Indices and Applications

in High-Throughput Sequencing

Dissertation zur Erlangung des Grades eines
Doktors der Naturwissenschaften (Dr. rer. nat.)
vorgelegt von

David Weese

am Fachbereich Mathematik und Informatik
der Freien Universitat Berlin

Berlin 2012

Datum des Disputation: 03.06.2013

Gutachter:
Prof. Dr. Knut Reinert, Freie Universitdt Berlin, Deutschland
Prof. Dr. Laurent Mouchard, Université de Rouen, Frankreich

fiir Nadine, Helene und Johan

Short Abstract

During the last years, sequencing throughput increased dramatically with the introduc-
tion of so-called high-throughput sequencing. It allows the production of billions of base
pairs (bp) per day in the form of reads of length 100 bp and more, and current develop-
ments promise the personal $1,000 genome in a couple of years. These advances in se-
quencing technology demand for novel approaches and efficient data structures specif-
ically designed for the analysis of mass data. One such data structure is the substring
index, that represents all substrings or substrings up to a certain length contained in a
given text.

In this thesis, we present three different substring indices and their applications in
the analysis of high-throughput sequencing data. Our contribution is threefold: first, we
extend the indices which were originally designed to index a single sequence to be appli-
cable to datasets consisting of millions of multiple strings. Further, we implement algo-
rithms for the internal memory construction of each index and devise efficient external
memory algorithms for indexing large datasets, e.g. multiple mammal genomes. To make
all indices easy-to-use we provide a uniform framework for accessing the generalized
suffix tree and use it to exemplarily implement three iterators for searching repeats. For
the exact and approximate string matching problem we provide index based filtering al-
gorithms and algorithms recursively descending suffix trees.

Second, we present RazerS, a read mapper that aligns millions of single or paired-
end reads of arbitrary lengths to their potential genomic origin using either Hamming or
edit distance. Our tool can work either lossless or with a user-defined loss rate at higher
speeds. Given the loss rate, we present a novel approach that guarantees not to lose more
reads than specified. This enables the user to adapt to the problem at hand and provides
a seamless tradeoff between sensitivity and running time. We develop two index based
filters and a banded variant of Myers’ bit-vector algorithm to efficiently reduce the align-
ment search space and use OpenMP for shared-memory parallelism. We compare RazerS
with other state-of-the-art read mappers and show that it has the highest sensitivity and
a comparable performance on various real-world datasets.

Third, we propose a general approach for frequency based string mining, which has
many applications, e.g. in contrast data mining. Our contribution is a novel and light-
weight algorithm that is based on a deferred index data structure and is faster and uses
less memory than the best available algorithms. We show its applicability for mining
multiple databases with a variety of frequency constraints. As such, we use the notion of
entropy from information theory to devise the entropy substring mining problem which is
a multiple database generalization of the emerging substring mining problem. In addition
we evaluate the algorithm rigorously using various string domains, e.g. natural language,
DNA, or protein sequences. The experiments demonstrate the improvement of our algo-
rithm compared to recent approaches.

All data structures, algorithms, and tools proposed in this thesis are part of SeqAn
the generic C++ template library for sequence analysis, which is publicly available under
http://www.seqgan.de/ and supports Linux, Mac OS X, and Windows.

http://www.seqan.de/

vi

Zusammenfassung

In den letzen Jahren konnte der Sequenzierdurchsatz mit Einfiihrung sogenannter Hoch-
durchsatz-Sequenziertechnologien dramatisch gesteigert werden. Sie erzeugen mehrere
Milliarden Basenpaare pro Tag in Form von Reads der Lange 100 bp und mehr und aktu-
elle Entwicklungen versprechen das personliche 1000-Dollar-Genom in den kommenden
Jahren. Diese technologischen Fortschritte erfordern neue Ansatze und effiziente Daten-
strukturen, die speziell fiir die Analyse von Massendaten konzipiert sind. Eine solche Da-
tenstruktur ist der Substring-Index, welcher alle Substrings oder Substrings bis zu einer
festen Lange reprasentiert, die in einem Text vorkommen.

In dieser Arbeit prasentieren wir drei verschiedene Substring-Indizes und Anwen-
dungen in der Analyse von Hochdurchsatz-Sequenzierdaten. Die urspriinglich auf eine
einzelne Sequenz beschrankten Indizes werden zunéchst fiir die Indizierung mehrerer
Millionen Sequenzen erweitert. Weiter implementieren wir Algorithmen zum Aufbau von
Indizes im Hauptspeicher und entwickeln effiziente Sekundarspeicheralgorithmen fiir
die Indizierung grofier Datensitze, bspw. mehrerer Sdugetiergenome. Zur einfachen Be-
nutzbarkeit stellen wir ein Framework zur Verfiigung, das einen einheitlichen Zugriff auf
den verallgemeinerten Suffixbaum erlaubt und benutzen jenes, um exemplarisch 3 Itera-
toren zur Repeatsuche zu implementieren. Auflerdem stellen wir Algorithmen bereit zur
exakten und approximativen Stringsuche mittels indexbasierten Filteralgorithmen oder
dem rekursiven Abstieg in Suffixbaumen.

Ferner, stellen wir RazerS vor — ein Programm, das einfache oder gepaarte Reads be-
liebiger Lange an ihren potentiellen genomischen Ursprung aligniert. RazerS kann ent-
weder vollsensitiv oder mit einer spezifizierten Verlustrate und hoherer Geschwindigkeit
verwendet werden. Wir stellen einen neuen Ansatz vor, mit dem eine geforderte Mindest-
sensitivitdt garantiert werden kann. So wird dem Benutzer ein nahtloser Trade-off zwi-
schen Sensitivitat und Laufzeit ermoglicht. Um den Alignment-Suchraum zu verkleinern,
haben wir zwei indexbasierte Filter und eine optimierte Variante von Myers’ Bitvektoral-
gorithmus implementiert, und benutzen OpenMP zur Parallelisierung. Wir vergleichen
RazerS mit aktuellen Read-Alignment Programmen und zeigen auf verschiedenen Real-
datensatzen, dass es die hochste Sensitivitat bei vergleichbarer Geschwindigkeit erzielt.

Zuletzt stellen wir einen generischen Ansatz fiir das frequenzbasierte String Mining
vor mit Anwendungen bspw. im kontrastiven Data Mining. Unser Beitrag ist ein neuer Al-
gorithmus, der einen dynamisch aufgebauten Suffixbaum verwendet und schneller und
speichersparender ist als die besten verfligbaren Algorithmen. Wir zeigen die Anwend-
barkeit fiir das String Mining mehrerer Datenbanken an Hand einer Reihe von Suchpro-
blemen. Als ein solches fithren wir das entropiebasierte String Mining Problem als Ver-
allgemeinerung des Emerging String Mining Problems ein. Wir bewerten unseren Algo-
rithmus auf verschiedenen Datenbasen, bspw. natiirlichsprachlichen Texten, DNA- und
Proteinsequenzen. Die Experimente demonstrieren die Verbesserung unseres Algorith-
mus gegeniiber existierenden Ansatzen.

Alle Datenstrukturen, Algorithmen und Programme in dieser Arbeit sind Teil von
SeqgAn, der generischen C++ Template-Bibliothek fiir Sequenzanalyse, verfligbar unter
http://www.seqan.de/ und unterstiitzen Linux, Mac OS X und Windows.

http://www.seqan.de/

vii

Acknowledgments

Doing a PhD and writing this doctoral thesis would never have been possible without the
help and support of many kind people around me. The first and foremost to mention
is my advisor Knut Reinert, who taught me how to do research and provided a pleasant
and stimulating working environment. Thank you for your guidance, inspirations, un-
shakable optimism, and many shared laughs. I really appreciate you being my doctoral
father.

[want to express my gratitude to Laurent Mouchard who is willing to appraise this
thesis and acknowledge the financial support of the Federal Ministry of Education and
Research and the NaF6G-grant awarded by the Berlin City Council.

Thank you, Marcel and Hugues, for exciting joint multinational projects, of which I'm
sure many will follow, and for the memorable trips to Stockholm and Cambridge. Marcel,
don’t give up the hope, next time we’ll win the “Steps to Success” award. Many thanks to
the current and former members of the Bioinformatics and Software Engineering groups
at the Freie Universitat Berlin. Danke, Markus and Ole, for your great Schméh and the
bad jokes. Our exceptional teamwork made it possible to win the pub quiz consolation
prize.

Thank you, Andreas, Anne-Katrin, Birte, Enrico, Manuel, Sandro, and Tobi, for many
joint SeqAn projects in the past and future; Sandro, Chris, and Stephan, for delightful
evenings in Berlin’s best schnitzel and burger restaurants; and all the others for a great
time during and after work: Alex, Anja, Christopher, Clemens, Edna, Eva, Gesine, Isabella,
Jochen, Julia, Kathrin, Martin, René, Uli, and Sally.

Last but not least, | thank my parents and my family for their continuous and uncon-
ditional support. I dedicate this work to Nadine, for backing me up and providing the
time for writing, and to Helene and Johan for making me forget the tough days. Johan,
don’t mind the drowned Macbook, the new one is much better.

viii

“More engineering work has to be done to improve the practical perfor-
mance of these index structures (...) These implementations should be grouped
under a common interface in libraries (...) One such library-project (...) is the
SeqAn library.”

Vyverman et al. [2012]

CONTENTS

Partl Introduction
1. Introduction
1.1 Preface. e
1.2 Sangersequencing ittt
1.3 High-throughput sequencing technologies
1.4 Applications of high-throughput sequencing
1.5 OVerview o
1.5.1 Indexdatastructures.t
1.52 Readmapping i e
1.5.3 Frequencystringmining
2. Mathematical Preliminaries,
2.1 Notations o e
2.2 Relations e e
2.3 Suffixtree e
2.4 Transcriptsandalignments.
2.5 Approximate matching
PartIl Index Data Structures
3. Enhanced Suffix Array
3.1 Definitions
3.1.1 Suffixarray
3.1.2 LCPtable e
3.1.3 Childtable
3.2 Representation
3.3 Construction of the suffixarray
3.3.1 Thelinear-time algorithm by Karkkdinenetal..
3.3.2 Differencecovers
3.3.3 Ouralgorithms e
3.3.4 Externalmemoryvariant
3.3.5 Extension to multiplesequences
3.4 Constructionofthelcptable
3.4.1 The linear-time algorithm by Kasaietal.
3.4.2 Space-savingvariant
3.4.3 Adaptationtoexternalmemory. e

3.4.4 Extensionto multiplesequences

O© 00 N O U1 o W W =

[UnN
o

13
13
14
15
17
19

23

3.5 Constructionofthechildtable 47
3.5.1 Bottom-up suffixtreetraversal 47

3.5.2 The linear-time algorithm by Abouelhodaetal. 47

3.5.3 Adaptation to external memory and multiple sequences 49

3.6 Applications e 51
3.6.1 Searchingthesuffixarray 51

3.6.2 Traversing the suffixtree 53

3.6.3 Accessing the suffixtree 57

3.64 Repeatsearch 58

4. Lazy SuffixTree e e e e 65
41 Thewotdalgorithm 65
4.2 Lazy construction and representation 66
4.2.1 Theoriginaldatastructure 68

422 Ourdatastructure it 70

4.2.3 Extension to multiple sequences 73

4.3 Applications 73
4.3.1 Traversing and accessing the lazy suffixtree 74

43.2 Radixtrees 76

4.3.3 Multiple exactpatternsearch 76
4.3.4 Approximate patternsearch. 78

5. g-gramIndex e e 83
5.1 Definitions 83
5.2 Thedirectaddressingg-gramindex. 84
5.3 Construction e 84
5.3.1 Countingsortalgorithm 85

5.3.2 Extension to multiple sequences 85

5.3.3 Adaptationto externalmemory. 86

5.4 The open addressing g-gramindex, 86
5.5 Applications e 88
5.5.1 gq-gram counting filters for approximate matching 90
PartIIl Applications 95
6. ReadMapping e e 97
6.1 Relatedwork 97
6.2 TheRazerSalgorithm 100
6.3 Definitions 101
6.4 Filtration 102
6.4.1 SWIFTAilter 102

6.4.2 Pigeonholefilter. 103

6.5 Lossy filtration and prediction of sensitivity 104
6.5.1 Sensitivity calculation of g-gram counting filters. 105

6.5.2 Sensitivity calculation of pigeonholefilters 109

6.5.3 Choosing filtration parameters 110

6.6 Verification e e 111

xi

6.6.1 Hamming distance verification 111

6.6.2 Editdistance verification 112

6.7 Paired-end mapping e 117
6.8 Matchprocessing. 118

6.9 Parallelization 119
6.10 Experimentalresults 119
6.10.1 Comparing the SWIFT and pigeonholefilters 120

6.10.2 Analyzing the sensitivity estimationaccuracy 121

6.10.3 Achievedspeedup. 125

6.10.4 Rabemabenchmarkresults 125

6.10.5 Variantdetectionresults 126

6.10.6 Performance comparison, 127

7. Frequency StringMining e 131
7.1 Relatedwork 131

7.2 Definitions e 132
7.21 Predicates 133

7.22 Monotonicity 135

7.2.3 Conjunctive predicates 136

7.3 Monotonichull 136
7.4 The linear-time algorithm by Fischeretal. 137
7.4.1 Theoriginalalgorithm 137

7.4.2 Spaceefficientvariants. L 138

7.5 Afastalgorithm based on lazy suffixtrees 139
7.5.1 The deferred frequencyindex 139

7.5.2 Algorithmicdetails 141

7.6 Experimentalresults 142
7.6.1 Twodatabases. 144

7.6.2 Multipledatabases 145

7.6.3 Detection of species specific protein domains 145

8. Conclusionand FutureWork, 149
A, AppendixX e e e 153
A.1 High-throughput sequencing technologiesindetail 153
A2 Provingsensitivityrecursions L o 156
A.3 Read mapper parametrization 157
A4 Extended variation detectiontables L. 158
A.5 Extended performance comparisontables 159
A.6 Provinghulloptimality 163

B. CurriculumVitae. e 165
C. Declaration 169
Bibliography 170

xii

Part1

INTRODUCTION

CHAPTER

1 Introduction

1.1 Preface

In February 2001, press releases announced that two groups, the publicly funded Hu-
man Genome Project [Lander et al, 2001] and the private company Celera Genomics
[Venter et al, 2001], independently completed a mammoth project whose challenging
aim was nothing less than decoding the entire human genome, i.e. the sequence of the
3,000,000,000 nucleotides contained in the nucleus of each of our cells, defining the
shape of our body or our susceptibility to certain diseases.

Sequencing a DNA of that scale was only possible with improvements of the original
Sanger sequencing technology, like the automated capillary electrophoresis. However,
while it took 10 years and $300-$1000 million to sequence the human genome in those
days, the same amount of data can nowadays be sequenced with commercially available
high-throughput sequencers in a couple of days for less than $10,000, and current devel-
opments of sequencing technologies promise the personal $1,000 genome in a couple of
years.

The sequence of the whole genome, the set of all DNA molecules in a cell, provides
insights into the mechanisms of inheritance and evolutionary history of an organism.
Comparison studies of human genomes allow to detect single nucleotide polymorphisms
(SNPs) or large structural variations and to associate them with specific diseases. Those
associations allow to improve diagnoses, to earlier detect genetic predispositions to com-
mon diseases, and to develop gene therapies or personalized medicine.

DNA is a double-stranded polymer, two chains that entwine in the shape of a double
helix. The chains are composed of four building blocks, the nucleotides adenine (A), cyto-
sine (), guanine (G), and thymine (T). The nucleotides in both strands are complementary
and form base pairs (bp) via hydrogen bonds, i.e. A is linked to T and C is linked to G, see
Figure 1.1a. Thus, one strand can be reconstructed from the other, which is done to repli-
cate DNA during cell division. The strands have a direction and are antiparallel. Each is
read from five prime (5’) to three prime (3’) end, referring to the fifth and third carbon
atom in the sugar rings of the DNA backbone. In cells of human and other diploid organ-
isms the DNA is organized in chromosome pairs (23 in human) consisting of recombinant
maternal and paternal chromosomes.

The DNA is the carrier of all genetic information and consists of thousands of genes,
the blueprints of protein molecules. Proteins play an important role in almost all cell
functions, e.g. as enzymes that catalyze metabolic pathways, as signal transducers, or as

000000

mANA Transcription

Tggrraat
Rl
/ Mature mRNA

Adenine Thymina

—)

Guanine Cytosine

Transport to cytoplasm for
protein synthesis (translation)

Sugar phosphate
backbone

Cell membrane

(a) DNA (b) protein synthesis

Figure 1.1: The DNA (a) consists of two anti-parallel strands of complementary nucleotides
(base pairs). DNA is transcribed to mRNA and outside the cell nucleus trans-
lated into proteins (b).

contractile proteins involved in muscle contraction. When a protein needs to be syn-
thesized, the corresponding genes are transcribed into RNA, a single-stranded polymer
consisting of the same building blocks as DNA except for thymine which is replaced by
uracil (U). After non-coding parts are removed (splicing), the RNA is prepared and trans-
ported outside the cell nucleus, where it is then translated into a chain of amino acids, the
building blocks of proteins. Besides its function as a messenger (mRNA) that encodes a
protein, RNA is responsible for regulating the expression of genes or the transport of
amino acids (tRNA) during protein synthesis, see Figure 1.1b.

High-throughput RNA sequencing (RNA-seq) reveals the sequence and relative quan-
tity of RNA molecules present in a specific cell, tissue, or organ. It provides insights into
the mechanisms of gene regulation and how these mechanisms are disturbed in tumor
cells. Furthermore, RNA-seq enables identification of novel genes and different transcript
isoformes, i.e. different variants how exons of a gene are spliced into mRNA and the dif-
ferent protein isoforms they encode. RNA molecules can be sequenced with any DNA
sequencing technology after a prior synthesis of the missing complementary strand with
the enzymes DNA polymerase and reverse transcriptase.

1.2 Sanger sequencing

The foundation for today’s DNA sequencing methods was laid by Sanger et al. [1977].
Sanger and coworkers invented a sequencing method based on chain-terminators that
stop the polymerase chain reaction (PCR). DNA polymerase is an enzyme involved in
the replication of DNA during cell division. After the double-stranded DNA is unwound

technology instrument run time yield read length costs error rate

[Mb/run] [bp] [$/Mb] [%]
Sanger 3730x1 (capillary) 2h 0.06 650 1500 0.1-1
[llumina HiSeq 2000 8d 200,000 2x100 0.10 =>0.1
SOLiD SOLiD 4 12d 71,400 50 +35 0.11 > 0.06
Roche/454 FLX Titanium 10h 500 400 12.4 1
SMRT" PacBio RS 0.5-2h 5-10 860-1100 11-180 16
HeliScope™ Helicos N/A 28,000 35 N/A N/A

Table 1.1: Approximate run times, yields, read lengths, costs, and sequencing error rates of
different high-throughput sequencing technologies by mid 2011 [Glenn, 2011].

and dehybridized into two single strands, polymerase replicates the complementary of
each strand by sequentially incorporating complementary nucleotides. For the first time,
Sanger et al. utilized terminating nucleotides that immediately stop the replication after
incorporation. The DNA template is first replicated multiple times (amplification) and
then replicated in four solutions (A, C, G, and T) each of which contain all nucleotides and
one terminating nucleotide in low concentration. After that, each solution contains en-
tire copies and partial copies that end with the known terminating nucleotide, e.g. the
solution with all four nucleotides and the terminating C contains prefixes of the comple-
mentary template strand that end with a C. A subsequent gel electrophoresis of the four
sets is used to separate the prefixes by their lengths and directly reveals the template se-
quence. In the gel, a molecule migrates with a speed inversely proportional to its length.
Thus the maximal read length that can be sequenced by the Sanger method is limited to
300-1000 nucleotides; for longer reads the relative length difference of one nucleotide
is not accurately measurable.

In DNA sequencing by capillary electrophoresis, as used for sequencing the human
genome, the four terminating nucleotides are marked with four fluorescent dyes such
that only one instead of four separate reactions are necessary per template. Capillaries
filled with gel replace the slab gel used in Sanger sequencing and enable sequencing many
templates in parallel. At the end of each capillary, a laser and detector determines the
terminating nucleotide of the molecules that leave the capillary in the order of their size.

1.3 High-throughput sequencing technologies

During the last years, sequencing throughput increased dramatically with the introduc-
tion of so-called high-throughput sequencing (HTS), also known as deep sequencing or
next generation sequencing (NGS). It allows the production of billions of base pairs (bp)
per day in the form of reads of length 100 bp and more. Since 2004, when 454 Life
Sciences released the first commercially available HTS sequencing machine, throughput
continues to increase and new technologies provide longer reads than currently avail-
able. Moreover, the sequencing costs decrease more rapidly than the costs for hard disk
storage or Moore’s law for computing costs [Stein, 2010].

