, 36] under the unified roof of transfer operators preserving the
key idea of conformation analysis. In order to return to the original problem
of biomolecular design, we illustrate the different steps of our present algorithm
when applied to a small RNA molecular system.

2 Molecular Dynamics

In order to introduce our mathematical frame, we need to fix some notation.
Consider a probability space (X, A, ), where X C R™ for some m € N denotes
the state space, A the Borel o—algebra on X and p a probability measure on A.

We will see below that in classical molecular dynamics the evolution of a
single molecular system with initial data z¢ € X is in general described by a
homogeneous Markov process { X, }em with M = R or M = Ny in continuous
or discrete time, respectively. We assume that X; is measurable and non-
singular with respect to g, i.e., p(X; " (A)) = 0 for all A € A with u(4) = 0.
Furthermore, we assume that the process satisfies the semigroup properties:
Xi—o=1Id and X;y, = Xy 0 X, for all ¢, s € M. Then, the evolution of a single
system starting in x(0) = x¢ is given by x(t;20) = X;(zo) for all ¢ € M. We
choose this more general framework to describe molecular dynamics, since it is
suitable both for the deterministic case and for the stochastic situation.

Markov processes may be defined in terms of stochastic transition kernels.
A function p: M x X x A — [0,1] is called a stochastic transition kernel [6, 29],
if

1. p(t,z,-) is a probability measure on A for every t € M, z € X and

furthermore, p(0,z, X \{z}) = 0 for every z € X.

2. p(t,-, A) is measurable for every t € M, A € A.

3. p(-,z, A) satisfies the Chapman—Kolmogorov equation [19, 29]

p(t+$,$,A) = /);p(t,w,dy)p(s,%A) (1)

forallt,s e M,z € X and A € A.

The family {X;}:;cm is called a homogeneous Markov process, if [6, 29]
PX,eA|Xo=2] = ptz,A) (2)

for all t € M and A € A. Thus p(t,z,C) is the probability that the Markov
process started in z stays in A after the time span .

2.1 Modelling Molecular Motion

Classical models for molecular motion describe the molecular system under con-
sideration via coupled equations of motion for the N atoms in the system (cf.
textbook [1]). The most popular class of equations of motion can be written in
the following general form:

¢ = Mp, (3)
) = _vq V(q) - ’Y(qap)p + Fext;



where ¢ and p are the atomic positions and momenta, respectively, M the di-
agonal mass matrix and V = V(q) a differentiable potential energy function
describing all the interactions between the atoms. The function v = v(g, p) de-
notes the friction constant and Fey the external forces acting on the molecular
system. The state space of the system is I' C R%" and the solution (g;, p;) of (3)
describes the dynamics of a single molecular system. In the notation introduced
above, we hence have X =T and X;(qo, po) = (g, pt)-
The Hamiltonian function

1 _

H(g,p) = 5p'M7'p+ V() (4)
denotes the internal energy of the system in state © = (g,p). In the following
we assume M = Idgs~ for simplicity. In most cases, the phase space is simply
given by I' = Q x R* for some Q C R*". We will call Q the position space of
the system and distinguish between two fundamentally different cases:

(B) Bounded system: The position space §2 is unbounded, typically = R3V,
and the potential energy function is smooth, bounded from below, and
satisfies V' — oo for |¢| — oco. Such systems are called bounded, since the
energy surfaces {x : H(z) = E} are bounded subsets of I".

(P) Periodic systems: The position space {2 is some 3N dimensional torus and
V is continuous on ) and thus bounded. There is an intensive discussion
concerning the question of whether V can also be assumed to be smooth
on § as we will do herein, see Sec. 2 of [34] for details.

Both cases are typical for molecular dynamics applications. Case (P) includes
the assumption of periodic boundaries which is the by far the most popular
modelling assumption for biomolecular systems. Subsequently, we will refer to
these assumptions by referring to systems of type (B) or type (P).

Deterministic Hamiltonian Dynamics. Whenever v = 0 and Feyy = 0,
equation (3) reduces to the classical Newtonian equations of motion:

¢g=p  p=-V,V(g ()

The flow ®¢ associated with the Hamiltonian H from (4) aloows to denote the
solution process of (5), i.e., z(t;zo) = Xy(x¢) = ®txo and the transition kernel
is given by

p(t,.Z’,C) = Xc (étw) ’ (6)

where y¢ denotes the characteristic function of the set C' C T'. In this deter-
ministic case, the equations of motion (5) model an energetically closed system,
i.e., the Hamiltonian denotes the total energy of the system, which is preserved
by the dynamics.

Deterministic Thermostatted Dynamics. In general, the term v(g,p)p
represents the effect of some “thermostat” on the system. In “thermostatted
molecular dynamics”, one designs deterministic descriptions of open but con-
servative molecular systems contained in a heat bath by choosing v # 0 and
(deterministic) forces Feyy 7 0 such that the solution of (3) conserves either
kinetic or total energy [14].