Currently available high-throughput sequencing platforms are ABI SOLiD (Life Tech-

nologies Corp.), HeliScope™ (Helicos Biosciences Corp.), [llumina (Illumina Inc.), SMRT"
(Pacific Biosciences Inc.), and Roche/454 (Roche Diagnostics Corp.). See Table 1.1 for
a comparison of their throughputs, run times, and expendable costs. Compared to se-
quencing by gel electrophoresis, a key improvement is to cycle and image the incor-
poration of nucleotides or to detect the incorporation in real time. Replacing the gel
tremendously reduced the sequencing costs and has made it possible to miniaturize and
parallelize sequencing. Common to all technologies is that the DNA is first fractionated
into smaller double-stranded fragments, which are optionally amplified, and then se-
quenced in parallel from one end. Additionally, most of the technologies provide a so-
called paired-end sequencing protocol in which the fragments are sequenced from both
ends. More details about the technologies mentioned above can be found in Appendix A.1.

One of the largest publicly available databases for nucleotide-sequence data is the Eu-
ropean Nucleotide Archive [Leinonen et al, 2011]. It contains the Sequence Read Archive
[Kodama et al., 2012] which was established in 2009 for the purpose of providing access
to raw data from high-throughput sequencing platforms for the wider research com-
munity. In 2011 the amount of publicly available sequencing data exceeded 100 tril-
lion base pairs of which 84 % account for the Illumina platform, whereas ABI/SOLiD and
Roche/454 comprised 12 % and 2 % respectively.

1.4 Applications of high-throughput sequencing

High-throughput whole-genome sequencing has become an invaluable technology for a
multitude of applications, e.g. the detection of SNPs [Hillier et al, 2008; Bentley et al,
2008; Ley et al.,, 2008; Wang et al., 2008] and large structural genome variations [Chen
et al, 2008], or for reference guided [Wang et al, 2008] and de novo genome assembly
[Li et al, 2010; Simpson and Durbin, 2012]. Sequencing environmental samples makes
it possible to detect the contained organisms in metagenomic assays [Huson et al., 2007;
Rodrigue et al., 2010]. The RNA-seq protocol, in which RNA is reverse transcribed into
cDNA and sequenced, enables the identification of genes and alternative splicing events
either annotation based [Richard et al.,, 2010; Roberts et al,, 2011] or de-novo [Robertson
etal,2010; Adamidietal., 2011; Schulz et al., 2012], and to quantify their abundance and
analyze gene expression levels [Mortazavi et al., 2008; Montgomery et al., 2010; Trapnell
et al, 2010]. Chromatin-immunoprecipitation of DNA followed by high-throughput se-
quencing (ChIP-seq) provides information on interactions between proteins and DNA,
e.g. to identify transcription factor binding sites [Schmidt et al., 2010], histone modifica-
tion patterns [Barski et al., 2007], or methylation patterns [Meissner et al., 2008].

A common challenge in all these applications is to efficiently compare large amounts
of sequences against each other, be it to search for the genomic origin of sequenced reads
in a reference genome (read mapping), to find overlaps between sequenced reads (se-
quence assembly, read error correction), or to find sequence motifs that either have been
conserved in different organisms (genome alignment) or are specific for a certain organ-
ism, disease, or transcription factor (frequency string mining). Depending on the type of
sequences, the comparison can either be exact or needs to be tolerant to different types

of errors.

The first type of errors are sequencing errors resulting from wrong base calls. All
technologies that use clusters for signal amplification (Illumina, SOLiD, Roche/454) re-
quire that each cluster contains thousands of identical molecules which are sequenced
synchronously. In a synchronization loss the combined signal of one cluster consists of
the sum of signals of the current base and their neighbors in the DNA template and leads
to an increase of mis-calls towards the end of the reads. Technologies that use the sig-
nal intensity (Roche/454) or length (SMRT") to determine the length homopolymer runs
cannot reliably detect the length of large runs due to the resolution limit or speed varia-
tions of the DNA polymerase. Such technologies typically produce reads with insertions
or deletions in homopolymer runs. Deletions of bases may also occur in technologies
that omit a prior template amplification (HeliScope™, SMRT") due to undetected signals.
However, errors in the sequencing process can be discerned by using base-call quality
values and redundancy like a high base coverage, e.g. 20 and higher [Dohm et al., 2008].

The second type of error results from variations in the DNA between different or-
ganisms or between different cells of the same organism. These variations can be due to
mutations in DNA which are part of the evolutionary process. Errors in the replication of
DNA cause substitutions, deletions and insertions of nucleotides.

The recent advances in sequencing technology demand for novel approaches and ef-
ficient data structure specifically designed for the efficient analysis of mass data. In this
work, we propose such data structures, called (substring) indices, that represent all sub-
strings or substrings up to a certain length contained in a given text. Indices have applica-
tions in almost all above-mentioned HTS applications. We use them in filters to efficiently
discard dissimilar regions and reduce the number of costly sequence alignments in DNA
read mapping [Weese et al, 2009, 2012], short RNA read mapping [Emde et al., 2010],
structural variation detection [Emde et al, 2012], fast local alignment [Kehr et al., 2011],
or reference guided assembly [Rausch et al, 2009]. Their applicability to repeat search
in multiple large sequences allows us to efficiently find identical, conserved regions and
extend them to multiple genome alignments [Rausch et al., 2008]. We use their suffix tree
representation to efficiently count frequencies in multiple databases for frequency based
string mining [Weese and Schulz, 2008], to anchor reads with identical substrings to cor-
rect sequencing errors without a reference genome [Weese et al.,, 2013], or to construct
variable order Markov chains [Schulz et al., 2008a].

1.5 Overview

In this thesis, we describe the design and implementation of three different index data
structures and prove their applicability in two HTS applications. Chapter 2 gives fun-
damental mathematical definitions required throughout this thesis. Beginning with es-
sential definitions of strings and alphabets in Section 2.1, we define orders on them in
Section 2.2. Section 2.3 introduces the suffix tree, a fundamental index of all substrings
of a single string or multiple strings. To be able to compare substrings with errors, we
define string distances and how to efficiently compute them in Section 2.4. Finally, we

define the approximate pattern matching problem in Section 2.5 and how to find all text
occurrences of a pattern within a given string distance via dynamic programming. The
subsequent parts cover our own contributions, whereby Part Il proposes three index data
structures for high-throughput sequencing and Part Il shows how to apply them to de-
velop efficient HTS applications that can compete with available state-of-the-art tools.

All data structures, algorithms, and tools proposed in this thesis have been integrated
into SeqAn [Ddring et al., 2008] the generic C++ template library for sequence analysis,
which is publicly available under http://www.segan.de/ and supports Linux, Mac OS X, and
Windows.

1.5.1 Index data structures

The suffix tree, first proposed by Weiner [1973], plays an important role in sequence
analysis and comparative genomics. It represents all substrings of a text of length n in
O(n) memory, can be constructed in O(n) time' [Weiner, 1973], and supports exact string
searches in optimal time. In the following years, practically faster linear-time construc-
tion algorithms were proposed that use less memory [McCreight, 1976] or read the text
in a sequential scan [Ukkonen, 1995]. However, its space consumption of roughly 20n
bytes makes it inapplicable to large analyses of whole genomes.

In Chapter 3, we describe the enhanced suffix array [Abouelhoda et al., 2002a], amore
memory efficient representation of the suffix tree, and define in Section 3.1 and 3.2 the
three contained tables: suffix array, Icp table, and child table. In the following sections
(3.3-3.5), we show how to construct them in linear time and contribute new algorithmic
variants for texts consisting of multiple strings and the efficient construction of large in-
dices in external memory. In Section 3.6, we describe how to search the enhanced suffix
array and contribute an easy-to-use iterator interface that allows traversing and access-
ing the suffix tree represented by the enhanced suffix array. We additionally provide
three application-specific iterators for searching repeats.

The second index is the lazy suffix tree [Giegerich et al., 2003], a deferred data struc-
ture proposed in Chapter 4. This deferred data structure is top-down constructed on de-
mand and a more efficient alternative to the enhanced suffix array for applications where
only an upper fraction of the suffix tree needs to be traversed. After proposing the origi-
nal lazy suffix tree data structure and its construction algorithm in Sections 4.1 and 4.2,
we introduce a new lazy suffix tree which is applicable to multiple strings and creates
suffix tree nodes in lexicographical order. Providing the same suffix tree iterator inter-
face we make it a transparent replacement of the enhanced suffix array in Section 4.3.
Moreover, it enables to sample the suffixes used for the suffix tree construction, e.g. to
construct a radix tree of multiple strings. At the end of the chapter, we show how to use
two suffix trees in parallel for multiple approximate pattern matching.

Much simpler but adequate for many applications is the g-gram index introduced in
Chapter 5. Its functionality is limited to counting and retrieving all occurrences of fixed-
length patterns but it can be constructed and accessed much faster than the two previous

1 assuming a constant-sized alphabet

http://www.seqan.de/

indices. We first define contiguous and gapped g-grams in Section 5.1 and how to com-
pute their ranks, which are required to address buckets of the direct addressing g-gram
index described in Section 5.2. Since the O(|Z|?) memory footprint of the direct address-
ing index may become prohibitive for large alphabets or large values of q, we introduce
the open addressing g-gram index in Section 5.4 which has a memory consumption lin-
ear in the size of the text. The chapter concludes with applications of g-gram indices in
Section 5.5. We describe two filters based on g-gram counting capable of accelerating
approximate pattern matching algorithms.

1.5.2 Read mapping

One of the challenges imposed by the new sequencing technologies is the so-called read
mapping problem which is the first fundamental step in almost all sequencing-based as-
says. It is to find the genomic position of each sequenced read in a known, so-called
reference, genome. Knowing the genomic origins of all reads enables in further down-
stream analyses the identification of structural variations (Figure 1.2), e.g. SNPs can be
detected and distinguished from sequencing errors given a sufficiently high coverage
[Dohm et al, 2008]; analyzing the read coverage of the reference reveals regions that
have been deleted or repeated in the sequenced genome; and unmapped or partially
mapped reads may indicate an insertion in the sequenced genome. In RNA-seq or ChIP-
seq experiments the read coverage can be used to detect unknown exons or protein-
DNA-interactions. Mapping reads sequenced from environmental samples to a database
of different reference genomes allows detection and abundance estimation of the con-
tained organisms from individual coverages. In the reference guided assembly, reads
that overlap in the reference are used to determine contiguous sequences (contigs) of
the sequenced genome.
Solving the read mapping problem requires to overcome numerous related issues:

e To incorporate errors between reads and reference, resulting from base miscalls
and differences between reference and sequenced genome, the reads have to be
aligned semi-globally while tolerating a certain number of mismatches and indels.

¢ Assequenced reads typically stem from both DNA strands, they must be aligned to
the forward strand and its reverse complement.

e Some reads originate from repetitive regions of the DNA and cannot uniquely be
aligned to a single position in the reference. In this case, all possible positions
should be reported.

The yield of hundreds of gigabases per sequencing run makes traditional alignment pro-
grams like BLAST [Altschul et al,, 1990] or the most efficient tools for mapping capillary
reads like SSHAHA [Ning et al, 2001] and BLAT [Kent, 2002] impractical to use.

In the last years many tools have been published for mapping short reads (30-60 bp)
that exploit characteristics of a specific sequencing technology, e.g. the low indel error
rate [Cox, 2006] or high-quality bases at the 5’-ends of Illumina reads [Li et al., 2008a],

10

to outperform classic alignment tools in terms of speed. However, these tools often sac-
rifice accuracy for speed and are only applicable to the technology they were developed
for. As a consequence, current read mappers have difficulties to map long reads with a
high number of errors with a high sensitivity. Moreover, many use heuristics that lack a
clear definition of the problem they solve, are hard to parametrize according to a specific
biological problem, or output only best matches under complicated and hardwired rules
[Li et al, 2008a; Li and Durbin, 2009].

We give a detailed overview of existing read mappers and their characteristics in Sec-
tion 6.1. In the subsequent sections, we formally define the read mapping problem we
consider and propose the algorithmic ideas of RazersS, an efficient read mapping tool that
allows the user to align single or paired-end reads of arbitrary length using either Ham-
ming distance or edit distance. Our tool can work either lossless or with a user-defined
loss rate at higher speeds. Given the loss rate, we present an approach that guarantees
not to lose more reads than specified. This enables the user to adapt to the problem at
hand and provides a seamless tradeoff between sensitivity and running time. RazersS uti-
lizes the g-gram index and g-gram based filters, which we describe in Chapter 5, a banded
variant of Myers’ [1999] bit-vector algorithm, and multi-core parallelization. We evaluate
the performance of our approach in comparison to other state-of-the-art read mapping
tools in various real-world experiments in Section 6.10.

1.5.3 Frequency string mining

The storage of sequences in databases alone does not guarantee that all hidden informa-
tion is readily available. A promising approach for knowledge discovery in databases
is to mine frequent patterns, which was reviewed by Han et al. [2007]. This general
paradigm can be applied in many application domains. For example, Hu and Liu [2004]
search for frequent patterns to condense opinions of customers from positive and nega-
tive product reviews, whereas others suggest mining of customer data to optimize mar-
keting strategies [Berry and Linoff, 1997]. Kobylinski and Walczak [2009] utilize fre-
quent patterns in the context of image classification by mining vertical, horizontal, and
diagonal sequences of discretized color and texture features of images. In [Birzele and
Kramer, 2006] frequent patterns are used as features for classification of protein sec-
ondary structures. Other applications are the design of microarray probes that allow
differentiation of groups of sequences under investigation [Fischer et al, 2005] or the
discovery of binding motifs of transcription factors [Mitasitinaité et al., 2008].

A gene is regulated by proteins, so-called transcription factors, that bind to its pro-
moter sequence. A common approach is to contrast promoter sequences of genes that are
believed to be regulated by the same factor with promoters of unrelated genes to detect
the transcription factor’s binding motif. The rationale behind this is to find sequence mo-
tifs that are representative (frequent) for one set of sequences and absent (infrequent)
in another, a method called discriminatory or contrast data mining [Redhead and Bailey,
2007; Fischer et al., 2005; Han et al.,, 2007].

In Chapter 7, we focus on string mining under frequency constraints and define in
Section 7.2 predicates that evaluate solely the frequency of a pattern, i.e. the number of

11

seq
TCACCATCATAAATACACACAAAACTACAAAACTCACAGGTTTTATAAAAC----AATTGAGACTACAGAGCAACTAGGTAAAAAATTAACATTACAACAGGAACAAAACCTCATATATC

Piid
. =
i 1

— —C

Figure 1.2: Multiple read alignment. Blue and red arrows represent reads mapped to the
forward or reverse strand of a reference sequence (top line). The arrows are
interspersed by dots or bases indicating gaps or mismatches in the alignment.
The example shows an insertion of AATT supported by half of the overlapping
reads indicating a mutation in one of the two diploid chromosomes. The second
mutation is a SNP where a C in the reference was replaced by G in the sequenced
genome.

distinct sequences in a database that contain the pattern at least once. Frequency string
mining was motivated by approaches for mining sets of items [Agrawal et al., 1993; Han
etal,2004]. There have been different definitions of the string domains being sought, e.g.
gapped strings [Ji et al, 2007] or approximate strings [MitaSitnaiteé et al., 2008], while in
this work we consider exact substrings of sequences.

Various algorithmic approaches to frequency string mining have been published over
the last years. The first optimal algorithm was proposed by Fischer et al. [2006]. It is
based on enhanced suffix arrays and quite fast in practice. We explain the fundamental
idea and memory efficient variants in Section 7.4. In 2008, we presented a conceptually
much simpler algorithm which is based on a lazy suffix tree, practically faster, and uses
less memory at the same time [Weese and Schulz, 2008]. We give an in-depth presenta-
tion of this algorithm in Section 7.5 and show how to use it on multiple databases with a
variety of frequency constraints. As such, we use the notion of entropy from information
theory to devise the entropy substring mining problem (Section 7.2) which is a multiple
database generalization of the emerging substring mining problem [Chan et al., 2003]. In
Section 7.6, we evaluate the performance of our implementation in comparison to other
approaches on real-world datasets of various string domains, e.g. natural language, DNA,

12

or protein sequences. The experiments demonstrate the improvement of our algorithm
in terms of running time and applicability to arbitrary frequency predicates on multiple
databases.

CHAPTER
2 Mathematical Preliminaries

This chapter introduces data structures that we will use throughout the thesis. First,
Section 2.1 gives some fundamental notations, whereas Section 2.2 introduces the lexi-
cographical order which we will use to define the suffix tree in Section 2.3 and the suffix
array in Chapter 3. Section 2.4 defines alignments, transcripts, and distances that are
fundamental to read mapping and our sensitivity estimation approach in Chapter 6.

2.1 Notations

Let ¥ be a non-empty, finite alphabet. A string over X is a finite sequence of characters
from Z. X" denotes the set of all strings of length n over the alphabet X. Moreover, we
define =* := U2, X' the set of all finite strings over X where 2° = {€} and ¢ is the empty
string. For s € L™ we denote the length of s by |s| = n. The concatenation of two strings
s and t is denoted by st or s - t. We define an array or a table to be a string over the
alphabet N, the set of non-negative integers. Strings of length q are also called g-tuples
or g-grams. In the following, we use a zero-based indexing and define:

Definition 2.1 (substrings). Lets € X" be astringand i,j € N, withi < j.
* s[i] denotes the (i + 1)’th character of s.
o [ij]:={ii+1,..,j}
o [i) = [if = 1]
o s[i.j] := s[i]s[i + 1] ... s[j] is called substring or infix of s.
e s[i.j) :=s[i.j—1]
e 5, := s[i.n) is called suffix of s. We may also write suf(s, i).
e 5[0..0) is called prefix of s.
e Ji—1]:=@,s[j.i—1] :=€.

For two strings s,t € X* we write s < tif s is a substring oft,ands < tifs # t

holds in addition. For single characters x € X, we write x € s equivalently to s contains
a character x. Analogously to the notation in [Dementiev et al, 2008a] we canonically

14

extend the set definition to strings, e.g. (2i+1 | i €[0.5)) denotes the string of increasing
odd numbers between 0 and 10.

Definition 2.2 (longest common prefix). Given a non-empty set of strings § € X*. The
string p € Z* is a common prefix of S, if for every s € S there exists a string g € £* such
that s = pq. The longest common prefix of S is uniquely defined and denoted by Icp S.

2.2 Relations

Definition 2.3 (Cartesian order). Given orders <; and <, on the sets M; and M,. Unless
otherwise stated, we define < an order on the Cartesian product M; X M, such that for
any (a4, a;), (b,,b;) € M; X M, holds:

(ay,a;) < (by,by) © (a; <y by) V (a; =by A a, <; by). (2.1)

For the Cartesian product M; X M, X ... X M, of more than 2 sets we define < recursively
such that for any (a4, a,, ..., @), (b1, by, .., b)) € My X M, X ... X M,,, holds:

(@y,az, ey @) < (b, by b)) & (ay, (g, o, @) < (by, (byy s by)). (2:2)

Let < be a strict total order defined on %, i.e. for any a,b € X exactly one of a < b,
b < a or a = b holds. We will now transform the relation over characters to a relation
over strings.

Definition 2.4 (lexicographical order). Lets,t € £*\ {€} be two strings. The lexicograph-
ical order <,,, on X" is recursively defined as follows:

lex

-(e <. €) (2.3)
€ <. S (2.4)
- (s i E), (2.5)
s <o t & (s[0],sy) < (¢[0]ty). (2.6)

With this definition < becomes a strict total order on X*, the lexicographical order. In
addition to the lexicographical order we define the so-called lexicographical prefix order
that compares at most the first g characters as <.

Definition 2.5. For a g € N the lexicographical prefix order <, is defined on Z* such that
for s,t € * holds:

s<,t & 5[0.. min(q, |s|)) < t[O.. min(q, |t|)), (2.7)
s=,t © s[0.min(g,|s])) = t[0.. min(q, |¢])). (2.8)

For any < order we define corresponding orders >, <, and > as follows:

15

Definition 2.6. For an order < on a set M and any s,t € M the orders >, <, and > are
defined as:

s>t & t<s, (2.9)
s<t & s<t V s=t¢, (2.10)
s=2t © s>t V s=t. (2.11)

The lexicographical order allows us to associate each element of a set of strings with
its rank:

Definition 2.7 (lexicographical naming). Given a finite set of strings § € Z*. A function
T:8 — [0,]|8]) is called a lexicographical naming of §, if for any s, t € S holds:

s<,t & 1(5) <1(d). (2.12)

The function t is bijective and uniquely defined by the lexicographical order. For a
string s € § we call 7(s) the lexicographical name or rank of s (in §). The following lemma
allows to reduce the lexicographical order of concatenated tuples to the lexicographical
order of strings of tuple names, the fundamental idea of the suffix array construction
algorithm in Section 3.3.

Lemma 2.1. Given a set § € X9 of strings having length q and a lexicographical naming ©
forS. LetX,, ..., X, €SandY,, .., Y, € § bestrings from S. The lexicographical relation of
the concatenated strings X, - X, -+ X, and Y, - Y, ---Y; equals the lexicographical relation
of the strings of names:

Xy Xy Xy <o Yi-YpV,

e TX)TXL) . 1(Xy) <. TYDT(Y,)..T(Y). (2.13)

Proof. Trivial proof by induction over k and ! using the definition of the lexicographical
order. .