Stochastic Langevin Dynamics. The most popular model for an open sys-
tem with stochastic interaction with its environment is the so-called Langevin
model [32]:

g=p, p=-VyV(gQ—vp+oW. (7)

It is a special case of (3) with some constant friction v(¢,p) = v > 0 and an
external force Fl = oW, given by a 3N-dimensional Wiener process W; with
zero mean (W) = 0 and correlation (W, W) = §(t — s). The external stochastic
force models the influence of the Brownian motion of the heat bath surrounding
the molecular system. In this case, the internal energy H is not preserved,
but the interplay between stochastic excitation and damping equilibrates the
internal energy as we will see in Section 3.2.

2.2 Long-Term Behavior and Conformations

In principle, a discretization of (3) permits a simulation of single system tra-
jectories once the initial state is given. However, numerical analysis of present
discretizations restricts the validity of such single system trajectory simula-
tions to only short time spans and to comparatively small discretization steps.
The reason for this is two-fold: First, numerical long-term simulation is an
ill-posed problem for the Hamiltonian systems under consideration [1], and sec-
ond, no numerical integrator is available that allows stepsizes larger than a few
femtoseconds—neither for Hamiltonian nor for Langevin dynamics [38, 33].

On the smallest time scales of about one femtosecond molecular dynamics
consists of fast oscillations or fluctuations around equilibrium positions. In
contrast to these fast fluctuations the term conformations describes meta-stable
global states of the molecule, in which the large scale geometric structure is
understood to be conserved. Conformational changes are therefore rare events,
which will show up only in long term simulations of the dynamics, e.g., on a
nano- or millisecond time scale. Thus, the effective conformational dynamics
occurs on time scales not accessible via long-term simulation. We thus have to
abandon the trajectory-based approach of identifying conformations via long-
term simulations. Instead, we use the dynamical properties of conformations to
introduce a set-oriented concept:

Conformations are related to geometric structure given by the atomic posi-
tions. This means that conformations are subsets of the position space. Under
additional consideration of the dynamical properties, we characterize confor-
mations as special “almost invariant” subsets in position space in the following
sense: An {nvariant set can never be left by the dynamical process under con-
sideration. If conformations were invariant sets of the molecular dynamics,
then transitions between different conformations would be impossible. Since
transitions between conformations exist but are rare, we have to understand
conformations as almost invariant sets of the molecular dynamics.

In [10], DELLNITZ AND JUNGE proposed to identify almost invariant subsets
of discrete dynamical systems via specific eigenvectors of corresponding transfer
operators. In order to make this intriguing idea applicable to the identification
of conformations, we will introduce some notation, define transfer operators for
molecular motion and link them to concepts of statistical mechanics.



3 Molecular Ensembles and Transfer Operators

We in principle always have to accept experimental measurement uncertain-
ties when determining the initial state —all the positions and momenta— of
some molecule. As a consequence, when modelling the physical reality, we have
to propagate a statistical ensemble of molecular systems which represents the
distribution of possible initial states determined via the initial measurement.
The distribution may be described by some time dependent probability density
u = u(x, t) in phase space. In the following, the density « is always meant with
respect to the measure u; consequently, the probability within the ensemble to
encounter a system z € X in a subset C' C A at time ¢ is given by

PlrecC] = /C w(z. ) p(dz). (8)

Physical experiments allow for measuring relative frequencies in the ensem-
ble, e.g., to determine the relative frequency of systems within the ensemble
whose state lies in C' C X at time ¢. The probability Pz € C] corresponds to
the relative frequency introduced above and is thus physically measurable—
in contrast to the probability density w(x,t). Whenever physicists use the
phrase “probability density” they refer to the density from (8) with respect
to the Lebesgue measure dx. This means, whenever u(z,t) is the density with
respect to p and, additionally, u is absolutely continuous with respect to dz
with density d(z,t), then the physical density is f(x,t) = u(z,t)d(x,t). Never-
theless, it is sometimes mathematically advantageous to consider densities with
respect to specific measures particularly adapted to the Markov process under
investigation.

3.1 Forward and Backward Transfer Operators

The evolution of a probability density « = u(x,t) in state space X is governed
by the (micro-) dynamics { X, }rem of each of the identically prepared molecular
systems within the ensemble. We may describe the evolution by the propagator
or forward transfer operator

Pu(z) = wu(z,t),

which maps the initial probability density «(z) = u(z,0) to the density u(x,t)
at time {. Assume for the moment that the transition kernel of the process
{X.} is absolutely continuous with respect to the probability measure p, i.e.,
p(t,z,dy) = [ p(t, =, y) p(dy). Since p(t,z,y) denotes the “probability” of the
process to move from z to y within the time ¢, the propagator should have the
form

Pat) = [ pt.2.)ue) ude). )
However, since in general the transition kernel will not be absolutely continuous,

we proceed in a different way and define P; via the well-known backward transfer
operator [19]

Tu() = Bifu(X)] = /x u(y) p(t, = dy), (10)



where E;[u(X¢)] denotes the expectation of an observable u : X — C under the
condition that the process {X;} has been started at t = 0 in z.

Consider T; as an operator on L3*(X) and P; on L}, (X), and let (-, -), denote
the duality bracket between L3°(X) and L},(X). Then, as a generalization of
(9), the forward transfer operator P; is defined as the adjoint operator P, = T
of the backward transfer operator T; [19], i.e.,

(Tyw,0), = (u,B),, forallue LY(X),v e L (X). (11)

Since p(t, z, -) is a transition kernel, the thereby defined operator P; is a Markov
operator on L}L (X). Furthermore, the semigroup property of the Markov process
implies that {P; }1em is a semigroup of Markov operators.

In view of equations (9) and (10), the notion of “forward” and “backward”
transfer operator becomes clearer. For the forward case, the state average with
respect to u is taken over all initial states x, which are propagated forward
in time, while for the backward case, the state average is taken over all final
states y.

Invariant Measures and Stationary Densities A measure y on X is called
invariant with respect to the process {X;}, if

u(lC) = / p(t,x,C) u(dx), forall C € Aandte M.
X

Due to the properties of the transition kernel and the definition of the backward
transfer operator, we have—independent of the measure y—for every t € M,

Tixx = xx-

The above equality does in general not hold for the forward transfer operator,
because P, depends via (11) on the probability measure p. However, if we
assume p to be invariant, we also get

Pixx = xx (12)

for all t € M. In other words, xx is an invariant density of P, whenever p is
invariant.

Remark. Suppose additionally that p admits a density d with respect to
the Lebesgue measure. Let moreover the ensemble be distributed according
to p so that d is the stationary physical probability density of the ensemble.
Then, f(-,0) = x¢ - d denotes the physical density of the subensemble of all
systems being in €' C X at some time ¢ = 0. Since P, denotes the evolution
of the ensemble in time ¢, the physical density of the subensemble at time ¢ is
given by f(-,t) = Pixc - d. In contrast to this, Tyxc = p(t,-,C) denotes the
probability density to access C at time {. This again emphasizes the difference
in interpretation between P, and 7}: P, denotes the physically interpretable
propagator of the ensemble and is defined with respect to some measure pu, while
T; denotes the transfer operator related to the Markov process (independent of
the measure p) as usually considered in stochastic theory.



3.2 Canonical Ensemble

Most experiments on molecular systems are performed under the conditions of
constant temperature 7 and volume. The corresponding ensemble density (with
respect to the Lebesgue measure on X) is the canonical density fean associated
with the Hamiltonian H:
1
founl@) = Zew(-0HE), 2= [ew(sHE)d, (13)
T

where 0 = 1/kgT denotes the inverse temperature and kg Boltzmann’s con-

stant. Since H was assumed to be separable, f.., factorizes in a product of two
densities P and Q:

_ 1 B .. 1 1
fean(z) = Z, exp( 5 P M p) Z exp (—8V(q). (14)
—P(p) —Q(g)

Since we are interested in the canonical ensemble, we define the canonical prob-
ability measure induced by the canonical density:

tean(dx) = fean(x) dz.

It will turn out advantageous to consider transfer operators acting on weighted
function spaces with respect to fean-

3.3 Transfer Operators and the Canonical Ensemble

In general, an equation of motion for the process {X;} implies an equation
of motion for a probability density u. We will see below that the processes
induced by both, the Hamiltonian dynamics and the Langevin dynamics, leave
the canonical measure fic,, invariant. Since we are interested in describing
fluctuations within the canonical ensemble, we thus define the forward transfer
operator with respect to the canonical probability measure ficay, i-€., acting on
L},..(X).
Langevin Dynamics. The process induced by the Langevin equation (7)
leaves the canonical measure pica, corresponding the the inverse temperature 3
invariant, if the noise and damping constants satisfy [32]:
2y

5= 3 (15
The evolution of v = wu(x,t) with respect t0 fican (compare introduction to
Section 3) is governed by the well-known Fokker—Planck equation [32]:

0_2

du = 7Ap -p-V,+VV-V, —v-V, | w (16)

~ /
~

=A

As a consequence, the Fokker—Planck operator A is the infinitesimal generator
of the semigroup of forward transition operators {P};cgrs acting on L}, (X)
with

Pu = exp(td)u (17)



and, since pican is invariant, we have Poxr = xr.

Moreover, under certain conditions on the potential V' (systems of type (B)
with potential V' € C°°(X)), this is the unique stationary density and the semi-
group {F;},cgrg is asymptotically stable [23], i.e., Pu — xr for t = oo and
every density u € Ltcan (T'). Due to this property, the Langevin equation is the
most prominent stochastic model for a heat bath driven relaxation of molecular
ensembles to the canonical ensemble.