Example 2.1. Assume £ = {a,b}, § = {aa, ab, ba, bb}, and the lexicographical naming
t(aa) = 0, t(ab) = 1, t(ba) = 2, and 7(bb) = 3. Now any concatenation of strings in
S can be compared by comparing the concatenation of names:

abaababaab <, abaabbaa

o 10221 <, 1030. (2.14)

lex

2.3 Suffix tree

A suffix tree is a data structure that represents all substrings of a string. To well-define
the suffix tree of a string over the alphabet X it is necessary to append a (virtual) sentinel
character that is smaller than every other alphabet character and not contained in the
string to prevent a suffix from occurring more than once in s. This character is virtual as
it not used in any implementation described in this thesis.

16

< 1 b
a p N $ $. a R
X é a . @ $ b 1 "2 ab
n n o} $ ¢ $2
$ a i n o b
n a $ $1 b b 1 b
$ a$ § [§1 $2 $ 2
| g
0]
(a) suffix tree (b) generalized suffix tree

Figure 2.1: The suffix tree of s = banana (a) and the generalized suffix tree of the strings
s = abab and s? = babb (b). In this example, the leaves are labeled with string
positions i or (j, i) representing the suffixes suf(s$, i) or suf(s’$’, i).

Definition 2.8 (suffix tree). The suffix tree ST (s) of a string s € W™ is arooted tree whose
edges are labeled with strings over X := WU{$}, where $ is a sentinel character with $ ¢ ¥
and V,cy $ < x. The suffix tree fulfills the following properties:

1. Each internal node is branching, i.e. it has at least two children.
2. For branching nodes the labels of outgoing edges begin with distinct characters.

3. The suffix tree has n + 1 leaves numbered from 0 to n. The concatenation of edge
labels from the root to leaf i yields the suffix suf(s$, 7).

As a consequence of property 2 every tree node v can uniquely be identified by the
concatenation of edge labels on the path from the root to v. For a node v, we denote this
string by concat(v) and call it the concatenation string or representative of v. Vice versa
we denote with g, if existent, the tree node whose concatenation string is @. Implemen-
tations of suffix trees can take advantage of edge labels being substrings by storing only
begin and end positions. In this way, suffix trees of strings with length n can be stored in
O(n) memory. A suffix trie is defined by omitting property 1 in Definition 2.8 and labeling
edges with characters instead of strings.

We will now extend the definition of the suffix tree from one to multiple strings and
define the so-called generalized suffix tree. Again it is necessary to introduce a distinct
sentinel character $’ for every string.

Definition 2.9 (generalized suffix tree). The (generalized) suffix tree ST(s?, ...,s™) of
multiple strings s?, ..., s™ € W* is arooted tree whose edges are labeled with strings over
T =Yy {$1, ..,$"}, where ¢’ is a sentinel character with §’ ¢ Wand $* < $* < ... <
$™ < x for all x € X. The generalized suffix tree fulfills the following properties:

1. Each internal node is branching.
2. For branching nodes the labels of outgoing edges begin with distinct characters.

3. Leaves are labeled with pairs (j, i) such that j € [1.m] and i € [0..|s/]]. The con-
catenation of edge labels from the root to a leaf (j, i) yields the suffix suf(s’$’, i).

17

Analogously to the suffix tree for one string, edge labels can be stored by string po-
sitions which is a string number and pair of begin and end position in the string. Figure
2.1 shows a suffix tree of one string and a generalized suffix tree of two strings. Please
note that the implementations described in this thesis store only non-empty suffixes of
s, i.e. suffix tree nodes whose concatenation strings are sentinels are implicitly removed
from the suffix tree.

2.4 Transcripts and alignments

In this section, we define distance and similarity measures on strings and show how to
efficiently compute them. As introduced in the Section 1.4, base miscalls during sequenc-
ing or mutations between sample and reference genome require to tolerate errors, e.g.
when searching a sequenced read in the reference genome, or comparing homologous
genes or whole genomes of different organisms.

This can be done by tolerating a certain number of edit operations, i.e. replacements,
deletions, and insertions, to transform the read into a genomic substring. We define a
transcript as a sequence of matches and edit operations to transform one string into an-
other, see Figure 2.2.

s ACA- -GTCCGACAAGTTT]

transcript MXMXMCOCDMERIVIMMIMIMIMOMIMIMVIW)

t ACATTGACCGACA-GTTT]

Figure 2.2: A transcript from string s to string t. The upper and lower sequences are the
two rows of the corresponding alignment matrix.

Definition 2.10 (transcript). For two strings s,t € X7, a (edit) transcript from s to t is
a string over the alphabet & = {M,R, D, I} that describes a transformation between the
two strings. The transcript is read and applied from left-to-right to single characters of s
to produce t, whereby M, R, D, and I correspond to a match (no change), a replacement,
a deletion, and an insertion of a character in s.

For any transcript T we define ||T||; = | {i|T[i] € {R,D,1}} |, the number of errors in
T. The edit distance, also called Levenshtein [Levenshtein, 1966] distance, between two
strings is the minimum number of errors in transcripts between these strings. A special
case is the Hamming transcript with @ = {M,R}. It is defined uniquely for two strings of
equal length and the Hamming distance is the number of errors in it. The distances are
metrics and for strings s and t we denote the edit distance as dy(s,t) and the Hamming
distance as dy(s, t). As we will show in the following, there is a one-to-one relationship
between global pairwise alignments and transcripts.

Definition 2.11 (alignment). For strings s, ..., s, € X7, a (global) multiple alignment is
an m-row matrix A = (a;;) such that:

18

1. All matrix elements a;; are characters from X U {-}.
2. The i-th matrix row is the string s; interspersed with gap characters -.
3. There is no column with gaps in all rows.

The elements of an alignment column are aligned to each other and as there is no
column containing only gap characters, the alignment has at most Zﬁl |s;| columns.

Definition 2.12 (transcript-alignment-equivalence). An alignment A of two sequences s,
and s,, also called pairwise alignment, corresponds to a transcript T from s, to s, if the
following holds:

1. The transcript length is the same as the number of matrix columns.

2. For each matrix column (3;1;) the corresponding transcript character is:
J

I, ifalj = -
. _ D, lfazj = -
Tj—-1] = N, ifay = ay (2.15)
R, else.

It is obvious to see that transcripts are only a different representation of pairwise
alignments and Definition 2.12 can be used to construct a valid transcript from a valid
alignment and vice versa. The number of edit operations can also be defined for a pair-
wise alignment A. It is the sum of errors over all columns:

0, ifx=y
lAlle =) 6ay, a), where 6(x,) = { Y o (2.16)
j
Hence the edit distance can also be defined using alignments:
dig(s,t) = min IA]lg- (217)

A, an alignment of s, t

For two strings of length m and n, with m < n, the edit distance and the corresponding
transcripts can be computed by the well-known alignment algorithm proposed by Sell-
ers [1980] in O(mn) time and space. The algorithmic idea goes back to the more general
algorithm by Needleman and Wunsch [1970] which computes alignments with maximal
similarity in O(mn?) time and O(mn) space allowing for arbitrary gap costs that depend
on the gap length. If only the edit distance needs to be determined, the space consump-
tion of Sellers’ algorithm can be reduced to O(m) by only maintaining a single column in-
stead of the whole DP matrix. Myers [1999] proposed an approach which can be adapted
to compute the edit distance and is practically faster than both algorithms by exploiting
bit-level parallelism to compute the edit distance in O (% +m- |E|) time and O (% . |Z|)

19

space, where w is the processor word size. The fundamental idea of all edit distance al-
gorithms is the following recurrence which holds for any two strings s and t:

dg(e€) = 0, (2.18)
de(s[0.i],e) = i+1, (2.19)
de(et[0.j]) = j+1, (2.20)

dg(s[0..i — 1], t[0..4]) + 8(s[i],-),
min{ dg(s[0.i], t[0..j — 1]) + 8-t (2.21)
dg(s[0.i — 1], ¢[0.j — 1]) + &(s[il, t[j]).

dg(s[0..4], £[0.])

[t uses the observation that the set of alignments of s[0..i]] and ¢[0..j] is the union of 3 sets
of alignments ending with either (*l1), (,;;)), or (§[})- If we cut off their last column, all
possible alignments between s[0..0 — 1] and ¢[0..j], s[0..i]] and ¢[0.,j — 1], and s[0..i — 1]
and t[0..j — 1] remain. Thus the overall minimal number of errors equals the minimum
of minimal number of errors in each of the 3 remaining sets plus errors in its cut column.
Dynamic programming (DP) allows to efficiently compute d (s[O..i], t[O..j]) for each pair
(i,/) and to store in a traceback matrix which of the 3 values reach the minimum.

Figure 2.3 shows the traceback matrix for two strings s and t. The 3 arrows «, T,
and N indicate that optimal alignments of s[0..i] and t[0.j] end with (5%, (,;;)), or (j[[ﬂ)
Optimal alignments between s and t correspond to paths along arrows beginning in the
bottom-right corner of the traceback matrix. Following a path and reverse concatenating
the columns that correspond to each arrow yields an optimal alignment. The example
shows that there are two optimal alignments both having 2 insertions, 1 replacement
and 1 deletion in their respective transcripts from s to t. They differ only in which of the

two A’s is deleted from CAAG to CAG.

2.5 Approximate matching

With the definitions above we are now able to define the problem of finding a pattern
in a text tolerating a limited number of errors. For the read mapping problem where all
possible genomic origins of a read should be determined, we focus on edit and Hamming
distance to incorporate sequencing errors and small variations between the reference
and the sequenced genome as these well-established distances yield the most effective
algorithms. There exist more complex models that consider additional transcript oper-
ations like transpositions [Damerau, 1964], the significance of a match [Altschul et al,,
1990], or positional error probabilities [Li et al., 2008a]. Many of these models can easily
be integrated as a post-filter to edit or Hamming distance based algorithms.

Definition 2.13 (k-error match). Given two strings, a text t and a pattern p, and a fixed
number k. A k-error match of p is a substring t' < t with dg(t',p) < k.

The k-error problem is to find all k-error matches of p in t. Analogously to [Gusfield,
1997] we define a k-mismatch to be a substring with Hamming distance at most k and the
k-mismatch problem to find all k-mismatches of p in t. Whilst k-mismatches always have

20

t*ACAGTCCGACAAGTTT

444002000014 >0>

Figure 2.3: The traceback matrix of an edit distance alignment between s and t from
Fig. 2.2. The arrows indicate paths of minimal errors. Optimal global align-
ment traces are depicted by dark arrows whereas the solid path corresponds to
the transcript of Fig. 2.2 and the dotted path is part of an alternative optimal
trace.

length |p|, k-error matches can have different lengths between |p| — k and |p| + k even
with the same text end position. To reduce the number of k-error matches from O(kn) to
O(n) we first concentrate on finding all end positions of k-error matches.

To decide whether a k-error match ends at position i and determine its minimal dis-
tance for each i € [0..n) would take O(kmn) time with a brute force algorithm that com-
putes edit distances. Sellers [1980] proposed an approach that takes only O(mn) time
to find all end positions of approximate matches independent of k. The DP algorithm
adapts the edit distance recurrence of the previous section in order to allow a match to
start anywhere in the text. The recursive function computes V(p[0..i], ¢[0.,j]), the mini-
mal edit distance between p[0..i] and all suffixes of t[0..j], and sets V(E, t[O..j]) = O as the
empty pattern matches the empty substring at any text position without error:

V(e,e) = 0, (2.22)
V(p[0.i]e) = i+1, (2.23)
V(e t[0.j]) = 0O, (2.24)

V(p[0.i— 1],¢[0.4]) + 8(pli], "),
V(p[0.i],t[0.j]) = min{ V(p[0.i],¢[0.j —1]) + 8(-t[jD, (2.25)
V(pl0.i—11,¢[0.j = 1]1) + &Ll D

A k-error match of p ends at position j in t iff V(p, t[0.j]) < k. Analogously to the edit
distance computation the original O(mn) space consumption can be reduced to O(m).
Ukkonen [1985] reduced the running time from O(mn) to O(kn) on average by comput-
ing the DP matrix column-wise from the topmost to the last active cell. A cell is called

21

active if it has a value at most k and the value of each active cell solely depends on active
cells. Myers’ [1999] bit-parallel approach has a running time of O (% +m- |Z|) and can
be combined with the idea of Ukkonen [1985] yielding an efficient algorithm for approx-
imate pattern matching with O ("Wn +m- |Z|) running time.

In Section 6.6.2, we propose a modification of this algorithm that computes V on a
diagonal band of the DP matrix yielding the practically fastest banded approximate string
matching algorithm.

Part 11

INDEX DATA STRUCTURES

CHAPTER

3 Enhanced Suffix Array

The enhanced suffix array (ESA) was first proposed in [Abouelhoda et al., 2002a] as a
memory efficient replacement for suffix trees. In general it consists of 3 tables: the suffix
array, the lcp table, and the child table. Each table is a string of the text length n over
the alphabet [0..n) and thus requires O(nlogn) bits of memory without compression.
After defining the 3 tables and their relation to suffix trees, we propose construction
algorithms and our extensions to multiple sequences and the use of external memory.
On different artificial and real-world datasets we analyze the performance of our con-
struction algorithms and demonstrate their applicability to large datasets comprising of
multiple mammal genomes (Tables 3.3-3.7). At the end of the chapter, we describe and
compare different search algorithms and propose an interface that easily allows to access
the enhanced suffix array like a suffix tree and provide 3 application-specific suffix tree
iterators.

3.1 Definitions

3.1.1 Suffix array

The suffix array is a space-efficient representation of all non-empty suffixes s; of a string
s in lexicographical order [Manber and Myers, 1993]. As strings of different lengths are
different by definition 2.4 on page 14, each suffix s; of a string s can be uniquely identified
by its begin position i and the set of suffixes can be uniquely ordered lexicographically.
The sequence of begin positions of suffixes in lexicographical order is called the suffix
array of s.

Definition 3.1 (suffix array). Given a string s of length n, the suffix array suftab of s is a
string of length n over the alphabet [0..n). For every i,j € [0..n) holds:

[<] < Ssttabli] Siex Ssuftab[j] - (3.1)

For a suffix array suftab the inverse suffix array suftab™" is a string over the alphabet
[0..n) with suftab™" [suftab[i]| = i for each i € [0.n).

3.1.2 LCP table

The Icp table stores the lengths of the longest-common prefix between every consecutive
pair of suffixes in suftab.

26

Definition 3.2 (Icp table). Given a string s of length n and its suffix array suftab, the lcp
table Icp of s is a string of length n + 1 over the alphabet [0..n). For every i € [1..n) holds:

lep[0] = -1, (3.2)
lep[i] = |1cp {Ssuftab[i—l]r Ssuftab[i]}') (3.3)
lcp[n] = -1. (3.4)

For the sake of simplicity, we extended the lcp table by two boundary values (—1)
which are implicitly needed by some algorithms, e.g. Algorithms 3.9 and 3.10, if the text
does not end with a $-character. However, they are not explicitly required in the imple-
mentations of these algorithms. We call the table entries Icp values and Icp[i] the Icp value
of Squfabp;y O the i-th Icp value. Manber and Myers [1993] introduced the Icp table and
how to construct it as a byproduct of the O(nlogn) suffix array construction. The first
optimal algorithm proposed in [Kasai et al., 2001] constructs the lcp table for a text and
a given suffix array in linear-time.

3.1.3 Child table

Besides the linear-time algorithm to construct Icp, Kasai et al. proposed a method to tra-
verse the suffix tree ST (s) in a bottom-up fashion by solely scanning lcp from left to right
and updating a stack that represents the path from the traversed node to the root. This
method is used in [Abouelhoda et al.,, 2002a] to construct the child table cld, which con-
tains links to the siblings and children of a node and thus represents the structure of the
suffix tree. To understand the child table we first need to introduce lcp-intervals.

Definition 3.3 (Icp-interval). An interval [i.j) € [0.n) withi + 1 < j is called an Icp-
interval of value € or ¢-interval [i..j) if the following holds:

1. lep[i] < ¢,
2. lep[jl < ¢,
3. Ve lep[k] = ¢,
4. e leplk] = 2.

For completeness, we also define [i..i+ 1) to be a (singleton) £-interval with £ = |Sggapp; |
and i € [0.n).

With an ¢-interval [i..j) we associate the set of suffixes Sysab[ij, Ssuftab[i+1] =+ Ssuftab[j—1]-
Then the following holds: (1) The longest-common prefix w of these suffixes has length
£ by properties 3 and 4 and we also call this #-interval an w-interval. (2) A non-singleton
f-interval [i..j) is maximal by properties 1 and 2, i.e. every extension to the left or right is
no longer an #-interval.

Lemma 3.1 (node-interval-duality). For every suffix tree node v in ST(s) there is an w-
interval [i..j) and vice versa. If v is an inner node it holds w = concat(v) and otherwise
w$ = concat(v).

27

s=|t|t]ajt|c|t|c|t|t]al

suftab=|9|2|4|6|8|1|3|5|7]|0
Icp=-1102021313-1‘

a a ¢ c t t t t t ¢t

t t t a a c c t t

c ¢ t t t t a a

t t a c ¢ t t

c t t t a C

t a c t t

t t a C

a t t

a t

a

Figure 3.1: Suffix array and Icp table of ttatctctta.

Proof. For each singleton w-interval holds: w is a suffix of s and hence there is a leaf v in
the suffix tree of s with concat(v) = w$. Analogously, for each leaf there is an w-interval.
Now, we consider non-singleton w-intervals and their corresponding inner nodes v.

(=) For every inner node v of the suffix tree ST (s) there is a set of suffixes of s be-
ginning with concat(v). Let S(v) denote this set. The suffixes in S(v) correspond to the
leaves in the subtree rooted at v. As an inner node, v has at least two outgoing edges
beginning with a,b € X U {$} and a # b. Therefore there are at least two suffixes in
S(v) that begin with concat(v)a and concat(v)f, where a, f € £° U ! and a # . Thus
the longest-common prefix of S(v) is concat(v). As all suffixes beginning with a common
prefix are stored in a contiguous interval, there are i and j, such that suftab[i..j) stores the
begin positions of all suffixes in S(v). Suffixes that are not included in S(v) are not in the
subtree rooted at v and do not begin with concat(v). Therefore Icp[i] < £ and lcp[j] < ¥
and [i..j) is an w-interval with w = concat(v).

(<) Let [i..j) be a non-singleton w-interval and T(w) denote the set of suffixes of s
beginning with w. By definition holds {Sstab[i}, - Ssuftabj-11} E T (w). As the w-interval
is maximal it follows T(w) = {Sgttab[i] - » Ssuftabj—1]}- BY property 4 exists a k such that
Ssuftab[k—1] AN Sgyfeanpig begin with wa and wpf, where a,f € X° UX' and a # f. Asa
consequence, the lowest common ancestor (Ica) of the leaves representing these suffixes
is a branching node v with concat(v) = w and S(v) = T(w). n

In the following, we consider the suffix tree ST (s) and for each node v denote with
S(v) the suffixes represented by the leaves below v.

Corollary 3.1. Every suffix tree node v can be identified by an Icp-interval [i..j) and both
represent the same set of suffixes S(V) = Ssutap(i}y Ssuftab[i+1] -+ Ssuftab[j—1]-

Let v be an inner suffix tree node with children wy, ..., w,,. Wl.o.g. let concat(w,) <,
concat(wy) <, ... <., concat(w,,). Obviously the sets S(w,), S(w,), ..., S(w,,) form a
partition of the set S(v). As a consequence of Corollary 3.1, the lcp-intervals of the chil-
dren (child intervals) are subintervals that form a partition [l,..[;), [l1--L3), - [Ln—1-lm)

lex

28

¢
C
a t t
o, & o
/
t [c t
@(SS ¢ £ 5 Tt e
t t $ o) o) (o)
¢ a > $t ct $t
t $ (6] " t e
t @ t t a$ t
a C a L C
§ t$ t
a a
$ $
[0]
(a) suffix tree
0 [0..10) 10
[o..z): 2 [2:.4) 4 N " [4..10)
0.1 1 [1.2) 2.3 3 [3.4) 4.6) 6 (6.8) 8 " [8..10)
4.5 5 [5.6) [6.7) 7 [7.8) [8.9) 8 [9.10)
(b) Icp-interval tree
—

i
0 2 10 10
— nextlIndex 1 1
— up 2 1 3 4 4
— down 3 3
2 4 down (redundant) : 306 g
6 5 7 8 8
7 7
8 7 9 9
— 9 2
3 / 6 / 8 \ 10 2
5 7 9
(¢) linked ¢-indices (d) child table

Figure 3.2: Suffix tree (a) and Icp-interval tree (b) of s = ttatctctta. The bold numbers

between Icp-interval nodes (b) are €-indices of the parent interval above. The
child table (d) stores for every -index i the up, down, and nextfIndex values
(compare with c), which are the first €-indices in the Icp-interval left of i, right
of i, or the next £-index in the same Icp-interval, respectively. After the removal

of redundant down links, the three columns (d) can be stored as a single string
cld of length n.