Hamiltonian Dynamics. The Hamiltonian equations of motion are the de-
terministic analogue of the Langevin equations with v = 0 and o = 0. As for the
Langevin dynamics, the canonical probability measure pic,, is invariant under
the dynamics. Using v = ¢ = 0, the equation of motion (16) for the probability
density u reduces to the Liouville equation corresponding to the Hamiltonian
H:

Gu = | —-p- Vg +V, V-V, | u (18)

=iL

where £ denotes the well-known Liouville operator [25]. The solution of (18)
satisfies u(x,t + s) = u(®txz,s) for all t,s € RY. Using (17), the forward
transfer operator acting on LY (T') is given by

Pou(z) = exp(itLiu(z) = u(z,t) = u (@ 'z), (19)

which is just the definition of the Frobenius—Perron operator corresponding to
the Hamiltonian flow ®¢ [26]. Additionally, inserting the transition kernel (6)
in the definition (10) of the backward transfer operator yields

Tu(z) = u(®'a), (20)

which is simply the Koopman operator corresponding to &' [26]. Equations (19)
and (20) illustrate that P, is the adjoint operator of T} as discussed above.

As we have seen, the canonical density f.., induces the invariant measure
fhean Of the deterministic Hamiltonian dynamics. However, there are infinitely
many other invariant measures induced by densities of the form f(z) = F(H (x))
for some smooth function F : R — [0, 1] of the Hamiltonian. Due to this ambi-
guity, pure Hamiltonian dynamics is not appropriate for modelling the relaxation
of molecular ensembles to one specific ensemble, in our case the canonical en-
semble. This observation corresponds to the fact that, for solving the Liouville
equation, we have to specify an initial density u(-, ¢ = 0). Physically, the specifi-
cation of an initial density corresponds to an initial experimental preparation of
the ensemble due to (8). Thus, selecting one of the possible invariant densities
means the specific initial preparation of a stationary ensemble.

4 Almost Invariant Sets of Molecular Ensembles

Agsume in this section that the molecular motion is described by a Markov
process {X;}iem that leaves the probability measure p invariant. Moreover,



assume that the Markov process is initially distributed according to p, i.e., the
probability to find the process at time ¢ = 0 in a subset C' € A is given by

PXoeC] = u(C)

(see introduction to Section 3).

4.1 Ensemble Transition Probabilities

The transition probability p(s, C, D) within the ensemble from C € Ato D € A
within the time span s is defined as the conditional probability

P[X, € D and X, € C]

p(s,C,D) = P[X,eD |Xo€(C] = Py € O]

(21)

The similar symbols for both the transition probability p(s,C, D) and for the
transition kernel p(s, z, C) corresponding to the process emphasizes the strong
relation to (2), which, in addition to the above assumption, allows to rewrite
the transition probability as

p(s,C,D) = ﬁ /C p(s,2, D) p(de). (22)

The transition probabilities quantify the dynamical fluctuations within the sta-
tionary ensemble. Using the duality bracket (-,-), between L (X) and L, (X),
the definitions of the transfer operators 73 and P; yield

p(S,C,D) — <TSXD7XC>N — <XD7P8XC>;,L. (23)
(xcs X {xc,xo)u

The above defined transition probabilities can be measured via the following
two—step experiment on the ensemble:

1. Pre-Selection: Select from the ensemble all such systems with states x €
C € A. This selection prepares a new ensemble, which is described by the
probability measure

po(D) = ﬁu(omm, De A

2. Transition-Counting: After the time span s, determine the relative fre-
guency of systems in the ensemble uc with states in C. Since all systems
evolve due to the process {X,}iem, this relative frequency is equal to

/Xp(s,x,C)uo(da:) = p(s,C,0C).

4.2 Conformations as Almost Invariant Subsets

We now aim at a dynamical characterization of conformations within the en-
semble; this characterization will be based on the notion of almost invariance.
As already mentioned, we have to define almost invariance in terms of ensemble
dynamics rather than in terms of the duration of stay of a single system.
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Following [10], We call some subset C' € A almost invariant, whenever the
fraction of systems within the ensemble that stay in C' after some characteristic
time span s € M is close to 1:

C almost invariant <= p(s,C,C) ~ 1.

This definition of almost invariance guarantees that its “degree” p(s, C,C) can
be measured via the two-step experiment introduced above.

Almost invariance may equivalently be characterized by p(s, C,X \ C) = 0,
which allows to relate it to the semigroup of forward transfer operators {P; }rem
by the following general identity [37]:

4.3 Identification Strategy

By definition, Py is a Markov operator and consequently, its Lb(X)fspectrum is
contained in the unit ball {\ € C: || < 1}. Every invariant density v € L},(X)
of P; satisfies Pyu = u and therefore is an eigenvector of P; corresponding to the
eigenvalue A = 1, the so—called Perron root. Since p is assumed to be invariant,
in particular u = xx is an invariant density.

Whenever a proper subset C' of X is invariant under the Markov process,
ie, pt,z, X\ C)=0for all z € C, the density u = xc/u(C) is an eigenvector
corresponding to A = 1.

Due to our above characterisation, the set C' € A is almost invariant if
p(r,C, X\ C) ~ 0, which via formula (24) implies that x¢/u(C) is an approx-
imate invariant density, i.e., an approximate normalized eigenvector associated
with an eigenvalue close to the Perron root A = 1. This motivates the following
algorithmic strategy:

1 1
w(OYX T weyXe

P, = 2p(s,C, X\ ). (24)

1

Invariant sets can be identified via eigenvectors corresponding to the
Perron root A = 1, while almost invariant sets may be identified via
eigenvectors corresponding to eigenvalues |A| < 1 close to the Perron
root A= 1.

This strategy has first been proposed by DELLNITZ AND JUNGE [10] for
discrete dynamical systems with weak random perturbations and has been suc-
cessfully applied to molecular dynamics in different contexts [35, 36, 34]. It will
be justified in more detail in Section 5.4 below, where more information about
the properties of the transfer operators of interest will be available.

It is important to notice that almost invariance is defined herein with re-
spect to some physically selected invariant probability measure u that describes
the stationary ensemble under consideration. Assume that the process {X.}
admits another invariant measure v, which, for the sake of simplicity, is abso-
lutely continuous with respect to u with density d € L, (X). Then, the density
u = xxd is an eigenvector of P, corresponding to A = 1. As a consequence,
one will not be able to decide in general whether some eigenvector correspond-
ing to an eigenvalue |A| < 1 close to the Perron root is related to an almost
invariant subset of the ensemble represented by p or rather by v. Thus, the

11



above algorithmic strategy requires uniqueness of the invariant measure. For
its numerical realization via an eigenvalue problem we moreover need that the
remaining spectrum of Py is strictly bounded away from the Perron root, i.e.,
A = 1 must be an isolated, simple eigenvalue of P,. Additionally, the physical
interpretation of the ensemble excludes other eigenvalues than A = 1 on the unit
circle or, equivalently, we exclude asymptotic periodicity of Ps.

We introduce the following two fundamental conditions on the forward trans-
fer operator Py, that are sufficient to guarantee the desired properties:

(C1) P, is asymptotically stable, i.e., (P;)'u — xx in L, (X) for every density
u € L (X) as n — oo.

(C2) The essential spectrum of P, is strictly bounded away from |A| = 1.

These conditions exclude some very prominent models for molecular motion.
For example, in the pure Hamiltonian case the invariant density is not unique in
L'(X), and, worse, the spectrum of the Frobenius—Perron operator P, in L!(X)
lies on the unit circle!. Despite these fundamental problems, DEUFLHARD et al.
computed almost invariant subsets of Hamiltonian systems in the above sense
with quite intriguing results [11]. However, they did not use the exact Hamil-
tonian flow ®* but added small, but significant perturbations originating from
time discretization errors and the related energy fluctuations. It is a widely
accepted approach to model such discretization effects by small random pertur-
bations. Under appropriate conditions, the thereby resulting transfer operator
is compact and may have a unique invariant measure (see [10]). In [11] another
interpretation of this approach via a sequence of nested function spaces based
on subsequent coverings of the energy cell is indicated.

There are other models that satisfy our conditions without additional arti-
ficial perturbations. An example is the Langevin model introduced above. For
appropriate systems (see above), its unique invariant measure is the canonical
measure. Hence, application of our algorithmic strategy to the Langevin model
seems to allow to attack chemically interesting systems. However, there is an-
other condition which has to be considered and prevents the Langevin model
from being a good starting point: Chemical conformations are usually under-
stood to be objects in position space ). Therefore, a proper model needs to yield
a family of forward transition operators, which are defined on X = € rather
than on the entire phase space I' of the molecular systems.

5 Conformational Dynamics in Position Space

Since conformations are objects in position space, this section is devoted to
an adequate theory of ensemble dynamics in position space, including two ex-
amples. We introduce two (reduced) Markov processes in position space and
define the corresponding transfer operators. Due to physical reasons and as a
consequence of (23), we restrict ourselves to the semigroup of forward transfer
operators or propagators { P, }iem for the canonical ensemble Q.

!Here, L'(X) may be replaced by L}‘(X) where p may stand for pcan or for any other
invariant measure of the Hamiltonian flow ®* that is absolutely continuous with respect to
the Lebesgue measure on the phase space X.
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5.1 Positional Dynamics and Transfer Operators

Let (0, A, o) denote the positional probability space with pg(dg) = Q(g¢)dg
and refer by L'g(2) for r = 1,2,...,00 to the corresponding function spaces
with respect to the canonical measure pg. Note that L% (1) is a Hilbert space
with scalar product

(e = / u*(g) v(g) Q(g) dg

and induced norm |lul|% = {(u, u)o.

As a consequence of Subsection 4.3 we have to transform the state space
dynamics into a pure position space dynamics. Assume that the transformed
dynamics of a single system in Q is described by a (homogeneous) Markov
process {Q}iem with stochastic transition kernel p(t, g, C'), invariant measure
g and initial distribution P[@Qo € C] = po(C). Then, the semigroup of forward
transfer operators {P; }scm for the canonical ensemble is given by P, : L'o(2) —
L'5(?) such that for all C € A

/ Pu(g)Q(q)dg = / w@)p(t, ¢, 0)Q(g) dg (25)
C Q

under suitalbe conditions of the integrability of the transition kernel. In the
following, we will consider P, mainly as an operator acting on the Hilbert space
I%5 (), since—as we will see below—the corresponding scalar product may re-
veal possible additional properties of P; and allows to define Galerkin projections
for the discretization procedure.