29

of the ¢-interval [i.j) of v, where [, = i and [,, = j. The length of the longest-common
prefix of suffixes from different child subtrees is £ = |concat(v)|, whereas the Icp-length
of suffixes from the same subtree is greater than #. Thus for x € [i,j) it holds lcp[x] = ¢
only ifx € {l,, ..., L,,_,} and Icp[x] > ¥, otherwise. The indices [, ..., [,,_; uniquely define
the partition into subintervals and are called #-indices of the lcp-interval [i.j). The set
{l;, ..., l,,_1} is denoted by #-indices(i, j).

The parent-child relationship of lcp-intervals corresponds to the parent-child rela-
tionship of suffix tree nodes and constitutes the so-called Icp-interval tree [Abouelhoda
et al, 2002a], compare Figure 3.2a and Figure 3.2b. The child table is a linked list of
£-indices and stores for each #-index so-called up, down, and nextfIndex values, see Fig-
ure 3.2c. It can be represented as 3 subtables which are strings of length n + 1 over the
alphabet [0..n] (columns u, d, and n in Figure 3.2d).

For [, € ¢-indices(i,j), nextfIndex(l},), if existent, is the next greater £-index [, in
the set £-indices(i, j). up(l,) and down(l,), if existent, are the smallest £-indices in the
sets ¢-indices(ly_, l;) and #-indices(ly, l;,,)- For an arbitrary ¢-index i, the values up,
down, and nextfIndex can formally be defined as follows [Abouelhoda et al., 2002a]:

up (@) min{q € [0.0) | lcp[q] > lcp[i] A Vieq.plcp[k] = Icp[q]}, (3.5)
down(i) max{q € (i.n] | lcp[q] > lcp[i] A Ve qlcplk] > Icplql}, (3.6)
nextfIndex(i) = min{q € (i.n]|lcp[q] = lcp[i] A Vieu.qlcplk] > lcp[il}. (3.7)

It is easy to see how the child table can be used to enumerate all child intervals for
an arbitrary lcp-interval and we will devise an iterator in Section 3.6.2 that can go down
and go right in the suffix tree.

3.2 Representation

As explained above, the enhanced suffix array can be represented as strings of length
O(n) over the alphabet [0..n] and thus has a memory consumption of O(nlogn) bits in
total. There exist different approaches, called succinct indices, compressed indices, or
self-indices, which have a memory consumption linear to the size of the uncompressed
text (succinct), the compressed text (compressed), or even replace the text (self-index)
by providing functionality to efficiently reproduce any text substring. Each of the ap-
proaches compresses the tables of the enhanced suffix array at the expense of practical
access time. We will not go into details and instead refer the interested reader to [Grossi
et al, 2003; Sadakane, 2003; Navarro and Makinen, 2007].

Abouelhoda et al. proposed an easy and elegant way to reduce the memory consump-
tion of the child table by two-thirds. We decide to use their representation as it is coupled
with only a small increase in access time. Instead of using 3 strings of length n + 1, they
merge the 3 subtables into a single string cld of length n over the alphabet [0..n]. Their
method benefits from the following two observations:

Observation 3.1. Each defined value nextfIndex(i) can be stored at cld[i]. For the last
f-index i in every Icp-interval nextfIndex (i) is undefined and the entry cld[i] can be used

30

to store down(i) instead. For all other ¢-indices the down-value equals the up-value of its
successor and needs not to be stored explicitly.

Proof. Trivial. L]

Observation 3.2. For every ¢-index i that has a defined up-value, i — 1 is an £'-index with
undefined values for down and nextfIndex. Thus the up-value can be stored at cld[i — 1].

Proof. Letq := cld[i].up be the up-value of i. By the formal definition holds lcp[q] > lcp[i]
and lcp[k] = Icp[q] > lcp[i] for every k € (q..0). It especially holds Icp[i — 1] > Icp[i] and
thus the values down(i — 1) and nextfIndex(i — 1) are undefined as forallg = i + 1 and
k =i+ 1 the necessary condition Icp[k] > lcp[q] = Icp[i] is violated. .

Abouelhoda et al. showed how to retrieve the original three values from the merged
child table cld:

wli] = { il'd[i —1], z;: 0 and Icp[i — 1] > lcp[i] (38)
down[i] = { cllld[i], Lfl Isf:ei?[cld[i]] > lep[i] (3.9)

nextfIndex|i] (3.10)

cld[i], if lep[cld[i]] = Icp[i]
1, else.

For each non-singleton Icp-interval [i..j) either down[i] or up[j] is defined and equals
the first #-index l;. The other ¢-indices can be determined by [;,, = nextfIndex[[;].

3.3 Construction of the suffix array

Constructing a suffix array differs from ordinary sorting of strings in that suffixes are
overlapping substrings of a single text of length n. Generic string sorting algorithms
cannot benefit from this information and alone for inspecting all suffix characters need
Q(n?) time in the worst case. In the last 20 years plenty of more efficient suffix array
construction algorithms were published that avoid redundant character comparisons by
reusing the relation of already compared suffixes in subsequent comparisons. Manber
and Myers [1993] not only first introduced the concept of suffix arrays but also proposed
the first O(nlogn) construction algorithm. It uses prefix-doubling that in O(logn) steps
doubles the prefix length the suffixes are sorted by. The algorithm was superseded by
many more, practically faster algorithms in the following years summarized in [Puglisi
et al, 2007]. By reducing the comparison-based sorting problem [Knuth, 1998] to the
problem of sorting suffixes, it can be shown that an O(nlogn) running time is optimal
for arbitrary alphabets. For integer alphabets, i.e. subsets of integers from a linear-sized
range, the rank of a character can directly be used like in radix sort [Cormen et al., 2001]
instead of comparing two characters. Independently from each other, in 2003 three algo-
rithms were proposed that benefit from using character ranks to construct a suffix array
in optimal ©(n) time [Ko and Aluru, 2005; Kim et al,, 2005; Karkkainen et al.,, 2006]. In
the following, we will discuss one of them, the skew algorithm* [Karkkiinen and Sanders,

1 The skew algorithm is called DC3 (for Difference Cover modulo 3) in [Karkkéiinen et al., 2006].

31

2003]. We choose it as the default suffix array construction algorithm in SeqAn as it is
fast, robust, and generic. Furthermore, its simplicity enables it to be adapted to obtain
an optimal algorithm for external memory [Dementiev et al., 2008a].

At first, we describe the original skew algorithm and afterwards we propose our ex-
tension by difference covers, external memory variants and an adaptation to multiple
sequences.

3.3.1 The linear-time algorithm by Kirkkiinen et al.

The skew algorithm proposed in [Kdrkkadinen and Sanders, 2003; Karkkainen et al., 2006]
is arecursive algorithm for integer alphabets that consists of the following 3 steps, which
we explain in detail below:

1. Construct the suffix array suftab'? of suffixes starting at positions i Z 0 (mod 3).
This is done by a recursive call of the skew algorithm for a string of two thirds the
length of the text.

2. Construct the suffix array suftab® of the remaining suffixes using the result of the
first step.

3. Merge the two suffix arrays into one.

Step 1: Construct the suffix array suftab'?

Given a text string s of length n. Let $ be a character smaller than any character in the text.
Consider the triples s[i..i + 2] starting at positions i Z 0 (mod 3) in the textfor 0 < i < n.
Append $$$ to s to obtain well-defined triples also for i € [n — 2..n]. Forn = 1 (mod 3)
the appended triple s[n..n + 2] is also considered. Determine a lexicographical naming
(see Definition 2.7 on page 15) of the triples and assign 7; the rank of the triple s[i..i + 2].
This can be done in a linear scan after sorting the triples in linear time with three passes
of radix sort (see Figure 3.3).

If the triple names are pairwise distinct, set suftab'?[;] := i and step 1 is done. Oth-
erwise, recursively construct sufta b’, the suffix array of the text:

s = (r;]i=1(mod3)):(r; | i =2 (mod 3))

. n—j
= Tl T4 wes T1+3(n0_1) * Tz TS T T2+3(n2_1) 1] Wlth n} = ’rT . (311)
~ v J v S

ty L3

s' is a string of length ny +n, = [25=2] over the alphabet [0.|s|), where n; is the number

of triples starting at positions i = j (mod 3) that overlap with the first n text characters.
There is a one-to-one correspondence between suffixes of s’ and the (possibly empty)
suffixes s; with i # 0 (mod 3). Incasen # 1 (mod 3), thelastname in t, isunique in s’ and
corresponds to a triple ending with $ or $$. To ensure that a lexicographical comparison
between suffixes of s’ never exceed the end of t,, the extra triple $$$ is included into the
set of considered triples in case n = 1 (mod 3) © n, —n, = 1. Therefore t, consists of

32

i s[i.i+2] i s[i.i+2] i s[i.i+2] i s[i.i+2] 1
1 8 $ 10 $$ 10 $$9 0
2 o 10 $. 8 a$ o 2 atc 1
4 pass 7 a pass 1 at pass 4 ctc 2
5 2 C 5 ct 8 ta$ 3
7 4 C 7 ta 1 tat 4
8 1 t 2 tc 5 tct 5
10 5 t 4 tc 7 tta 6

Figure 3.3: Skew step 1. Sort the triples of the text s = ttatctctta. The three radix passes
stably sort the triples by their last, middle, and first character. After that, the
lexicographically sorted triples can be named in a linear scan. If non-unique the
names are recursively extended to names of suffixes and used to create suftab?.

SUftabn:‘lO‘Z‘4‘8‘1‘5‘7‘
extractlindices
B o] [s
radix pass a t t c
d
suftab’ =|s]6|3]0]
a [t t

Figure 3.4: Skew step 2. Suffix start positions i + 1 withi + 1 = 1 (mod 3) are extracted
from suftab™® and stored as i in the same order. A radix pass stably sorts them
by the first suffix character s[i] (shown below the boxes) and creates suftab®.

n, +(ny—n,) = n, triple names and the ranks of suffixes starting in t, are not influenced
by their ¢, tail. By Lemma 2.1 on page 15 the lexicographical rank of suffix s; with i #
0 (mod 3) equals its corresponding suffix of s’. Thus suftab’ can be transformed into
suftab’® as follows:

1 + 3suftab'[i], if suftab'[i] < n,

2 + 3(suftab’[i] — n,), else. (312)

suftab™®[i] = {

Step 2: Construct the suffix array suftab’

The remaining suffixes s; with i = 0 (mod 3) can be sorted by sorting the pairs (s[i], $;;1)-
As the order of the suffixes s;,, is implicitly given in suftab'?, suftab® can be constructed
by extracting entries i + 1, with i + 1 = 1 (mod 3), from suftab'? and writing the entries i
in the same order into suftab®. Afterwards stably sort them by s[i] in a single radix pass.
These steps are shown in Figure 3.4.

33

Step 3: Merge suftab' and suftab®

Finally, the two sorted suffix arrays need to be merged into the complete suffix array
suftab of s. This can be done by scanning them simultaneously and comparing suffixes
from suftab® with suffixes from suftab™. If n = 1 (mod 3), the first suffix of suftab™” rep-
resents the empty suffix and must be skipped. The suffix comparison can be reduced to
0(1) character comparisons and a rank comparison of suffixes from suftab'?. To deter-
mine the ranks in 0(1) time, we construct R'?, the inverse suffix array of suftab?, such
that R"?[suftab'?[i]] = i holds. Two suffixes i € suftab’ and j € suftab'? can now be
compared in O(1) time as follows:

s[il, R"?[i + 1]) < (s[j1,R?[j + 1]), ifj =1 (mod 3)

St S Sj 9 {(s[i..i -|(- 1], R2[i + 2]))< ((s[j..j +1], R12[;')+ 2), ifj = 2 (mod 3). 13

Figure 3.5 shows the merging step and both comparison cases. It is easy to verify that

the rank comparison is possible in both cases. Neglecting the recursion, each step of the

skew algorithm takes O(n). The overall running time can be estimated by a geometric
series with an asymptotic upper bound in O(n).

3.3.2 Difference covers

The general idea of the skew algorithm is to partition the set of suffixes into two (or more)
subsets such that from every pair of suffixes s;, s; a certain prefix of length 4;; € 0(1)
can be cut and the remaining suffixes Sivn,; Sj+a,, are from one subset. The skew al-
gorithm partitions the suffixes according to their start positions into subsets of residue
classes modulo m = 3. In Section 5 in [Karkkainen et al, 2006] the authors theoreti-
cally describe an extension of their algorithm to arbitrary natural numbers m based on
difference covers [Haanpaa, 2004] of the residue class ring Z,,.

Their proposal considers the set of integers Z and Z,, = {0, 1, ..., m — 1}, the residue
class ring modulo m, where each element i represents the residue class i + mZ, the set of
integers congruent i modulo m. Under addition Z,, is a finite cyclic abelian group.

Definition 3.4 (difference cover). Given a finite abelian group G and a subset D € G. D is
called a difference cover of G, if for every x € G there existd,,d, € D suchthatx = d, —d,.

The following lemma shows that the third step of the skew algorithm is always feasi-
ble, if in step 1 suffixes are sorted that start at positions in residue classes of a difference
cover of Z,,. In that case, arbitrary suffixes can be compared by comparing O(m) charac-
ters and ranks of suffixes from the first step.

Lemma 3.2. Given a difference cover D of a finite abelian group G. For any x,y € G there
existsa A € G, suchthatx+ A€ Dandy+ A€ D.

Proof. Forany x,y € G letz := x — y. As D is a difference of G and z € G, there exist
a,b € D suchthata — b = z. For A := a — x holds:

x+A)=x+(a—x)=a = (x+A)eD (314
y+A)=y+(@a—x)=a—-(x—y)=a—z=b = (y+A)€eD. (3.15)

34

s=lefefalefefefc]efe]al

12
R = [2s] [els] []2] [o]

suftab’ =|s]6]|3]0] suftab'” =2 |a]8]1]5]7]
l:|3 j=1
{ {
([, R™[i + 1) (sl R™[j +11)
(t.6) > (t5)

/

1

/

suftab=\9\2\4\6‘3‘1‘ ‘ ‘ ‘ ‘

(a) case 1: j = 1 (mod 3)

suftab’ =| 9 [s |3]0| suftab™ =\]2[4]s]1]5]7]
L:|3 j:|
{ {

(slii + 13, R™[i + 21) (sl + 10,R"[j +2])
(te,3) < (tc,4)

~

3

~

suftab=\9\2\4\6\8‘1‘3‘ ‘ ‘ ‘

5

(b) case 2: j = 2 (mod 3)

Figure 3.5: Skew step 3. The empty suffix is removed from suftab'? and the two sorted ar-
rays are merged into the final suffix array. Depending on the residue class of the
suffix in suftab'? either one or two characters and a rank in R'? are compared.

As a consequence, it is sufficient to compute R”, such that RP[[] is the lexicographical
rank of suffix s, in the set of suffixes starting at positions Uy, X. We can then determine
A;; € [0.m) with the above lemma such that for arbitrary suffixes s; and s; holds:

$i<wS; © (s[ii+dy),R[i+4,])<(s[jj+24y),RP[j+4,]). (3.16)

As the problem size decreases in every recursion step by a factor of 1 = 'T%', we are
for a given m interested in minimal difference covers and for a fixed size |D| the maximal
group Z,, that can be covered. A difference cover D is called minimal for a group if there
is no other difference cover of smaller cardinality. By combinatorics the size of a group

35

ID| G minimal difference cover of G A
ok SR e
i 7) &y)
b = {12 4 Z,; {1,2,4,10} 0,3076...
5 Z, {1,2,7,9,19} 0,2380...
0 = 1-1 6 Zy {1,2,4,9,13,19} 0,1935...
- 7 Iz 1,2,17,21,23,28,31} 0,1794-...
1 = 2-1 8 Zs, {1,2,10,12,15,36,40,52} 0,1403...
2 = 1-2 9 Z,; {1,2,4,8,16,32,37,55,64} 0,1232...
10 Zy {1,2,8,17,28,57,61,69,71,74} 0,1098...
11 Zgs {1,2,6,9,19,21,30,32,46, 62,68} 0,1157...
12 Zy; {1,2,33,43,45,49,52,60,73,78,98,112} 0,0902...

(a) difference cover of Z (b) minimal difference covers

Table 3.1: Difference cover used in the original skew algorithm (a). The right table (b)
shows the maximal cyclic groups that can be covered by difference covers from
size 2 to 12 [Haanpdd, 2004]. The difference covers in bold are perfect.

G that can be covered by D is limited to:
D
|G|SZ-(|2|)+1= ID|? — |D| + 1. (3.17)

We call a difference cover D perfect, if the equality |G| = |D|?> — |D| + 1 holds. Table 3.1b
shows the maximal groups for difference covers of sizes 2,...,12 [Haanpaa, 2004] and cor-
responding values of A. Note that there is no perfect difference cover of size 7 or 11.

3.3.3 Our algorithms

The original skew algorithm uses a perfect difference cover of Z; and is hence called DC3
in [Karkkadinen et al, 2006]. In SeqAn we implemented a generic variant of DC3, that
works with arbitrary alphabets and no longer requires the alphabet to contain a smallest
$ character which must only appear as a $$$ triple behind the text. Additionally, we for the
first time implemented the skew algorithm for the next greater perfect difference cover
D = {1, 2,4} of the group Z,. To distinguish our implementations from the original DC3
algorithm, we call them skEw3 and SKEW7. In the following, we describe both algorithms
as well as our external memory and multiple sequence extensions.

SKEW3

In order to provide a generic suffix array construction algorithm in SeqAn, we needed
to resolve the constraints that the original algorithm put on the text string and alphabet
by introducing a smallest character $ which is allowed to only occur in the triple $$$ ap-
pended to text. Therefore, we first adapted the bucket sort algorithm used for the radix
passes to count character accesses behind the end of s in an extra bucket, which becomes
the first bucket in the sorted sequence. After the tuples have been sorted, lexicographi-
cally adjacent tuples are compared and increasingly named. Tuples that exceed the end of
sneed notto be compared as they are unique and hence can be assigned to a unique name.
Merely in the implementation of the third step when comparing the tuples s[i..i + Ai,j)

36

and s[j..j + Ai.j)' we must ensure not to exceed the end of s and instead return sy, ;) as
the lexicographically smaller suffix in that case. To avoid the insertion of an artificial sep-
arator between the two halves of s’ in SKEwW3 or the three thirds of s’ in SKEw7, as done in
casen = 1 (mod 3) of DC3, we partition the suffixes into residue classes not according to
their start position but according to their length. In this way, independent of the length
of s the rightmost tuple of each subpart of s’ has a unique name. Hence a separator is
not necessary as comparisons do not exceed the end of a subpart. Step 3 is still feasible,
the only difference is that the comparison of suffixes of length a and b must reduced to
a prefix comparison and a rank comparison of suffixes that are shorter and have lengths
a—A,,and b—A,, in the residue classes of the difference cover. For a perfect difference
cover of Z,, the smallest adequate value of A, is:

A,y := (m—A,,) mod m. (3.18)

Algorithm 3.1 shows the SKEw3 pseudo-code as implemented in SeqAn. In step 1 we
choose suffixes of a length congruent 1 or 2 modulo 3 and sort their prefix triples in 3
passes of radix sort. The triple names are either used to recursively sort the suffixes
or if unique to derive the suffix ranks directly. If constructed recursively, in line 10 the
suffix array suftab’ of s’ is transformed into the suffix array suftab'? of suffixes of s with
suftab™?[i] = n — Y (suftab’[i]), where 1 is defined as follows:

3(n, +ny —i)—2, else. (3.19)

Y@ = {
Step 2 is implemented analogously to DC3. The case distinction in step 3 is done accord-
ing to the length of the suffixes from step 1. A suffix of length congruent 0 modulo 3 is
compared with a suffix of length congruent 1 or 2 modulo 3 by a reduction to suffixes
which are A, ; or Ay, characters shorter. Compare line 20 with the values A, ; and A, in
Table 3.2a. If one of the suffix sets is completely merged into suftab, the remaining set is
appended to suftab in line 24.

SKEW7

SKEW?7 is the extension of SKEW3 to the next bigger perfect difference cover. According to
Table 3.1b we chose D = {1, 2, 4} as a difference cover of Z,. Step 1 of the pseudo-code in
Algorithm 3.2 differs from Algorithm 3.1 only in the choice of suffixes, the length of tuples
we sort and s’ which is the concatenation of 3 instead of 2 strings of tuple names. Analo-
gously to SKkEw3, all of the three strings end with unique 7-tuple names and by Lemma 2.1
the suffix array suftab’ of s’ reflects the order of suffixes whose length is congruent 1, 2,
or 4 modulo 7. It is transformed by suftab'**[i] = n — ¥ (suftab'[i]) in line 10 using the
following function :

Y@A) =4 7(ny, +n, —1i) =5, ifn, <i<n,+n, (3.20)
7(ny, +n, +n, —i) — 6, else.