We conclude by stating all assumptions on the transfer operators, which
result from the requirements of Subsection 4.3:

(C1) P, is asymptotically stable, ie., (P;)"u = xa in LH() for n — oo and
every density u € L§(Q). This implies that A = 1 is an isolated, simple
eigenvalue in L% (Q).

(C2) The essential spectrum of Ps in L% () is strictly bounded away from
Al = 1.

5.2 Discrete Time Markov Chain

The first example of a reduced positional dynamics is based on the Hamiltonian
equation of motion within the canonical ensemble f..n (14) and a characteri-
zation of conformations as special almost invariant subsets. A subset C' C Q
of the position space is called almost invariant, if the enlarged “cylindrical”
subset C' x R? C T of the state space is almost invariant with respect to the
Hamiltonian dynamics.

Let px (¢, 2, A) denote the stochastic transition kernel of the Markov process
in state space (see (6)). Fix an observation time span 7 > 0. Then, C' C Q is
almost invariant (with respect to 7), if px(7,C x R%,C x R¢) ~ 1. For fized T,
this definition can be used to derive a reduced dynamics in position space. For
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two subsets C, D C Q, we have due to (6) and (22):
px(7,C x R%, D x R%)

h fC Rd fian( /CxR XDXRd( T(x))fCan(l')dx
dq/ /Rd xp(y @7 (g, p))P(p) dp Q(g)dg- (26)
=:p% ( ,q,D) g
= pa(1,C,D),

where 1I, denote the projection onto the position space. A comment on the
dependence of the one-step transition probability ph(1,C, D) on the observa-
tion time span 7 can be found in the remark below. It is easy to show, that
p5(1, ¢, D) is a transition kernel and thus defines a discrete time Markov process
{@n}nen, on the position space 2. Furthermore, {Q,} satisfies inductively for
all n € Ny the stochastic dynamical equation (SDE) [34]

Qn—i—l = Hq(I)T(Qn;Pn) (27)

with P, chosen randomly according to the momenta distribution P. The SDE
(27) is the reduced positional dynamics that we were looking for. In mathe-
matical terms, it corresponds to a Hamiltonian motion with randomly chosen
momenta at discrete (physical) times 7,27,.... As shown in [34], {Q,} leaves
the canonical ensemble Q invariant.

Via Equation (25), the transition kernel also defines a discrete time semi-
group of transition operators {P,}nen, on L'o(Q2). Exploiting that &7 is a
reversible, symplectic and pg invariant mapping (see (19) and below, and [34]),
we get

Pal) = [ (@ (@.r)P@)dp (29)

for u € Lg(). For all systems of type (P), P; satisfies the requirements
stated in Subsection 5.1 [34]; furthermore, it is self-adjoint on L%(Q) due to
reversibility and symplecticness of the Hamiltonian flow [34]. As a consequence,
the L% (2)-spectrum of P; is real-valued, bounded and contained in the interval
(—1,1]; the essential spectrum is bounded away from 1.

Remark. In (26), we have defined the one step transition kernel pf,(1,q, D)
for fixed 7. Changing the observation time to ¢ results in a new one step
transition kernel p%(1, ¢, D). In contrast to that, the n—term transition kernel
ph(n,q, D) is defined recursively by the Chapman—Kolmogorov equation (1).
In general, p¥(1,q,D) # ph(2,q, D) and, consequently, P{” # PJ, where the
superscript indicates the corresponding observation time span (for an example,
see [34, Sec. 3.7.1]). In terms of the SDE (27), this is not surprising, since P

includes only one choice of momenta according to 7, while P35 does include two.

5.3 High—Friction Langevin Dynamics

The second example of a reduced positional dynamics is based on the Langevin
equation. We will see that in a specific high friction limit v — oo the Langevin
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equation acting on the state space reduces to the so—called high—friction Langevin
equation acting only on the position space.
Consider the Langevin equation (7) written in second order form

i = -V,V(g)—vi+oW. (29)

For the high friction case, let ¢ be a small positive parameter and consider
the transformed friction v/e. In order to preserve the temperature T of the
surrounding heat bath, we simultaneously have to scale the white noise constant
o — o /+/€ due to (15). This yields

7.

o g .
i = —VqV(Q)—;q+$W-

After rescaling the time according to ¢ — € t one gets
G = =V V(g) —vd+oW.

For systems of type (B), for which the gradient of V satisfies a global Lipschitz
condition, and 0 < € < 1 one may neglect the e¢?~term [30, Thm. 10.1] and
finally get the high—friction Langevin equation?®

1 fo
—=V, V(g) + W 30
SV (9) 5 (30)

q:

modelling the high friction positional dynamics within the canonical ensemble.
The stochastic differential system (30) defines a continuous time Markov process
{Q:}icrg on the position space  with corresponding transition kernel p(t, ¢, C).
The process leaves the canonical measure pg invariant [32).

As for the general Langevin dynamics (16) in state space, the continuous
time semigroup of forward transition operators {P;};,crgs may be defined in
terms of its infinitesimal generator [19]:

o? 1

A = WAq—;VqV(q)'Vq (31)

acting on a suitable subspace of L'o(2). As a consequence, one gets

Pt:LTQ(Q) — LTQ(Q)
uw +— Pu=exp(tdu. (32)

Thus, every probability density u = u(g, t) with respect to ug evolves according
to the Fokker—Planck equation dyu = Au and its solution is formally given by
(32).

It is shown in [36, 4] that for systems of type (B) the semigroup of forward
transition operators satisfies the requirements of Subsection 5.1. Furthermore,
{P:}icrg is a self-adjoint semigroup in L% (), since the infinitesimal generator
A is self-adjoint with respect to {-,-)g [36].

2Tn contrast to the usual quasistatic approximation in mechanics, we cannot simply assume
that the accelaration § is bounded since the white noise process is unbounded. However, the
investigation in [30] shows that the Langevin solution ¢f . (; o, po) and the solution ggic(t; o)
of (30) satisfy for all po, with probability one: lime—o |ggic(t) — gf o, (t)| = O uniformly for ¢
in compact subintervals of [0, co).
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Remark. The physical density f(q,t) = u(g,t)Q(q) (see introduction to Sec-
tion 3) evolves according to the Fokker—Planck equation &y f = A* f, where A*
denotes the formal adjoint of A, ie., A* = ¢?/(2v*)A, + 1/7V,V(g) - V, +
178,V (q) (see [19]).

Almost Invariance and First Exit Times. Due to experimental require-
ments, almost invariance of conformations is defined at discrete points in time
(see Eq. (21)):

Ddiscr (ta Ca C) = P[QS - C:Pl::czﬂzeoc?jnd — t] ’ (33)

This definition also holds for the continuous time Markov processes. However,
one could alternatively want to characterize almost invariance of conformations
based on continuous ttme observations:

P[Q, € C: forall s € [0,¢]]

pcont(t;07 C) = P[QO < C] . (34)

Obviously, the two definitions will in general produce different result, since the
former definition does not take into account fluctuations in between the two
instances. However, in contrast to the latter definition, the former one can be
realized by the two-step experiment from Section 4.1.

Mathematically, both characterizations are closely related by Fokker—Planck
equations on appropriate function spaces. Let Tg denote the first exit time of
the Markov process {Q:};crs, started at time zero in ¢ € C, from an open
subset C' C Q,

4 = inf{t>0:Qq) ¢ C}. (35)

For open, bounded subsets C' with sufficiently smooth boundary dC the distri-
bution of exit times vo(g,t) = Plrd > t] = P[Q,(¢q) € C : forall s € [0,1]]
for ¢ € C is given by the Fokker-Planck equation on C'U dC with Dirichlet
boundary conditions:

dv = Av, v(-,0) = x¢ and v(-,t) =0for all ¢t > 0.

In contrast, uc(g,t) = P[Qs(g) € C : s = 0 and s = ] satisfies the Fokker—
Planck Cauchy problem on Q:

Oyu = Au, uw(-,0) = x¢

(with implicit “transparent boundary conditions”). With respect to the above
two characterization of almost invariance, we finally get

Pdiscr (tv C: C) = UC’(q7 t) Q((J) dq

=) ).

and

Peomt(1,C,C) = le@mqm@



5.4 Justification of the Algorithmic Strategy

Here, we want to pick up the algorithmic strategy presented in Section 4.3 and
state more precisely how one can use eigenvectors corresponding to eigenvalues
near the Perron root 1 in order to identify almost invariant subsets. In the
following, we fix a time s € M and—in accordance with the properties of the
above two examples—we assume that the transition operator P; is self-adjoint
in L% (). Moreover, for the sake of simplicity, we restrict our considerations to
the case that the Perron root is “nearly two—fold degenerate”, i.e., we assume
that the spectrum of P; has the form

o(Ps) C [-r,r]U{ 2} U{1},

with 0 < r < Ay < A1 = 1; furthermore, we assume that A1 and \; are simple
eigenvalues. The eigenvector corresponding to A1 = 1is xq, while we denote the
eigenvector corresponding to A2 by ¢ € L(f) with normalization ||¢||g = 1.
Note that (¢, xa)o = 0.