37

Algorithm 3.1: SKEW3(s)

input : text string s over the alphabet £
output :suffix array suftab

// Step 1
n e sl ny =[5, ne = 5]
A« (i|i€[0.n)and (n—1i)mod 3 € {1,2}) // compute triple positions
for j < 2 downto 0 do // sort triples
sort A stably by s[A[i] +j]
name tuples and let 7; be the rank of s[n — i.n — i + 2]
if names are unique then
foreach i do suftab™*[r;] < n —i // no recursion
else
suftab’ « SKEW3(T3p,—1 - T5T2 * T3n,—2 - T4T1) // recurse
transform suftab’ into suftab™?
// Step 2
suftab® « e
fori < Oto |Suftab12| —1do // in-order extract remaining triple position
if n — suftab™?[i] = 2 (mod 3) and suftab™?[i] > 0 then
suftab® « suftab® - (suftab™*[i] — 1)
sort suftab? stably by s[suftab®[i]]
// Step 3
k< 0,l < 0,suftab « €
foreach i do R'?[suftab™*[i]] « i // compute ranks
while k < |suftab0| and [< |suftab12| do // merge suffix arrays
i « suftab®[k], j « suftab™*[(]
if (n—j=2(mod3)and (s[i],R™[i +1]) < (s[jl,R'2[j + 1])) or then
(n—j =1 (mod3) and (s[i.i + 1], R'2[i +2]) < (s[j.j + 1], R"2[j + 2]))
suftab « suftab - i, k <« k+1 // s; is less
else
suftab « suftab-j, l <1+ 1 /] sj is less
suftab « suftab - suftab2 . suftabl12 // fill up suftab
return suftab
ab|0 1 2 3 4 5 6 maxh,
0 3 6 5 6 3 3 5 6
ab |0 1 2 maxA,. 1 /6 0 0 6 0 4 4 6
0 1 2 1 2 2 5 0 0 1 0 1 5 5
1 2 0 0 2 3 6 6 1 1 2 1 2 6
2 1 0 O 1 4 3 0 0 2 0 3 2 3
5 3 4 1 1 3 1 4 4
6 5 4 5 2 2 4 2 5
(a)D={1,2}, m=3 (b)D={1,2,4,m=7

Table 3.2: Shift values A, used in SKEW3 (a) and SkEw?7 (b). The rightmost column shows
the maximal shift values in each row.

38

In step 2 the orders of suffixes of length congruent 3 or 5 modulo 7 are computed in radix
passes from suffixes of length congruent 2 or 4 modulo 7 sorted in step 1. The remaining
suffixes of length congruent 6 or 0 are sorted in two additional radix passes from suffixes
of length congruent 5. The 5 sets of ordered suffixes are merged in step 3 into suftab the
totally ordered set of suffixes using a 5-way merge. A priority queue is used to efficiently
determine the smallest of 5 or less suffixes. To compare two suffixes of length congruent
a and b modulo 7 we compare their prefixes of length A, , and the ranks of suffixes that
are A, , characters shorter. Table 3.2b shows all the values of A, , for the used difference
COVer.

Algorithm 3.2: SKEW7(5s)
input : text string s over the alphabet
output :suffix array suftab

// Step 1
n sl =[], ne = [272], na = | 2]
A« (i|i€[0.n)and (n—1i)mod7 € {1,2,4}) // compute tuple positions
for j « 6 downto 0 do // sort tuples
sort A stably by S[A[i] +j]
name tuples and let 7; be the rank of s[n —i.n — i + 6]
if names are unique then
foreach i do suftab™**[7;,] «n —i // no recursion
else
suftab’ « SKEW7(T75,—3 . T11T4 * T7p,—5 - T9T2 * Ty, —6 - TgT1) // recurse
transform suftab’ into suftab™**
// Step 2
suftab® « suftab® « suftab® « suftab® « ¢
fori < Oto |suftab124| —1do // in-order extract remaining tuple position
j « suftab™®*[i]
if j > 0 then
if n—j = 2 (mod 7) then suftab® « suftab® - (j — 1)
ifn—j = 4 (mod 7) then suftab® « suftab® - (j — 1)
sort suftab® stably by s[suftab3 [i]]
sort suftab® stably by s[suftab5 [i]]
foreach i do if suftab[i] > 0 then suftab® « suftab® - (suftab®[i] — 1)
sort suftab® stably by s[suftab®[i]]
foreach i do if suftab®[i] > 0 then suftab® « suftab® - (suftab®[i] — 1)
sort suftab® stably by s[suftab®[i]]
// Step 3
foreach i do R'?*[suftab'**[i]| « i // compute ranks

5-way merge suftabo, suftab124, suftab3, suftabs, suftab® into suftab

// compare two suffixes s;,s; by: s; <., s; ©

/7 (S [i"[+ Anfi,na/) ’ RT24 [i + Anfi,nij < (S [// + Anfi,nfj) ’ RT24 [/ + Anf[,nfj])
return suftab

39

3.3.4 External memory variant

To support the efficient and generic construction of suffix arrays of large texts and whole
genomes in SeqAn, we developed variants of SKEW3 and SKEw7 for external memory.
The first /0 optimal external memory algorithm for the construction suffix arrays was
published in [Dementiev et al., 2005, 2008a] and is a variant of the DC3 algorithm, we
denote it as DC3_EXTMEM. It uses the STXXL [Dementiev et al.,, 2008b] and a pipelining
paradigm in which an external memory algorithm is only allowed to sort or sequentially
scan the input and intermediate results to produce the output. In this way, the output of
one algorithmic component can directly be streamed to succeeding components without
intermediate buffering on disk and random 1/0 accesses occur solely in sorting opera-
tions executed by generic I/0 efficient STXXL sorting algorithms.

As at the time implementing, the STXXL had no support for Windows platforms and
no dedicated algorithm to permute elements in external memory, we decided to reimple-
ment the STXXL pipelining interface in SeqAn as well as a two-pass sorting algorithm and
a two-pass permuting algorithm described in [Weese, 2006]. The latter algorithm is im-
portant as some /0 intensive sorting operations are in fact permutations with a function
7 that maps an element x to its position 7 (x) in the output. Our permutation algorithm
is not only asymptotically optimal in terms of computing time and I/0 accesses but also
shows a better practical running time than the external sorting algorithm in [Dementiev
and Sanders, 2003]. The algorithm has no random but only bulk read accesses and thus
requires no complicated prefetching as necessary in the multiway merge step of exter-
nal sorting [Dementiev and Sanders, 2003]. To make random write accesses of partially
permuted blocks non-blocking, they are written asynchronously with a FIFO.

Analogously to the external memory adaptation of DC3 we transformed the SKEw3
algorithm to comply with the pipeline interface. The pseudo-code is given in [Weese,
2006] and differs from DC3_ExTMEM in that half of the sorting operations are replaced by
permutations and suffixes are grouped into congruence classes according to their length,
as described above.

The adaptation of SKEW7 for external memory is shown in Algorithm 3.3. At first, lex-
icographical names for difference cover tuples are determined in lines 1-4. If the tuple
names are unique, S’ stores pairs of length and rank of difference cover suffixes. Other-
wise, analogously to SKEw7, the suffix array of a string s’ of tuple name is constructed
in a recursive call of SkKEw7_EXTMEM and used to determine S’ the string of length-rank
pairs. In lines 10-14 the difference cover set and the 4 remaining sets of suffixes are
equipped with the information required to compare any two suffixes from the same set
(step 2) or from different sets (step 3). In order to access suffix ranks while sequentially
scanning the text s, we first permute S’ in line 15 to store ranks of difference cover suf-
fixes in decreasing length. For a suffix of length a we additionally store its prefix of length
max A, . (compare with Table 3.2b) and the ranks of the 3 next shorter or equal suffixes of
lengths in the difference cover. This enables us to compare the suffix with any other suf-
fix of length b by comparing their A, , prefix and ranks of suffixes that are A, , characters
shorter, as A,;, < maxA,_ holds and a — A, , is in one of the 3 congruence classes of the
difference cover. Before the suffix sets can be merged in step 3, they are lexicographically

40

sorted in lines 15-19.
SKEW7_EXTMEM is not only asymptotically I/0 optimal but also has the least 1/0 vol-

ume (amount of written and read external memory) over all possible difference cover
algorithms [Weese, 2006].

Algorithm 3.3: SKEW7_EXTMEM(s)
input
output

: text string s over the alphabet X
: suffix array suftab

ne|s|,ng =[7|,ny = [n—;l], Ny = ["_;3]
«((m—is[i.i+6])|i€[0.n)and (n—1i) mod 7 € {1,2,4})

sort A by second component

// Step 1

S« ((a,t4) | (a,x) € A, where 7, is lex. name ofx)
if names are not unique then
n,—[2], if a = 4 (mod 7)

7
s" « permute S’ such that (a,7,) is moved to § ns+n,—[4], ifa =2 (mod 7)
ng+ny+ny—[%], else

suftab” « skew7_EXTMEM((z, | (a,74) € 5')) // recurse

- < (w(suftab'[il),) | i € [0..|suftab'|)>

// Step 2

// compute ranks
R124

R124 « permute S’ to be descending in the first component

// prepare 5-way merge in a linear scan over s and
g124

((asn—an—a+5
~((as[ln—an—a+3
((asn—an—a+4
SO ~((asln—an—a+5

—_— e —

— ((a,s[n—an—a+5],74,Ta4Tas) | a=n,..
: ((a,slIn—an—a+4],74,T4-1,Tq—s5) | a=n,..,
((a,s[n—an—a+2],74,Ta-2,Tq—3) | a=n,..,

v Tae1Ta—2,Ta—6) | a=n,..,
v Ta—1,Ta—3Ta—4) | a=n,..,
v Ta—2,Ta—s, Ta—s) | a=n,..,
yTa-3Ta—s5Ta—6) | a=n,..,

,1and a =1 (mod?7)

)
land a =2 (mod?7))
1andaE4(m0d7)>
1and a =3 (mod?7))
landa =5 (mod7))
land a =6 (mod?7))
1andaEO(mod7))

permute S12# such that (a, ..., g, ...) is moved to 7,

// sort suffix sets

sort S3 by (s[n—al, 1,-1)
sort S° by (s[n — a), t4-1)
sort S® by (s[n —a.n—a+ 1], 74_3)
sort SO by (s[n —a.n—a+ 2],74_3)
// Step 3
5-way merge S°, $124, §3, §5, 5% into suftab

// compare two suffixes by: s,_; <. Sn-p &

/ (s [n—an—a+A4,), Ta—AM) < (s [n—bn—b+A4,,), TD_AM)
return suftab

3.3.5 Extension to multiple sequences

We now want to extend the notion of the suffix array from one to multiple sequences [Shi,
1996]. Given a set of strings § = {s*, ..., s™} over X, we define §; j, := sj'- to be the suffix

of s’ starting at position j. Further, let § := {s$',...,5™$™} where $' are sentinels not

41

contained in any of the strings and $* < ... < $" < minZ. The sentinels are (concep-
tually) appended to well-define the order of elements in the suffix array as suffixes from
different sequences otherwise might be equal.

Definition 3.5 (generalized suffix array). For a set of multiple strings § = {s, ..., s™}, the
(generalized) suffix array is a string of length n = Zﬁl |st| of pairs (i,j) with i € [1.m]
and j € [0.]s!|) such that holds:

<] © Sqtabfi] <iex Osuftab[j] - (3.21)

For n™®* being the length of the longest sequence, the generalized suffix array can
be constructed in O(nlogn™®*) time with the rank-based Manber and Myers [1993] al-
gorithm adapted to multiple sequences [Shi, 1996]. Another approach is to construct
the suffix array of t = s1$"s2$% .. s™$™ and transform it to the generalized suffix array.
However, the conversion would require O(nlogm) additional time and in practice many
construction algorithms are implemented for ¥ = [0..256) and prohibit extending the
alphabet by m more characters.

We developed an algorithm that directly constructs the generalized suffix array for
multiple sequences over arbitrary integer alphabets in external memory. It is a vari-
ant of SKEW7_EXTMEM modified in the first recursion level and has the same asymptotic
[/0 complexity and is thus also optimal. The pseudo-code is shown in Algorithm 3.4.
Again, we partition all non-empty suffixes into residue classes modulo 7 according to
their length and consider their prefixes of length 7 as tuples. In lines 3-5 difference
cover tuples are lexicographically sorted and named. In order to sort suffixes accord-
ing to Definition 3.5, tuples from st and s’ of 6 or less characters are sorted as if a $i and
$/ would have been appended to their ends. If the names are not unique, we recursively
construct the suffix array of a single string s’ which is the concatenation of 3 strings of
namess' =t,-t,-t;, wheret; := t} . tjz- *...- tj* contains only names of tuples in residue
classj. Eacht} := Tarmi-1+) = Ta7+) T is the concatenation of tuple names in residue
class j from string s, where e.g. 7(; 5 is the name of s'[n'—a..n'~a+7) and n' := |s'|. Given
n]i-, the length of ti, the function m determines for tuple name T;, its position (i, a) in s’:

Y nk— [%] ifa = 4 (mod 7) m
(i, a) =4 ng+Y,_, nf —[%] ifa=2(mod7) withn; = Z nt. (3.22)
ng+n, + ¥, nt—[2] else, P

After the recursion or if names were unique, S’ contains pairs of start positions and ranks
of suffixes of s’. In lines 10-14, these pairs are assigned to strings R’ which store lexico-
graphical ranks of suffixes of length congruent j modulo 7 of the original strings s?, ..., s™.
For the preparation of the 5-way merge of suffixes in step 3, we permute R’/ such that

ranks are stored in the same order as the corresponding suffixes appearin s* - s? - ...- s™,
ascending in the sequence index i and if equal, descending in the length of the si-sulffix.
In this way, the preparation can be carried out by simultaneously scanning s* - s% - ...+ s™,

R1, R?, and R*. The actual preparation and the 5-way merge in step 3 work analogously
to SKEw7_EXTMEM. The only difference is that positions are pairs.

42

Algorithm 3.4: SKEW7_MULTI(s}, ..., s™)

input : multiple text strings s1, ..., s™ over the alphabet X
output :suffix array suftab

// Step 1
fori < 1tomdo

e Jo]m = 2] b = 252, = 253
A« (((i,n" =j),s'[j.j +6]) | i €[0.m)and j € [0.n") and (n’ —j) mod 7 € {1,2,4})
sort A by second component as if $i was appended to st with $' < .. <$™ <minx
S« ((n(i, a),‘r(l-_a)) | ((i, a),x) € A, where T(ia) IS lex. name ofx)
if names are not unique then

s’ « permute S’ such that (p, T) is moved to p

suftab” « skew7_EXTMEM((T | (a,T) € s')) // recurse

« ((suftab’[i],) | i € [0.|suftab’[))

// Step 2
b<0
forj €{1,2,4} do
a<b,bea+ Zl 1M
((p,‘r) |(p,7) €S "anda<p < b) // extract suffixes of length =j
Rj < permute B to be ascending in the first component // compute ranks
S124 // prepare 5-way merge in a linear scan over s!-..-s™, R', R%, and R*
m (((l a)s n—an—a+5] Tia Tia—4 Tia— 6)|a—n 1/\a51(m0d7))

(((l a),s'[n' —a.n'—a+4], Tia Tia—1Tig— 5) | a=n'..,1Aa=2(mod 7))
i=1 \ - (((a),s' n'—an'—a+2],74,Tig-2Tia3) |a =1 ..,1Aa =4 (mod 7))
S < TI2, (G a), s [n —a.n'—a+3], 741, Tiq-3Tig-a) | a =1, ., 1 Aa =5 (mod 7))
S T2, (((a),sint—ani—a+4], 742, Tig-aTia-s) | a =1, ., 1A a =6 (mod 7))
SO«]_[?:l1 (((i, a),si[ni—a..ni—a+5],Tl-_a_3,ri,a_5,‘ri‘a_6) | a=n}..,1Aa=0(mod 7))
S T2, (G a), s nt—ant—a+5], 741, Tig-2Tia-s) | a =1, ., 1A a =3 (mod 7))
permute S*2* such that ((i, @), ..., Tjq, ...) is moved to 7; 4 // sort suffix sets

sort S3 by (s'[n' — a], Tjq_1)
sort S° by (s'[n’ — a], Tia-1)
sort S by (s'[n! —a.n' —a+1],7;4_2)
sort SO by (s'[n! —a.n' —a+2],7.4-3)

// Step 3
5-way merge S°, $124, §3, §5, 5% into suftab
// compare two suffixes by: S(i'n,_a) < S'Un, b) &

lex

// (Si [nt —ani—a+ Aa_b),rl-'a_Aa’b) < (9/ [0/ —b.nf —b+Ag;),7),- ”b)
return suftab

3.4 Construction of the Icp table

The first suffix array construction algorithm [Manber and Myers, 1993] as well as the
skew algorithm [Kdrkkainen et al, 2006] can be extended to construct the Icp table as a
byproduct with auxiliary data structures. The first optimal approach was a standalone
linear-time algorithm published by Kasai et al. [2001].

43

3.4.1 The linear-time algorithm by Kasai et al.

The basic idea of the Icp table construction algorithm proposed in [Kasai et al, 2001] is
to use the lcp length of a suffix and its lexicographical predecessor for the comparison of
the next shorter suffix and its predecessor. The linear running time is possible due to the
following lemma.

Lemma 3.3. Given a string s of length n, the corresponding suffix array, and the Icp ta-
ble. For every j € [0.n — 1) with lcp [suftab™[j]] = [and suftab™'[j + 1] # 0 holds
lcp [suftab™ [+ 1]] = 1 - 1.

Proof. Let s; be a suffix with Icp [suftab_l[j]] = [. The assumption obviously holds for
l < 0. Forl > 0, s; has a lexicographical predecessor, say s;, and for the next shorter
suffixes s;,, and s;,; holds | lep{si41, sj+1}| =l—1and s;, <, Sj4+1- The lexicographical
predecessor of s, 1 I Sgtap[suttab=[j+17-1] AN itholds Si41 Sioo Sqyttapfsuftab™ [j+11-1] Siex Sj+1-
From the latter follows:

lep [suftab™ [j + 1]] = | 1ep {Sutravfsuteabj+11-1]s Sjs1}| = [1ep {Sivn, 5j01}] = 1= 1. (3.23)

As a consequence, the Icp values of suffixes s; can be computed for increasing j be-
ginning with j = 0 and the pairwise suffix comparison can skip the common prefix of at
least max(l — 1, 0) characters, where [is the Icp value of the previous comparison. In this
way, the overall number of character comparisons is less than 2n and the inner loop in
line 9 of Algorithm 3.5 takes O(n) overall time as well as the whole algorithm.

Algorithm 3.5: CONSTRUCTLCPTABLE(S, suftab)
input : text string s, suffix array suftab
output :lcp table lcp
n <« |s|, lep[0] « —1, lep[n] « —1
fori <~ Oton—1do
suftab™! [suftab[i]] « i
l<0
forj < Oton—1do
if suftab™"[j] # 0 then
i « suftab [suftab™"[j] — 1]
while min(i,j) + [<nands[i +] = s[j + (] do
l<1+1
lcp [suftab™"[j]] « 1
ifl>0then [« [—1
return lcp

44

3.4.2 Space-saving variant

Manzini [2004] found a way to save the 4n bytes? of additional memory consumed by
the inverse suffix array by reusing the memory of Icp. Before the lcp values are written,
Icp stores for each suffix rank k the rank of the next shorter suffix, i.e. RankNext[k] =
suftab™" [suftab[k] + 1]. After substitution of j by suftab[k] and suftab™"[j] by k in Al-
gorithm 3.5, Manzini replaces lines 2-3 by a RankNext construction algorithm which uti-
lizes the rank-preservation property of the Burrows-Wheeler transform [Burrows and
Wheeler, 1994].

Algorithm 3.6: CONSTRUCTLCPTABLE_INPLACE(S, suftab)
input : text string s, suffix array suftab

output :lcp table lcp
n <« |s|
fori <~ Oton—1do
lcp [suftabli]] « i
l<0
forj < 0Oton—1do
if Icp[j] # O then
i « suftab [Icp[j] — 1]
while min(i,j) + [<nands[i +] = s[j + (] do
l<l+1
lep[j] « =+ 1)
ifl>0then [« [—1
forj < 0Oton—1do
if Icp[j] < 0 then
L ‘_j, ttmp < |Cp[j]
while suftab[i] # j do
Icp[i] « —lcp [suftab[i]] — 1
i « suftabl[i]
Icp[i] < _ttmp -1
lcp[0] « —1, [cp[n] « —1
return lcp

Independent from Manzini’s approach, we found another simple way to reuse the
memory of lcp by storing suftab™" in it [Weese, 2006]. As the values of suftab™" are read
only once and in sequential order, each entry can be used after reading to store the com-
puted lcp value. However, after all Icp values have been computed they are in text order
and must be permuted in-place to be in suffix array order, i.e. an lcp value at position j
must be moved to position suftab™"[j]. To permute elements without overwriting oth-
ers, we swap them along cycles j, suftab[j], suftab [suftab[j]], ..., j. To permute all cycles
exactly once we iterate over all cycle start positions j and mark non-permuted elements
with negative values. The algorithmic details are shown in Algorithm 3.6. A similar algo-
rithm that constructs a sparse Icp table was later published in [Karkkainen et al., 2009].

2 We assume that n < 232 holds, otherwise suftab™* consumes 8n bytes.

45

3.4.3 Adaptation to external memory

Adapting the algorithm in [Kasai et al., 2001] to efficiently use external memory is chal-
lenging, as it shows a poor locality behavior. Although in the main loop all accesses to
suftab™" and text accesses via s[j + [] are in sequential order, accesses to suftab, Icp, and
s[i +] are random. Our in-place algorithm, described in the previous section, suggests
how Icp can be permuted such that accesses to it become sequential. A similar permu-
tation is possible for suftab as it is clear beforehand in which pattern suftab values will
be accessed. For text accesses via s[i + [] this does not hold and yet all approaches to an
external memory Icp construction [Kasai et al, 2001; Karkkdinen et al, 2009; Gog and
Ohlebusch, 2011] are semi-external, i.e. they require the whole text [Gog and Ohlebusch,
2011] and an additional array of n [Gog and Ohlebusch, 2011] or 4n byte [Kasai et al,,
2001; Karkkainen et al., 2009] to reside in main memory.

We developed a window based approach that is applicable even if the text does not
fit into main memory. It processes consecutive non-overlapping text windows of an arbi-
trary size w in [2] rounds. If s[a..b) is the current window, then character comparisons
between s[i + [] and s[j +] can only be conducted if i + [€ [a..h). However, some
suffix comparisons may exceed the window border. Those comparisons must be inter-
rupted at the end of the current window and resumed in the next window. The following
lemma will help to easily keep track of suffixes s; whose comparisons were interrupted.
Whereas Lemma 3.3 states a relation between Icp lengths of suffixes and their lexico-
graphical successors, the next lemma is its counterpart and gives a relation of suffixes
and their successors.

Lemma 3.4. Given a string s of length n and the corresponding suffix array and Icp table.
For every j € [0.n — 1) with Icp [suftab™"[j] + 1] = l and suftab™"[j + 1] # n — 1 holds
lep [suftab™'[j + 1] + 1] > 1 - 1.

Proof. This lemma can be proven analogously to Lemma 3.3. n

A direct consequence of Lemma 3.4 is that if an lcp comparison of a suffix s; with its
lexicographical successor exceeds the window end b, comparisons of all shorter suffixes
s; withi < i’ < b will leave the window as well. Let w(b) be defined as the leftmost start
position of such suffixes:

w(b) =minf{i|i€[0.n) Ai<b<i+Icp[suftab™[] +1]}. (3.24)

Clearly, comparisons of suffixes s; will end left of b if i < w(b) and exceed b if w(b) <
i < b. This allows to stop comparisons of suffixes s; at the window end b and to deter-
mine w(b), the smallest of such i. Comparisons of suffixes s; with w(a) < i < a were
interrupted at end of the previous window and can be resumed by setting [to at least
a—i.

Algorithm 3.7 shows the pseudo-code of our implementation. Lines 1-3 prepare val-
ues suftab™'[j] and suftab [suftab™*[j] — 1] for increasing j. The main loop from line 4
to 16 iterates over all non-overlapping windows s[a..b), where w, equals w(a) and w,
is used to compute w(b). An lcp value is successfully computed if the suffix comparison

46

was not interrupted or ends at the text end. Then the Icp value Icp[k] and its rank k is ap-
pended to L. At the end, L is permuted to be ascending in k and filtered for values lcp[k]
in lines 17-18.

Algorithm 3.7: CONSTRUCTLCPTABLE_EXTMEM(s, suftab)
input : text string s, suffix array suftab
output :lcp table Icp
ne<|s|,w, <0,L«< (0,—-1) (n—-1)
A « ((k, suftab[k — 1], suftab[k]) | k € [0.7))
permute A such that (k, i,) is moved to j
forj < 1to [] do
a<({G—=1)-w,b < min(jw,n), w, < b
foreach (k,i,j) € Ado
if k>0 then
ifw, <iandi+[<bthen
l « max(l,a —1i)
while (i + 1) € [a.h)andj + [<nands[i+] =s[j+] do
l<l+1
ifi+1<borb=nthen
L<L-(klD
ifi + 1> bthen w, « min(wy, i)
ifl>0then [«[—1

W, < Wy

permute L such that (i,) is moved to i
lep< (1| @D eP)
return lcp

We implemented the algorithm using the pipelining interface. The current window
s[a..b) is loaded into a memory buffer of size w. To minimize the running time, w should
be chosen as large as possible.

3.4.4 Extension to multiple sequences

All of the Icp table construction algorithms described above can easily be adapted to mul-
tiple sequences. For a given a set § = {s?, ..., s™} of strings of lengths n?, ..., n™ and the
corresponding generalized suffix array suftab, we define:

i—1 m
o) =j+ Z n* and n= Z n*. (3.25)
k=1 k=1

As the generalized suffix array stores pairs instead of single integers, its entries cannot
directly be used to access suftab™". Therefore, we adapt Algorithm 3.5 and use ¢ as a
unique mapping of suffix start positions onto the interval [0..n) in lines 5,9,10, and 13 in
Algorithm 3.8. The second adaptation concerns the Icp comparison in line 11.

47

Algorithm 3.8: CONSTRUCTLCPTABLE_MULTI(s?, ..., s™, suftab)

input : multiple text strings s1, ..., s™, suffix array suftab
output :lcp table lcp
ne0

fori < 1tomdo
nt « |st|,n «n+n
fori < 0ton—1do
suftab™ [¢ (suftab[i])] « i
l < 0,lcp[0] « =1, lcp[n] « —1
fori < 1tomdo
forj < 0ton' —1do
if suftab™ " [(i, /)] # O then
(a,b) « suftab [suftab™ ' [¢ (i, /)] — 1]
whileh + 1 <n%andj+ 1 <n'ands®b+1] =s'[j+1] do
l<1+1
lcp [suftab™ ' [p (i,)]] « 1
ifl>0then [« [—1
return lcp

By implementing ¢ using an array of length m that stores at position i the partial sum
of the first i — 1 sequence lengths, ¢ (i, j) can be determined in constant time and Algo-
rithm 3.8 constructs the Icp table in O(n) time. Algorithms 3.6 and 3.7 can analogously
be adapted without changing their asymptotical running time.

3.5 Construction of the child table

3.5.1 Bottom-up suffix tree traversal

As mentioned in Section 3.1.3, the Icp table alone can be used to traverse the inner nodes
of the suffix tree in a bottom-up fashion with an algorithm proposed by Kasai et al. [2001].
The corresponding pseudo-code is given in Algorithm 3.9. In linear time the algorithm
outputs all #-intervals [lb..rb) that correspond to suffix tree nodes visited in a postorder
depth-first search (DFS). Therefore it scans the Icp-table and maintains a stack of growing
lcp-table intervals and their minimal Icp value #. Iteratively every lcp value lcp][i] closes
intervals with greater Icp values (lines 5-9), extends or if not part of the stack creates a
new lcp-interval spanning the closed intervals (lines 9-11). For the proof of correctness
we refer the reader to [Kasai et al,, 2001].

3.5.2 The linear-time algorithm by Abouelhoda et al.

In [Abouelhoda et al., 2002b] the authors propose two modifications of this bottom-
up algorithm to construct the up and down values and the nextfIndex values. In Algo-
rithm 3.10 we show the combination of both algorithms to directly construct the child

48

Algorithm 3.9: BOTTOMUPTRAVERSAL(Icp)

input . Icp table Icp
output :lcp-intervals traversed in a postorder dfs
n <« |lcp| =1
S« (-1,0,0)
fori < 1tondo
Ib—i—1
while Icp[i] < top(S).£ do
top(S).rb « i
interval < pop(S)
report(interval)

lb « interval.lb
if Icp[i] > top(S).? then
push((lcp[i], Ib, ©), S)

table. Instead of £-values and interval boundaries used in Algorithm 3.9, the stack in
Algorithm 3.10 only stores #-indices, i.e. each ¢-interval is represented by a run of its
£-indices. According to the space-saving trick described in Section 3.2, up values for #-
indices i are stored at position i — 1 (line 9) and down values are stored only for the last
of all #-indices of each interval (lines 6-7).

down values

The condition in line 6 is true, iff the two £-values on the top of the stack are different from
each other and greater than the current £-value Icp[i]. In this case, both elements will be
removed and are £-indices from an Icp-interval and its last-child interval. As #-indices of
the same interval are stored as an ascending run, the topmost stack entry (last) is the
first £-index in the last-child interval and the second topmost stack entry (now top(S)) is
the last £-index in the parent interval and the left border of the last-child interval. Hence,
last is its down value and needs to be stored.

up values

In line 8, last is the last £-index removed by the current ¢-index i or equals —1 if none
was removed. In the first case, the last removed £ index is the first £-index in the child
interval left of i. Hence, last is the up value of i and is stored at position i — 1.

nextfIndex values

nextfIndex values are computed similarly. If after the removal of all greater £-values the
topmost £-value equals the current one, the topmost ¢-index is directly preceding i and
its nextfIndex value is set accordingly in line 12.

For the proof of correctness and a more detailed description we refer the reader to
[Abouelhoda et al., 2002b]. Although this algorithm as well as Algorithm 3.9 reads the

49

Algorithm 3.10: CcONSTRUCTCHILDTABLE(Icp)
input . lcp table Icp
output :child table cld
n <« |lcp| =1
S« 0,last « —1
fori < 1tondo
while lcp[i] < lep[top(S)] do
last < pop(S)
if lcp[i] < lcp[top(S)] and lcp[top(S)] # lcp[last] then
cld[top(S)] « last
if last # —1 then
cld[i — 1] « last
last « —1
if Icp[i] = Icp[top(S)] then
cld[top(S)] « i

push(i, S)
return cld

algorithm reference complexity

suffix array
BWF BwtWalkFast [Baron and Bresler, 2005; Marschall et al, 2009] O(nlogn)
BWIP in-place variant of BwtWalkFast [Marschall et al., 2009] 0(n?)
DS deep-shallow sort [Manzini and Ferragina, 2004] O(nlogn)
MM prefix doubling algorithm [Manber and Myers, 1993] O(nlogn)
QSORT quick sort with lexicographical string comparisons om?)
SKEW3 our variant of DC3 [Karkkdinen et al., 2006], see Section 3.3.3 O(n)
SKEW7 SKEW3 extension to the next larger, perfect difference cover on)

Icp table
Kasal linear-time Icp construction algorithm [Kasai et al., 2001] on)
KasailP our in-place variant of the Kasai’s algorithm, see Section 3.4.2 O(n)

child table
CHILDTAB bottom-up construction [Abouelhoda et al., 2002a] o(n)

Table 3.3: Enhanced suffix array construction algorithms available in SeqAn.

Icp table up to position n, it can easily be verified that it leaves cld[n] untouched. Thus,
the child table can be stored as a string of length n.

3.5.3 Adaptation to external memory and multiple sequences

Algorithm 3.10 can easily be adapted to external memory as it sequentially reads the Icp
table and accesses adjacent elements on a stack. The only random accesses are the write
accesses cld[x] « y. Instead of directly executing them, our implementation collects a
sequence of pairs (x, y) which at the end of the algorithm is externally sorted by x and
used to sequentially fill cld.

50

corpus/dataset reference

Gauntlet corpus http://compressionratings.com/files/gauntlet_corpus.zip
Schiirmann-Stoye corpus http://bibiserv.techfak.uni-bielefeld.de/download/tools/bpr.html
Manzini-Ferragina corpus http://people.unipmn.it/manzini/1lightweight/corpus/

UCSC genomes http://hgdownload.cse.ucsc.edu/downloads.html

celegans concatenated UCSC chromosomes of C. elegans

dmel concatenated UCSC chromosomes of D. melanogaster

hs concatenated UCSC human chromosomes

mammals three UCSC whole genome sequences (human, dog, and mouse)

Table 3.4: Datasets used for ESA experiments.

running time [s/Mb]

m

=9 <

- . B %% 3 i ;@

dataset size [Mb] E E a = 2 g G S S 3
abac 0.2 0.0 533 1213 03 24179 01 01 0.0 0.0 0.00
paper5x80 1.0 0.0 13.6 0.7 11 15870 02 0.2 0.0 01 0.01
testl 21 01 1726.0 3.7 2.4 - 04 03 00 01 0.01
test2 21 01 19085 3.7 2.4 - 04 03 00 01 o0.01
test3 21 0.0 64.9 0.7 2.3 7122 03 03 0.0 0.2 0.01
world 25 14 6.8 0.1 4.2 05 05 04 00 02 0.02
houston 38 01 11.9 27.1 1.2 10467 02 03 0.0 02 0.02
bible 40 1.0 7.2 0.1 5.2 05 08 06 01 02 0.02
abba 105 0.1 0.6 2.5 4.5 - 07 07 00 02 0.01
book1x20 154 0.1 80.0 5.6 5.2 - 10 13 01 02 0.01
Fibonacci 20.0 0.1 0.4 12.5 35 - 07 07 01 02 0.01
period_1000 20.0 0.1 - 18.6 3.6 - 11 12 00 0.2 0.01
period_20 20.0 0.0 - 507 1.1 - 03 04 00 02 001
period_500000 200 0.1 55.9 13.7 5.5 - 13 14 01 02 0.01
random 200 1.7 5.0 0.2 8.2 07 11 14 01 03 0.02
howto 394 6.0 40.4 0.2 8.2 1.2 17 16 01 03 0.02
jdk13c 69.7 15 17.2 04 73 46 15 15 01 02 0.02
gce-3.0 86.6 4.5 39.0 04 7.7 147 16 15 01 03 0.02
w3c 1042 7.5 31.7 0.5 7.7 226 16 16 01 02 0.02
etext99 1053 7.1 11.8 03 103 34 19 19 01 03 0.02
sprot34 109.6 2.3 33.0 0.2 9.1 1.5 1.7 18 01 03 0.02
reuters 1147 2.4 - 0.5 9.1 29 17 17 01 03 0.02
linux-2.4.5 1163 3.7 27.7 0.2 8.3 21 17 16 01 03 0.02
rfc 1164 4.7 2.3 0.2 9.4 1.3 17 17 01 03 0.02

Table 3.5: Construction times for ASCII datasets. We compared different ESA construction
algorithms and normalized their running times by the text length (seconds per
1 M characters). Runs that did not finish within 10 h are denoted by dashes (-).

A special adaptation to multiple sequences is not necessary as the Icp-interval tree
depends solely on the lcp table and the text is not required for the construction of the
child table.

http://compressionratings.com/files/gauntlet_corpus.zip
http://bibiserv.techfak.uni-bielefeld.de/download/tools/bpr.html
http://people.unipmn.it/manzini/lightweight/corpus/
 http://hgdownload.cse.ucsc.edu/downloads.html

51

running time [s/Mb]

m

A, <

. 2 . £ % % oz 3 &

dataset size [Mb] E E a = 3 7 5 S S 3
fss9 29 01 02 22 23 1222 03 03 00 0.2 0.01
E_coli 46 03 04 041 5.8 06 08 06 01 02 0.02
4Chlamydophila 49 02 06 0.2 5.4 28 08 06 01 0.2 0.02
aaaa 6.0 0.0 00 0.0 0.5 - 01 01 00 00 0.02
6Streptococci 11.6 03 08 0.2 6.9 09 12 09 01 02 0.02
A_thaliana_Chr4 121 03 0.7 0.2 7.3 09 12 10 01 03 0.02
fss10 121 01 03 5.6 3.5 - 06 07 01 02 0.01
C_elegans_Chrl 142 03 0.7 0.2 6.7 699 11 09 01 02 0.02
hs_chr22 346 04 08 0.2 8.1 519 15 12 01 03 0.02
celegans 101.7 04 09 0.2 9.9 1.1 1.7 14 01 03 0.02
dmel 1221 05 1.0 0.2 106 23 17 14 01 03 0.02
hs_chrX 1458 04 1.0 0.2 10.7 33 1.7 14 01 03 0.02
mm_chrX 169.0 04 1.0 0.2 109 - 17 14 01 04 0.02
mm_chr2 1843 05 1.0 0.2 115 - 17 14 01 03 0.02
hs_chr2 2467 05 1.0 0.2 122 - 18 15 01 03 0.02

Table 3.6: Construction times for DNA datasets. Compare with Table 3.5.

o n _ a9 u _
s - s -
= =

Jia) o

= =

< o S o
O 9« 7 O 9« 7
=) =)

It ©

[2] 2]

=} =}

> 0 >
e a

o S

IS £

o} ©

E o J E o

L a o» s
2 0=
[aa]

o

gsort
skew3
skew?7

a =
s 3
T ©
= ¥
=
()

KasailP

(a) suffix array construction (b) Icp and child table
construction

Figure 3.6: Construction peak memory usage. We compared different ESA construction al-
gorithms and normalized their peak memory usage by the length of the text
(megabyte per 1 million text characters). Suffix array algorithms are shown in
the left (a) and Icp and child table algorithms in the right plot (b).

3.6 Applications

3.6.1 Searching the suffix array

The suffix array is a data structure that allows efficient searching of a text for any given
pattern. As every substring is a prefix of a suffix, searching a substring p is equivalent

52

running time [h:min:s]
dataset size [Mb] SKEW7 Kasat CHILDTAB total

internal memory variant

hs_chrX 145.8 2:40 0:44 0:03 3:28

hs_chr2 246.7 6:00 1:23 0:05 7:29

hs 3096.5 1:38:09 33:43 1:02 2:12:55
external memory variant

hs_chrX 145.8 1:16 0:30 0:05 1:52

hs_chr2 246.7 2:14 1:02 0:14 3:32

hs 3096.5 55:58 24:46 5:02 1:25:47
multiple sequences

mammals 8111.1 8:28:52 3:27:18 26:10 12:22:21

internal memory usage [GB]
dataset size [Mb] SKEw7 Kasal CHILDTAB max

internal memory variant

hs_chrX 145.8 1.3 1.2 1.1 1.3

hs_chr2 246.7 2.1 2.1 1.9 2.1

hs 3096.5 26.0 26.0 23.1 26.0
external memory variant

hs_chrX 145.8 2.9 1.4 1.7 2.9

hs_chr2 246.7 49 2.2 0.2 4.9

hs 3096.5 7.5 2.3 0.2 7.5
multiple sequences

mammals 8111.1 3.5 2.3 0.2 3.5

external memory usage [GB]
dataset size [Mb] SKEw7 KasAl CHILDTAB max

external memory variant

hs_chrX 145.8 2.9 2.7 1.1 2.9

hs_chr2 246.7 49 4.6 1.8 4.9

hs 3096.5 61.4 57.7 23.1 61.4
multiple sequences

mammals 8111.1 323.6 3022 90.6 323.6

Table 3.7: Construction times and internal and external peak memory usage for large DNA
datasets. We compared the internal and external memory ESA construction
of 3 single-sequence datasets and the external ESA construction of a multiple-
sequence dataset consisting of three mammal genomes.

to searching suffixes s; that have a prefix p, whereas i is the begin position of an occur-
rence of p in s. If p has length m, a substring search in a suffix array can be conducted
by a binary search in O(mlogn) running time. Figure 3.7 shows the pseudo-code of the
binary search which is split into two separate searches for the sake of simplicity. The two
functions determine the lower and the upper interval bound of the semi-open suffix array
interval storing occurrences of the pattern p in the text s. In each iteration the pattern p
is compared with the suffix s,p[;) beginning with the first characters.

53

Algorithm 3.11: FINDLOWER(S, p)

Algorithm 3.12: FINDUPPER(S, p)

input : text s and pattern p

output :minimal [with p <, Ssuftabi]
li <0

Ly < |s|

while [; <[, do
e
if Ssuftabli] <|p| P then
li<i+1
else
I, «i

input : text s and pattern p

output :minimal 7 with p <y, Ssuftab[r]
<0

T, < |s]

whiler; <1, do
o2
if Ssuftabli] <|p| P then
riei+1
else
Ty <1

return [, return ry

Figure 3.7: Binary search on the suffix array. FINDLOWER and FINDUPPER determine the
interval boundaries | and r of the suffix array such that suftab[l..r) stores the
begin positions of all occurrences of p in s.

With a simple so-called mir-heuristic [Manber and Myers, 1993] the average running
time can be reduced by keeping track of the longest-common prefix lengths between the
suffixes at the interval borders of the current search interval and the search pattern p. If
for strings L, M,R € £* with L < M <, R holds ! := |lcp{p, L}| and r := | Icp{p, R}| then
obviously L and R share a common prefix of length mlr := min([, r). Obviously M begins
with the same prefix shared by L, R and p of length mir and therefore the first mir char-
acters can be skipped during the comparison in line 6 of the improved binary searches
in Figure 3.8. Although the worst-case running time is still O(m logn) the heuristic im-
proves the average running time in practice. With an additional data structure, called
lcp-tree, that determines the values | lep {ssuftab[ll_l], ssuftab[i]” and | lep {ssuftab[i], ssuftab[lz]}|
in O(1) the running time can be improved to O(m + logn) [Manber and Myers, 1993].
However, experiments show that the running time deteriorates in practice due to the
overhead in accessing the Icp-tree. We compared the search times of the naive binary
search, the binary search with mlr-heuristic, the lcp-tree binary search, and the suffix
tree search (following section) on texts over different alphabets. The results in Figure 3.9
show that in all cases the mlr-heuristics outperforms the naive and lcp-tree search. The
suffix tree search is faster for small pattern lengths as in contrast to the binary searches
its running time does not depend on the length of the text. On large alphabets the suf-
fix tree search deteriorates due to the larger number of child edges which are searched
sequentially.