Nonrigorous Approach. One intuitive idea is to interpret almost invariance
as “perturbed invariance”. Therefore, we assume that the above transition
operator results from a continuous perturbation of some self-adjoint Markov
operator P with degenerate, two-fold Perron root and invariant measure u. If
the degeneracy of the Perron root is caused by the existence of two disjoint
invariant sets, say C' and C° = Q\ C, the eigenspace E; of the Perron root is
spanned by the eigenvectors y¢ and yc-. Neither C' nor C° are invariant sets of
P,, however, x¢/u(C) and xc-/u(C?) remain to be “approximative” invariant
densities of P,, in the sense that (compare Section 4.3)

1 1
‘ P

s~ XC — —e ~ 0.
w(CYXe T wey*e

1

By means of the general formula (24), this implies that C' as well as C° are
almost invariant sets of P;. Since xq is a common eigenvector of P and P;, we
choose another orthonormal basis of E; = span{xq, uc} with

©(C°) w(C)

(@ X T ey X

uc (36)

Since P; is assumed to be a continuous perturbation of 13, we have to expect that
the so-defined u¢ is an approximation of the eigenvector ¢ of Py corresponding
to A2. This motivates the algorithmic strategy to identify the almost invariant
sets via the second eigenvector ¢ (or —¢) according to

C=~{q: ¢(g) >0} and C° =~ {g: ¢(q) <0} (37)
For more details concerning the identification algorithm for the more general

case see [13].

Rigorous Approach. Although the perturbation analysis yields an intuitive
understanding of the form of the second eigenvector of P,, we subsequently will
not assume any kind of perturbation embedding of P; but rather proceed in
another way towards a rigorous justification of the following “equivalence”:
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Decomposition into almost Eigenvalue cluster {1, A2} separated

invariant subsets = C U C°: from remaining spectrum: (38)
p(s,C,C°%) = 0, =
C~ {g: ¢(g) >0} e=12 <1

The following rigorous statements are closely similar to the results of E.B.
Davigs [7]. To simplify reference to his results, let us denote by 72 and p the
positive values with

Ay = exp(-smp) and 1 = exp(—sp),

where s denotes the initially fixed time span. For the “<”-direction in (38),
we assume that € = (1 — A2)/(1 — r) is small enough, and introduce ¢ = ||¢||co
satisfying ¢ > 1. Due to [7],® there exists C € A given by C = {q : ¢(q) > 0}
such that 3 < u(C) <1 - 3 and

¢ —ucl: < deve
Furthermore, the subset C is almost invariant with
p(ns,C,C°% < Ke(l+ pns), forallneN,

where K depends on ¢ and u(C), and is independent of e.
For the “="-direction in (38), we assume that C is almost invariant with

p(ns,C,C%) < K§(1+pns), foralnéeN,

with K = # and sufficiently small § > 0. Then, we again get that uc
approximates the second eigenvector in the sense that ||¢ — uclls < V26, and
that, due to Thm. 5 in [7], 0 < n2/p < 6 implying

1—19

1—¢"

Thus, the formal equivalence (38) can be taken seriously. The above state-
ment can be generalized to the situation of more than one eigenvalue close to
the Perron root, but bounded away from the remaining part of the spectrum
(see [8]).

Remark. We are aware of the fact that the above assumption ¢ < 1 on
the distribution of the eigenvalues is quite restrictive. However, we observed
intriguing results of the identification strategy even for situations corresponding
to e-values close to 1 [13].

3The proofs of Thms. 3 and 5 of [7] have to be adapted to our situation. In the proof of
Thm. 3, the arguments using the generator H have to be replaced by analogous arguments
for 1 — Ps.
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pectr proxation of ansf Opa-
tors

We are interested in fluctuation within the canonical ensemble for some fixed
observation time span r. As aresult, we restrict our consideration to the time
s transition operator Py with s = r or s = 1 for the high-friction Langevin
equation or the discrete time Markov chain with the same observation time in
(26), respectively. Since both associated semigroups of transfer operators are
self-adj;)i nt, we assume in this section, that P is a self-adjoint operator acting
on LU).

6.1 alerkin Discretization

In order to compute the conformational subsets exploiting certain eigenvectors
of Ps, wewill introduce a special Galerkin procedure to discretize the eigenvalue
problem P =X

Let B\,... ,B c¢ Vtbe a partition of Vtsuch that B, n Bi —O for k ~ |
and 6"-,Bk = 0,. Our finite dimensional ansatz space V, = spanjXi,... X}
is spanned by the associated characteristic functions \k = XB- Then, the
Galerkin projection | :L%i}) —V o € L%Q(Q) is defined by

5 | A—XK)oXK
f- XkXk

Note that {xk,XK)Q = Jg Q(?)dg is simply the weight of the subset B". The
resulting discretized transition operator n,,Psn induces the approximate eigen-
vaue problem n, Psil,u = All,w in V,. Using u —"221 Xk the discretized
eigenvalue problems in coordinate representation reads

Xkxi)o i = XkxkQk Vie= | .,

After dividing by XkXk)a 0, we end up with the convenient form
w i t h .

The entries of the nxn matri are given by the one step transition probabilities
from Bk to Bi

S FSXTeXIQ =p(sBB) 39)
XkXK)Q

Since Ps is a Markov operator, its Galerkin discretization S is a (row)
stochastic matrix, i.e., i Oand JLi $ki = 1for allfc= 1,... ,n. Hence, al
its eigenvalues A satisfy || < 1. Moreover, we have the following four important
properties [35 34]:

1. The row vector -K = (m,..., n,) with wt —Js Q(q) dg, which represents
the discretized invariant density Q, is a left eigenvector corresponding to
the eigenvalue A= 1 ie., wS = n.