3.6.2 Traversing the suffix tree

With the enhanced suffix array consisting of suffix array, lcp table, and child table, we are
now able to top-down traverse the nodes of the suffix tree of a text which actually is a
node traversal of the corresponding Icp-interval tree.

54

Algorithm 3.13: FINDLOWERH(s, p) Algorithm 3.14: FINDUPPERH(S, p)
input : text s and pattern p input : text s and pattern p
output :minimal [with p <, Ssuftabi] output :minimal 7 with p <y, Ssuftab[r]
ly «0,ky <0 r1<0,k; <0
Ly« |sl,ky <0 T2 < Is|, ky < 0
while [; <[, do while r; <7, do
e |5 i |y
k < min{kq, k,} k < min{kq, k,}
if Ssuftabli]+k <|p|-k Pk then if Ssuftabli]+k <|p|-k Pk then
lLL<i+1 riei+1
ky < k + | lep {Ssuteab[ij+ Pic}| ky < k+ | lep {Ssuteab[ij+k> Pic}|
else else
l, «i Ty <1
ky « k + | lcp {Ssufeab[ij+ie Pic}| ko < ke + | 1ep {suttabfi+o P |
return [, return r

Figure 3.8: Binary search with mlr-heuristic. FINDLOWERH and FINDUPPERH return the
same interval boundaries as FINDLOWER and FINDUPPER. A heuristic determines
a lower bound on the Icp length between s and p and thereby reduces the
number of character comparisons on average.

hs_chr2 (2 =5) sprot (2=24) ric (12=256)
o Lere T]
N | v MLR o o
7| 2 Naive P P
() -| © SufTree) - o B
[} © [} © [} ©
E 31 E 31 E 31
(=] (=] (=)
£ N £ N £ 7
c c c
c < c < S < |
2 o 2 o 2 ©
o | o | o |
e T e T T T T T T i T T T T T T
1 5 50 500 5000 1 5 50 500 5000 1 5 50 500 5000
pattern length pattern length pattern length

Figure 3.9: Comparison of the ESA based search algorithms available in SeqAn. We com-
pared the running times required to search 100,000 patterns using the naive
binary search (Naive), the binary search with mlr-heuristic (MLR), the binary
search with Icp-tree (LCPE), and the suffix tree search (SufTree). As texts we
used the first 100 M characters of a DNA, amino acid, and natural language
text. Patterns are random substrings of varying length.

Top-down traversal

We implemented a so-called top-down iterator and functions to go to the root node, to go
down to the leftmost child, and to go right to the next sibling of the currently visited node,
where the children are lexicographically ordered by their edge labels from left to right.
The top-down iterator maintains the values lb and rb, the Icp-interval boundaries of the

55

Algorithm 3.15: GoRooT(iter)

Algorithm 3.16: ISNEXTL({)

input : suffix tree iterator iter
n« |lep| =1

iter.lb < 0

iterrb «<n

iter.parentRb « L

input 1 £-index i

j « cd[i]

if i < jandlcp[i] = lcp[j] then
return true

return false

Algorithm 3.17: coDownN(iter)

Algorithm 3.18: GORIGHT(iter)

input : suffix tree iterator iter
output : returns true on success
if iter.rb — iter.lb < 1 then
return false;
if iter.rb # iter.parentRb then
iter.parentRb « iter.rb

iter.rb « cld[iter.rb — 1]
else

iter.rb < cld[iter.lb]
return true

input : suffix tree iterator iter
output : returns true on success

if iter.parentRb € {1, iter.rb} then
return false

iter.lb « iter.rb

if ISNExTL(iter.rb) then

iter.rb < cld[iter.rb]
else

iter.rb « iter.parentRb
return true

currently visited node, and parentRb the right boundary of the parent node. It starts
in the root of the Icp-interval tree which is the interval [lb.rb) = [0.n). For the root
node, we initialize parentRb with L, see Algorithm 3.15. The intervals in the lcp-interval
tree are distinct from each other and two iterators can be compared by comparing their
boundary pairs. For leaf nodes hold rb — Ib = 1.

When moving the iterator to the first child of the current node, the left boundary re-
mains the same whereas the smallest #-index in £-indices(lb, rb) becomes the new right
boundary rb and parentRb the former value of rb. If the current node is not the last
child of its parent (rb # parentRb), the smallest £-index in #-indices(lb, rb) is the up
value of rb stored at cld[rb — 1], otherwise it is the down value of b stored only in this
case at cld[lb]. The corresponding pseudo-code is given in Algorithm 3.17. Moving the
iterator to the next sibling is possible iffrb & {1, parentRb}, i.e. for all but the last sibling.
Then Ib becomes the former rb and rb becomes, if existent, its next £-index or parentRb,
otherwise (see Algorithm 3.18).

Besides the GoDOwWN function that moves an iterator along the leftmost edge to the
first child, we also implemented variants to go down to a child at the end of an edge
starting with a certain character or to go down along the path of string characters. All
the traversal functions return a boolean which is true, iff the iterator could be successfully
moved.

Random traversal

If only the 3 tables of the enhanced suffix array are given, it is not possible to move a
top-down iterator upwards the tree in O(1) time. It is however possible to recover the
state the iterator had in the parent node by manually maintaing a stack of top-down it-

56

Algorithm 3.19: GONEXT_PRE(it) Algorithm 3.20: GONEXT_PosT(it)

input : suffix tree iterator it input : suffix tree iterator it

if GORIGHT(it) then
if not coDown(it) and not GORIGHT(it) then while coDown(it) do
while GoUP(it) and not GoRIGHT(it) do

else
if IsSRooT(it) then if not coUp(it) then
(it.lb,it.rb) « (—=1,-1) (it.lb,it.rb) « (—1,-1)
return false return false
return true return true

erator copies. To provide a more convenient interface we implemented the subclass top-
down history iterator which extends the top-down iterator by a stack. The stack stores
the Icp-interval boundaries of nodes on the path to the root. We adapted the GoRooT
and GoDowN functions to clear the stack and to push the current interval boundary pair
(b, rb) onto the stack before going down. The new function GoUp simply replaces (Ib, rb)
by the topmost pair and removes it from stack. We also need to adapt parentRb, which
is set to the new topmost rb value on stack.

Depth-first search

While the two iterators above require 3 tables of the enhanced suffix array, we have seen
in Section 3.5.1 that only 2 tables are required to conduct a postorder depth-first search
(DFS). Algorithm 3.9 can be executed to report all nodes. However, in some applications it
is more appropriate to have an iterator that can be moved node-by-node. Therefore, we
implemented a light-weight bottom-up iterator which maintains lb and rb, the current
node boundaries, and provides functions GOBEGIN and GONEXT. Like a coroutine [Knuth,
1997], GONEXT resumes and suspends the execution of Algorithm 3.9 between two calls
of report(interval) and instead of reporting the interval it sets [b and rb accordingly.
GOBEGIN executes Algorithm 3.9 up to the first call of report(interval). The last node the
iterator halts in is the root node. If GONEXT is called again, it sets the iterator in a defined
end-state and indicates that by returning false.

We provide the same depth-first search interface for the top-down history iterator
but implemented GONEXT by means of GoDOWN, GORIGHT, and GoUP to traverse all nodes
in the order of either a postorder or a preorder depth-first search. The pseudo-codes of
both DFS variants are shown in Algorithms 3.19 and 3.20. In contrast to postorder DFS,
in a preorder DFS each node is traversed before its children.

Some applications require to traverse nodes only up to a certain tree or string depth
or have a different criteria to skip a whole subtree in the traversal. To meet this require-
ment, we implemented GONEXTRIGHT and GONEXTUP. GONEXTRIGHT skips the subtree of
the current node and proceeds with the next sibling by omitting GoDowN in line 1 of Algo-
rithm 3.19. Analogously GONEXTUP skips the subtree and all right siblings of the current
node.

57

3.6.3 Accessing the suffix tree

All of the suffix tree iterators described above store a pair of boundaries of the currentlcp-
interval [lb..rb). We are not only able to traverse the Icp-interval tree but also to access all
information about the corresponding suffix tree, given only the suffix array, the Icp table,
and the node boundary pairs.

In the following, we are going to determine the concatenation string of the current
node, i.e. the concatenation of characters on the path from the root node to the node the
iterator points at. The sentinel character $ at the end of each leaf edge should be omitted
as itis not part of the text and especially for multiple sequences would bloat the alphabet.
If v is the suffix tree node that corresponds to the Icp-interval [lb..rb), the concatenation
string without sentinel equals the longest-common prefix w of the £-interval [lb..rb), see
Lemma 3.1. Thus, w especially is the £-prefix of the lexicographically smallest suffix of
the £-interval and it holds w = Sgy¢apip) [0--€). It remains to determine ¢. If rb — b = 1, v
is a leaf and ¥ equals the suffix length |ssuftab[lb]| = n —suftab[lb]. Forrb—1b > 1,visan
inner node and ¥ is the lcp value of any, especially the smallest index in ¢-indices(lb, rb).
In the previous section, we described how to determine the smallest £-index (used in
Algorithm 3.17). The function REPLENGTH (Algorithm 3.21) computes ¢ using a similar
approach. It only differs in the way of testing whether the current node is the last of its
siblings, as iter.parentRb is not available for the bottom-up iterator. In line 3, the child
table entry at position iter.lb is read. It either contains a nextfIndex-value if the current
node is the first or an inner sibling or a down-value if the node is the last sibling. In the
latter case, the entry is less than iter.rb. If it is greater than or equal to iter.rb, it contains
a nextfIndex-value, the current node is not the last sibling and the right boundary is an
f-index with an up-value at position iter.rb — 1. The concatenation string of a node is
returned by REPRESENTATIVE (Algorithm 3.22).

Algorithm 3.21: REPLENGTH(iter)
input : suffix tree iterator iter
output :returns the length of the concatenation string

if iter.rb — iter.lb = 1 then
return |s| — suftab[iter.lb];
[« cld[iter.lb]
if (iter.rb < 1) then
i < cld[iter.rb — 1]
return lcp[i]

To only determine the label of the edge from the parent to the current node, we need
to compute the £-value of the parent interval of [lb..rb) in the interval tree. This could
be easily accomplished for a top-down history iterator by going up one node and calling
REPLENGTH. However, there is another way that works for every tree iterator and only
requires b and rb. Assume [lb..rb) is not the root node and [[b’..rb") its parent interval.
In Section 3.1.3, we have seen that the child interval boundaries are contained in the set
$-indices(lb’,vb") U {lb’,rb'} and at least one boundary of every interval is an £-index

58

Algorithm 3.22: REPRESENTATIVE(iter)
input : suffix tree iterator iter
output :returns the concatenation string, also called representative

[« suftabliter.lb]
return s[i..i + REPLENGTH(iter))

of the ¢-interval [lb'..rb"). Thus, either both boundaries are #-indices or only one is an
£-index and then the other’s Icp value must be less than #. In either case the maximal Icp
value of the boundaries equals #. For the case that [lb..rb) = [0..n) is the root interval,
we set £ = 0 as the root has no parent edge. Thus, it holds £ = max{lcp[lb], Icp[rb], 0}
and the parent edge label is the suffix of the concatenation string starting at position #,
compare with Algorithm 3.23.

Algorithm 3.23: PARENTEDGELABEL(iter)
input : suffix tree iterator iter
output :returns label of the edge between parent and current node

[« max{lcp[iter.lb], Icp[iter.rb], 0}
t < REPRESENTATIVE(iter)
return t[l..|t|)

The occurrences of a string t in the text s are the start positions of suffixes of s begin-
ning with t. Hence, if t is the concatenation string of a suffix tree node, its occurrences
can be determined by traversing the leaves in the node’s subtree. Given the enhanced
suffix array, the set of suffix start positions can directly be obtained, as for a node [lb..rb)
the substring suftab[lb..rb) contains the start positions of its concatenation string. Algo-
rithm 3.24 shows the corresponding pseudo-code.

Algorithm 3.24: GETOCCURRENCES(iter)
input : suffix tree iterator iter
output :reports the occurrences of the node’s concatenation string

fori < iter.lbtoiter.rb — 1 do
print “occurrence at position ” suftabl[i]

3.6.4 Repeatsearch

Besides the above-mentioned iterators, we implemented special purpose iterators for
finding maximal repeats, supermaximal repeats, and maximal unique matches. A repeat
is a substring that occurs at least twice in a text. It is called maximal, if the substring can-
not be extended to the left or right such that it still has the same number of occurrences
in the text. The following definitions will more precisely formalize the term repeat.

59

suffix tree
iterator
top-down bottom-up
iterator iterator
[.
o;? down maximal MUM
history repeat

X) iterator
iterator iterator supermax.

repeat
iterator

Figure 3.10: Class hierarchy of suffix tree iterators. The superclass of all iterators is the suf-
fix tree iterator which maintains lb and rb, the boundaries of the current Icp-
interval, and provides functions to access the corresponding suffix tree node
as described in Section 3.6.3.

Definition 3.6 (repeated pair). For a given text s of length n, the triple (p,, p,, 1) is called
a repeated pair, iff p,,p, € [0.n —], with p; # p, and the two substrings s[p,.p; + 1)
and s[p,..p, + 1) are equal.

Definition 3.7 (maximal repeated pair). A repeated pair (p,,p,, 1) is right maximal if
(p1,p2, L + 1) is not a repeated pair. It is left maximal if (p; — 1,p, — 1,1) is not a re-
peated pair. A maximal repeated pair is left and right maximal.

Given a text s. A string « is called a maximal repeat, iff there is at least one maximal
repeated pair (p,, p,, |a|) with @ = s[p,.p; + |a|) = s[p,.p, + |a]). For example, the
text s = xabcyabcwabcyz contains the two maximal repeats abc, with maximal repeated
pairs (1,5,3) and (5,9, 3), and abcy with the only maximal repeated pair (1,9, 4), see
Figure 3.11a.

Definition 3.8 (supermaximal repeat). A supermaximal repeatis a maximal repeat which
is not a substring of another maximal repeat.

As mentioned above, the text s = xabcyabcwabcyz contains the two maximal repeats
abc and abcy. As abcy is a superstring of abc, it is the only contained supermaximal repeat,
see Figure 3.11b.

Definition 3.9 (maximal unique match). For given strings s?,s?, ..., s™, a unique match
is a string that occurs exactly once in every s, with i € [1..m]. A maximal unique match
(MUM) is a unique match that is not a substring of another unique match.

One important observation is that for every maximal repeat or maximal unique match
a there is an inner suffix tree node @. This is due to the right-maximality of @ which im-
plies that different characters or sentinels follow the a prefix in two distinct suffixes. Vice

60

abcyabc s = axyzb
s= abcwabc S, = axyzb
abcy abcy s = xabcy abcy S3 = axyzb
(a) maximal repeats (b) supermaximal repeat (c) MUM

Figure 3.11: Repeat examples. The text xabcyabcwabcyz contains 3 maximal repeated pairs
of 2 repeats (a) and only one supermaximal repeat (b). The 3 strings shown
in (c) contain only one MUM.

versa, for every inner node there is a repeated pair that cannot be extended to the right.
For the exact proof, we refer the reader to Chapter 7.12.1 in [Gusfield, 1997]. As a conse-
quence of this observation, maximal and supermaximal repeats as well as MUMs can be
found by traversing the nodes of the suffix tree. We implemented 3 special purpose iter-
ators as subclasses of the bottom-up iterator that only halt at nodes that are maximal or
supermaximal repeats or MUMs. The following paragraphs describe their functionality
in more detail. We assume that the alphabet size is fixed.

Searching maximal repeats in linear-time

For a given text s and a minimum length n,, the maximal repeat problem is to find all
maximal repeats a with |a| = n, and all corresponding maximal pairs. According to the
observation above, the right-maximality is given for every inner node v, i.e. every pair
of suffixes s, and s, from different subtrees of v form a right maximal repeated pair
(pl, D2 concat(v)D. The pair is also left maximal, if p, or p, equals 0 or the characters
left of the suffixes differ. If atleast one such pair exists for a node v, concat(v) is a maximal
repeat.

In Section 7.12.3 of [Gusfield, 1997], the author proposed a suffix tree algorithm to
efficiently enumerate all maximal pairs in O(n|X| + k) time, where k is the number of
maximal repeated pairs. This algorithm was later adapted to enhanced suffix arrays by
Abouelhoda et al. [2002a]. Fundamental to both algorithms is to traverse the suffix tree
from bottom up and for every tree node to partition the sets of suffixes in the subtree
according to their preceding character. To well-define the preceding character, we define
$ to precede the suffix starting at position 0. For a tree node [i..j) and a character x €
X U {§}, the partition of start positions of suffixes preceded by character x in the subtree
of [i..j) is:

{00 € suftab[i.j) }, ifx=1%

{p € suftabli.j) [p#0As[p—1]=x}, else (3.26)

Prijpx) = {

Let v be an inner suffix tree node that corresponds to the lcp-interval [i.j) with child
intervals [[,..1;), [l;1-05), - [lj-1-L;n), where [= i and [, = j holds. The set of maximal
repeated pairs for concat(v) is the union of Cartesian products of partitions from different

61

subtrees (right-maximality) and different preceding characters (left-maximality):

Rip = U U Pllgtar)) X Py,) X {|concat@)]}. (3.27)

a,bef0.m), x,yeXu{s$},
a<b XFY

If the set R|; ;) is empty, the concatenation string concat(v) is not a maximal repeat. Oth-
erwise, it contains all maximal repeated pairs of the maximal repeat concat(v).

The algorithm described in [Gusfield, 1997; Abouelhoda et al, 2002a] computes the
sets P|; j(x) for every node [i.j) in the Icp-interval tree from bottom up. It begins in
the leaves [k..k + 1), where P ;+1,(x) is empty for all but one character x € X U {$}.
It is non-empty and equals the singleton {k} for the character that precedes the suffix
Sk- Whenever a child node [l,,..1,,,) is visited the last time during the postorder DFS, its
sets Py, 1,,,)(*) are joined to the sets of its parent node [i..j). At the moment, between
leaving the child node and appending its sets, the parent [i..j) stores the union of sets of
all left siblings of [l,..l;), ..., [lp-1..l) which equals P (). The Cartesian products of
the sets Py, ,,)(x) and Py, ,, ,(¥), with x # y, constitute maximal pairs and are output
for every child [l,..l;,,), with b € [1..m). It becomes clear that the algorithm is correct,
after equivalently rewriting equation 3.27:

Ry = U U Py) X Ppy i,y) X {|concat(v)|}. (3.28)

be[1.m) X, yEZU{$},
xzy

We implemented the described algorithm as a specialized bottom-up iterator. The iter-
ator is extended by a stack that stores the position sets for every x € X U {$} for the
current tree node and all of its ancestors. Sets are represented as linked lists and thus
can be joined in constant time. They are no longer used after they were joined to the par-
ent node. As a consequence, all active sets are disjoint and the linked lists can be stored
in a single string P of length n over [0..n), where the sets {17,42,23} and {10, 20} are
represented by:

P[17] = 42, P[42] =23, P[23]=17,
P[10] = 20, P[20] =10

and joined by switching their first links to P[17] = 20, P[10] = 42. Instead of directly
storing positions in the sets, our implementation stores the indices of the correspond-
ing suffix array entries. This enables us to seamlessly extend the approach to multiple
sequences. The bottom-up iterator halts in every node v, where concat(v) is a maximal
repeat of minimum length n, < |concat(v) | More precisely it might halt multiple times
in v, whenever it leaves a child node whose position sets, in conjunction with the sets
of left siblings, contribute maximal repeated pairs. The user may proceed with the next
maximal repeat or with a second iterator enumerate these maximal repeated pairs. De-
ciding whether a child contributes maximal repeated pairs and joining its position sets
can be done in O(|Z]) time. The time required for enumerating these maximal repeated
pairs is proportional to the number of pairs.

Theorem 3.1. The time to enumerate all maximal repeats of a text of length n is O(n|Z|).
If the text contains overall k maximal repeated pairs of minimal length n, the overall time
to output them is O(n|Z| + k).

62

We extend the repeated pair definition (Definition 3.6) straightforward to multiple
sequences as well as the dependent maximal and supermaximal repeat definitions.

Definition 3.10 (generalized repeated pair). Given strings s?, ..., s™ of lengths n?, ..., n™,
the triple ((iy,j1), (iz,j2), 1) is called a (generalized) repeated pair, iff (i, j,), (i, j,) €
Useprmp{i} X [0.n" — 1], with (i3, /;) # (iz,j,) and the two substrings s™[j;..j; + 1) and
s*2[j,.j, + 1) are equal.

The suffix tree algorithm described above as well as our implemented iterator can
without a change be applied to the generalized suffix tree to solve the generalized maxi-
mal repeat problem in O(n|Z| + k) time, where n = Zie[l..m] n' is the overall text length.

Searching supermaximal repeats in linear-time

For a given text s and a minimum length n,, the supermaximal repeat problem is to find
all supermaximal repeats a with |a| = n,. A supermaximal repeat is a maximal repeat
that is not a substring of a larger maximal repeat. Whereas one maximal repeated pair
suffices for being a maximal repeat, all possible pairs of text occurrences of a supermaxi-
mal repeat must form maximal repeated pairs. Otherwise a pair of occurrences could be
extended to the left or right to form a larger maximal repeated pair of a superstring.

Theorem 3.2. A substring of a text is a supermaximal repeat, iff it occurs at least twice
and all its occurrences have pairwise distinct preceding characters and pairwise distinct
succeeding characters (if existent).

Considering the suffix tree, supermaximal repeats are inner nodes whose children
are leaves (criterion 1) and the characters preceding the leaf suffixes are pairwise dis-
tinct (criterion 2). Testing a node for being leaf can be done in constant time. As every
child node is tested at most once and the time for enumerating the children of a node
is proportional to their number, the overall time for testing the first criterion is O(n).
Deciding whether all characters preceding the occurrences of a single node are pairwise
distinct takes O(|Z|) time, deciding it for all nodes consequently takes O(n|X]). The O(|Z|)
time per node is required to erase a boolean vector of size O(|XZ]) and to check for every
occurrence if the preceding character was marked and otherwise mark it.

For large alphabets, a simple trick avoids erasing the vector and reduces the time
to O(o0) per node, where o is the number of occurrences. Instead of using a vector of
booleans, we store for each character a unique identifier of the last visited criterion-
1-node with occurrences preceded by that character. This way, the vector needs to be
erased only once per traversal instead of once per node and two occurrences of the same
node preceded by the same character can be detected by the same node identifier. As the
vector is updated only for the occurrences of nodes fulfilling criterion 1, i.e. all children
are leaves, the total number of updates is not greater than the total number of leaves.
Hence, the overall running time to test criterion 2 is O(n + |Z|).

Theorem 3.3. The supermaximal repeat problem for a text of length n can be solved in
O(n + |Z|) time.

63

While our above-described approach can be applied to any suffix tree index, Abouel-
hoda et al. [2004] proposed an algorithm that solves the supermaximal repeat problem
using the suffix array and the Icp table of a given text. Although both have the same
asymptotical time consumption, their approach is twice as fast in practice. Fundamen-
tal is the observation that nodes whose children are leaves are #-intervals where every
element in the interval is an ¢-indey, i.e. the #-interval is a local maximum in the lcp
table. In a linear scan over the Icp table, all intervals [i.j) can be determined where
lep[i] < lep[i] = lep[i + 1] = ... = lep[j — 1] > lcp[j] holds. These intervals [i.j) are
f-intervals that fulfill the first supermaximality criterion. The second criterion can be
tested as described above by comparing the preceding characters of suffixes starting at
positions suftab(i], suftab[i + 1], ..., suftab[j — 1].

For both variants, the generic and the specializiation for enhanced suffix arrays, we
implemented a supermaximal repeat iterator which, just like the maximal repeat iterator,
can be applied to multiple sequences as well.

Searching MUMs in linear-time

Given multiple strings s, s?, ..., s™ and a minimum length n,, the MUM problem is to find
all MUMs a with |@| = n,. A unique match is a substring that occurs exactly once in every
string, i.e. the number of occurrences equals m and there is no string s‘ containing two
occurrences. A unique match a is not maximal, iff itis contained in a longer unique match.
As the longer unique match must have the same number of occurrences, all occurrences
of @ would be preceded or succeeded by the same character.

Theorem 3.4. A unique match is a MUM, iff it has two occurrences preceded by different
characters and two occurrences succeeded by different characters.

From the latter follows, that MUMS are inner nodes of the suffix tree. They can be
found by traversing the suffix tree while skipping all nodes with more or less than m
occurrences. For every remaining node it can be tested in O(in) time whether the m oc-
currences are preceded by the same character or contained twice in a string s;. If neither
the former nor the latter holds, the node is a MUM and can be reported. We implemented
the MUM iterator as a subclass of the bottom-up iterator, where we overloaded GOBEGIN
and GONEXT to only halt in MUMs with a minimal length n,. The time spent in every node
is bound linear in the number of children. Thus the overall time for reporting all MUMs
is linear in the number of nodes.

Theorem 3.5. For multiple strings of overall text length n, the MUM problem can be solved
in O(n) time.

64

CHAPTER

4 Lazy Suffix Tree

In the previous chapter, we proposed repeat search algorithms which construct and tra-
verse the whole suffix tree of a text. Some applications, however, require to traverse only
an upper part or a single path of the tree. In such cases another index, described in the
following, becomes more appropriate.

Alazy suffix tree [Giegerich et al., 2003] is a suffix tree whose nodes are created on de-
mand, i.e. when they are visited the first time in a top-down traversal. The suffix tree con-
struction is deferred to the traversal and driven by it. The term deferred data structuring
was first introduced by Karp et al. [1987]. It denotes a concept where data structures are
query-driven constructed on demand. Ching et al. [1990] distinguish between static and
dynamic deferred data structures, depending on whether the underlying dataset must
remain constant or permits dynamic changes, e.g. insertions or removals of elements. As
the lazy suffix tree assumes a constant text, it falls in the first category.

Depending on the usage scenario, using a lazy suffix tree can significantly improve
on the overall running time and memory consumption compared to an enhanced suffix
array. In [Weese and Schulz, 2008; Schulz et al., 2008a; Weese et al., 2013] we propose dif-
ferent applications of a lazy suffix tree that outperform competitive algorithms that use
suffix trees or enhanced suffix arrays. In Chapter 7, we describe in detail an application
of the lazy suffix tree to frequency string mining, where we exploit a property of the on-
demand construction for the efficient computation of substring frequencies in databases,
and analyze its performance on different real-world datasets.

Giegerich et al. introduced the first lazy suffix tree data structure that utilizes the
write-only, top-down algorithm [Giegerich and Kurtz, 1995] for the on-demand node ex-
pansion. We first describe this algorithm and the original lazy suffix tree data structure.
Then, we propose our own lazy suffix tree variant that supports multiple sequences and
provides the same suffix tree interface as the enhanced suffix array (described in Sec-
tion 3.6.2). At the end of this chapter, we propose different applications that benefit from
the on-demand tree construction.

4.1 The wotd algorithm

The wotd (write-only, top-down) algorithm was first proposed by Giegerich and Kurtz
[1995] as a purely functional suffix tree construction algorithm. In a follow-up paper,
Giegerich et al. [2003] introduced a data structure to represent the partially constructed
suffix tree of a single string and restated their algorithm in an imperative language. The

66

basic idea of the wotd algorithm is to determine the children of a branching suffix tree
node by partitioning the set of corresponding suffixes by the character following the
longest common prefix. Beginning with only the root node it recursively expands a di-
rected tree step-by-step up to the entire suffix tree.

We consider a given non-empty text s of length n and a rooted, directed tree T that
in every state of the algorithm is a subgraph of the suffix tree including its root, in the
following referred to as partial suffix tree. Let R be a function that maps any string a € X~
to the set of suffixes of s$ that begin with a:

R(@) :={ap | aB isasuffixof s$ } \ {$}. (4.1)

Given a branching suffix tree node @, R(a) contains the concatenation strings of the leaves
below @. The children of a can be determined as follows: Divide R(«) into non-empty
groups R(ac,), ..., R(ac,,) of suffixes, where character ¢; € X U {$} follows the common
a-prefix. Let ac;; be the longest-common prefix of R(ac;), which for singleton groups
equals the only contained suffix. For non-singleton groups, m is a branching node in
the suffix tree, as there are two suffixes of s$ that differ in the character following their
common prefix ac; ;. Singleton groups contain suffixes of s$ which correspond to leaves
ac;f; in the suffix tree. As every suffix with prefix ac; also has a prefix ac;f;, there is
no branching node between « and m Hence every m can be inserted as a child
of a in T, which remains a partial suffix tree. This procedure, called node expansion, is
recursively repeated for every newly inserted branching node; Algorithm 4.1 shows the
corresponding pseudo-code. The wotd-algorithm begins with T consisting of only the
root node and expands it and all its descendants, see Algorithm 4.2.

Algorithm 4.1: WOTDEAGER(T, @)

input : partially constructed suffix tree T and node a

divide R(«) into subsets R(ac) of suffixes where character c follows the a-prefix
foreach c € 2 U {$} and R(ac) # @ do
acf <« lcp R(ac)
if [IR(ac)| = 1 then
add Ieafﬁ asachildofainT
else
add inner node R asachildofainT

WOTDEAGER(T, acf)

4.2 Lazy construction and representation

A key property of the wotd-algorithm is that it constructs the suffix tree top-down and
nodes from disjunctive subtrees can be expanded independently and in arbitrary order.
That makes it possible to step-by-step expand single nodes instead of entire subtrees and
allows turning the suffix tree construction into a lazy, on-demand construction. Such a

67

Algorithm 4.2: CREATESUFFIXTREE(S)

input
output

create tree T that consists of only the root node €

: text string s over the alphabet
: suffix tree of s

WOTDEAGER(T, €)

return T
[] o
ttatctcttas , ;
tatctctta$ v t
atctctt$$ o & 0
tctctta
CEetiad 8ogt freety
tctta$ t t$ tcct$
cttg$ c a ctta
gtg t $ tcts
?; t cta
g a tt$
$ ta
a$
$
(a) initial state (b) expanded root
o o
| |
e o ¢
O/ S PN P e P
t$ ct a ¢t $ 0t c a c t
C ta) t a @(C a) t a_
t t$ o 5 0 t $ o o o)
C a tg ct t$ C : $t ct $t
t $ ta t (6] , :
t tots ot t B § £% @5
a c a C a @ C a . C
$ E 3 t $ t § [3 t
; t : t
a a a a
$ $ $ $
[0]
(c) expanded node t (d) fully expanded tree

Figure 4.1: Different states of the lazy suffix tree for s =

ttatctctta. Below each unex-

panded node « the remaining suffixes R(a) are shown without their common a-
prefix. In the beginning (a), the lazy suffix tree consists of only the unexpanded
root node. (b) shows the result of the root node expansion and (c) the expansion
of node t. The fully expanded suffix tree is shown in (d).

lazy suffix tree requires a method to expand a suffix tree node and a data structure to
represent a partial suffix tree whose nodes are either in expanded or unexpanded state.
Further, it requires R(«) for the expansion of nodes @ and needs to provide the corre-

68

sponding set of suffix start positions for all (even expanded) nodes a:

(@) :={i€[0.n) | Ipex-5:$ = aB } (4.2)

to determine the text occurrences of a pattern. Giegerich et al. proposed a lazy suffix tree
that meets all of these requirements. However, their approach has two drawbacks: the
children of inner nodes are not lexicographically ordered as in the enhanced suffix array
based suffix tree and the tree cannot directly be generalized to multiple sequences. We
introduce a new data structure that overcomes these limitations and present their and
our approaches in the next two sections.

4.2.1 The original data structure

As mentioned above, in the original lazy suffix tree [Giegerich et al., 2003] the children @
of an inner node a are not in lexicographically order, instead they are ordered increas-
ingly by min l(af3), i.e. decreasingly by the length of the longest suffix in R(af). This order
is well defined as the children a8, af,, ..., af,, of @ partition the set [(«) into non-empty,
disjoint sets l(af3,), l(aBy), ..., l(aB).

We first describe how to represent edge labels. Consider an edge from the expanded
node « to a child @. As [(ap) is the set of occurrence begin positions of af, it holds that
f = s[minl(af) + |a|..minl(af) + |aB]]. Let Ip be a function on tree nodes defined as:

Ip(aB) := minl(aB) + |a|, where @ is parent of aB. (4.3)

We then can substitute f = s[lp(@)..lp(@) + |B]). For now, assume that the tree rep-
resentation stores [p-values for all children of an expanded node. It remains to show
how to determine |fB|. In case @ is a leaf in the suffix tree, af is a suffix of s$ and it
holds |f] = n+ 1 — lp(@). Otherwise, assume that E is expanded and let m be
the first child of @. By definition of the child order it holds min l(af) = minl(afy,)
and hence || = lp(ﬁ) — lp(@). If@ is unexpanded, |f| can be computed via
|81 = |1cp R(@B)| - lal.

The nodes of the partial suffix tree are stored in a string T of integers, where the
children of a node are stored in a contiguous block and in the same order as in the tree.
An expanded inner node « is represented by two adjacent entries, [p(«) and firstchild(a).
The latter refers to the beginning of the block of child nodes in T. A leaf is represented
by a single entry in T the value Ip(a). To distinguish between inner nodes and leaves, a
leaf bit (L) is split off the first entry. The last child of a node is marked by a last-child bit
(LC) in the first entry.

Node expansion

Unexpanded nodes are marked by an unexpanded bit (U) in the second entry. To expand
anode «a, the suffixes R(a) are partitioned according to their character at position |a|. To
this end, we store the corresponding suffix start positions in an additional integer string
suftab of length n initialized with 0,1, ...,n — 1. In T the two reserved entries of every

69

€ € t a ct
‘0 |10] ‘0]2]0]6]6]878 10
-
T [] 9.
]
suftab
lo[1]2]3]4]s]6[7][8]9] lo[1]3]s[7[8[2]9]a]s6]
R A R T A
a t c t 4 t t a a t t t a $ c c t
SRERREE SRR
c t t a $ 4 t a t $
P by s
a $ a $
$ $
(a) initial state (b) expanded root
€ t a ct tta ta tct € t a <t tta ta Tt Totctcress s
‘0]2]0]8]6]8"8[10[0]2]2]4]4]6] ‘0]2]0]8]6]8"8[10/0]272]14]% 63 0]
N p—y
9. 9.
t Tctr) t jct
A‘:‘
|t]8]2]9]4]6]2]9]4]6] (1]8[3]10]46]2]9]4]56]
t t a a a a c c t t t $ c c a a c c
I A tip o tp bR
[4 t t a t t a c 4 t a t t a
A S
L L
g $ $ g $
(c) expanded node t (d) expanded node ta

Figure 4.2: Different states of the lazy suffix tree for s = ttatctctta and how they are rep-
resented by the original data structure. Below each unexpanded node a the
remaining suffixes R(a) are shown without their common a-prefix. In the be-
ginning (a), the lazy suffix tree consists of only the unexpanded root node. (b)
shows the result of the root node expansion, (c) and (d) the expansions of nodes
tand ta

70

unexpanded node store boundaries i,j of substrings of suftab such that the following
invariant holds. The intervals [i.j) are disjoint subsets of [0..n) and for an unexpanded
node ag, suftab[i..j) contains the values [(af) + || in increasing order. Hence the Ip-
value of aff equals suftab[i] and is therefore also available for unexpanded nodes. In the
beginning, the partial suffix tree consists of only the root node represented by two entries
0,n in T with leaf and unexpanded bits set, see Figure 4.2a. Before expanding af3, the
length of | 8| is unknown and must be determined by computing the Icp value lcp{s, | k €
suftab[i..j)}. This can be done by step-wise comparing all characters s[suftab[i..j) +] for
l =1,2,..forequality. Then || equals the smallest value [for which a, b € [i..j) exist with
s[suftab[a] + [] # s[suftab[b] + []. The values suftab[i..j) are then increased by || and
stably rearranged into subintervals G, of the same character x, such that for x € Z holds
Viec,S[suftablk]] = x and UXEZU{$}GX = [i..j). The groups correspond to the children

of@ and are appended to T in [p-order, i.e. increasingly by the value min,¢._suftab[k].
For each singleton group, a single Ip-entry with a set leaf bit is stored. The remaining
groups are branching nodes whose subinterval boundaries are stored and marked with
a set unexpanded bit. The last group is marked by setting the last-child bit. Finally, the
unexpanded bit of the parent node is cleared and the two interval boundaries are replaced
by lp(@) andﬁrstchild(@), the position of the first child group appended to T.

Example 4.1. As an example, Figure 4.2 shows different states of the lazy suffix tree of
s = ttatctctta during the search of the pattern p = ttat. Initially empty, the lazy suffix
tree is expanded node-by-node along the whole search path. The subfigures (a)-(d) show
the contents of T and suftab and the corresponding partial suffix trees. The different
colors represent the different suffix groups computed when expanding a node. It can
easily be seen that the groups are decreasingly sorted by the length of the longest suffix
and that suftab is not a permuted suffix array.

The theoretical running time for constructing the whole suffix tree is O(n? + |Z|) for
the worst case and O(n 10g|2| n+ |Z|) on average [Giegerich and Kurtz, 1995]. In practice,
the algorithm shows almost a linear running time and benefits from its good cache local-
ity during the recursive descent [Giegerich et al, 2003]. Giegerich et al. use a modified
counting sort [Cormen et al., 2001] that avoids iterations over the alphabet and reuses
the counter array to group m suffixes in O(m) instead of O (|| + m) time. As aresult, the
size of the alphabet is an addend instead of a factor in the overall running time and suf-
fixes are stably assigned to groups with increasing lp-values instead of increasing group
characters.

4.2.2 Our data structure

As explained above, Giegerich et al. use a modified counting sort with the effect that the
outgoing edges of their lazy suffix tree are not in lexicographical order. However, some
applications require a lexicographical order, e.g. to speed up the search for an outgoing
edge from O(|Z|) to O(log |Z|)* or to search common edge labels between two suffix trees,

1 A binary search on the outgoing edges requires an extra bit to distinguish the both entries of an inner
node from the single entry of a leafin T.

71

e.g. in a multiple exact pattern search described in Section 4.3.3. As a remedy, we first
implemented a variant of the original lazy suffix tree where the suffixes are sorted by
the character following the longest common prefix using an unmodified counting sort.
However, for the edge label determination the group containing the longest suffix of all
groups must be moved to front and become the first child in T. This variant makes it
possible to enumerate the lexicographically ordered children of a node in linear time and
to search an outgoing edge in logarithmic time.

In the following, we propose a second, more elegant variant of the lazy suffix tree
where children can be stored in arbitrary and especially lexicographical order. Our data
structure is applicable to multiple sequences and represents exactly the same general-
ized suffix tree as the enhanced suffix array, i.e. every tree node a corresponds to the
same substring of suftab and is stored in the same order as in the enhanced suffix array.
The number of occurrences can be determined in O(1) time, whereas in the original data
structure a DFS traversal is required.

Again, our lazy suffix tree data structure consists of the two strings T and suftab and
nodes require the same number of entries in T. The second entry of every expanded
node is the firstchild pointer and extra bits are used to mark leaves, last children and un-
expanded nodes. Every tree node a corresponds to an interval [i..j) such that suftab[i..j)
now stores [(«), the set of positions where a occurs in the text. In contrast to the orig-
inal lazy suffix tree [Giegerich et al, 2003] which stores Ip-values, our data structure
stores lcp values, i.e. the length || = T[firstchild(«)] is available for every expanded
node a. For unexpanded nodes the Icp value can be computed as described in the previ-
ous section. Consider an edge from an expanded node « to a child @ and let suftab[i..j)
be the substring that stores I[(af). The edge label § then can be determined via f =
s[suftab[i] + |a|..suftab[i] + |aB]).

Node expansion

Consider an unexpanded node @ whose text occurrences are stored in suftabl[i..j) in as-
cending order. To expand «, the elements k € suftabl[i..j) are stably sorted by s [k + |a|]
using counting sort. The result is a partition [l,..l;), [l;.13), -, [ljm—1--L) With [, = i and
l,, = j, such that suftab[l,..l,), suftab[l;..l;), ..., suftab[l,,_;..[,,,) store the occurrences of
the substrings ax; < ax, < ... < ax,, in the text s$ in increasing order, with x; € £ U {$}.
Each interval stores the start positions of suffixes R(ax;) whose longest common prefix
af; = lcp R(ax;) corresponds to a child node af; of @ in the suffix tree and is inserted
into our lazy suffix tree in the same order. Singleton intervals [[;..[; + 1) correspond
to suffix tree leaves. They occupy a single entry in T with value [; and the leaf bit set.
All other intervals [[;..[;,,) correspond to inner suffix tree nodes and occupy two entries
with the unexpanded bit set. One entry is the left boundary [;, the other is reserved for
theﬁrstchild(a_ﬂi) pointer which is used if af3; is in expanded state. The right boundary
needs not to be stored as it equals the left boundary of the following sibling or the right
boundary of the parent node if i = m — 1. After all child nodes are inserted into T, the
last-child bit is set for @, the firstchild(a)-pointer is adapted and length || is stored
in place of the left boundary of the first child, which is expendable as it equals the left

72

€ € a ct t
[ol2 ol 2] ol
T =
L] L]
a : t
suftab
ol1]2[3]afs]6[7]8]9] [2]9]4]6]of1]3]s][7]8]
A A A A A A
A ¢ A
S ; AR
c t t a § t $ c t a
t t a § a t ot 8
L * L
§ §
(a) initial state (b) expanded root
e 3 @ t @ Tt 3 3 i t @ Tt W eaew
—— N —— N A A A
folafof 2| Tals[s] Je] T8 | [o]2]o] J2] Tafs|1]sa]6] Te]| f2f |
a% t a” ¢ t
a ta a éta
[2]9]4a]6[1]8]3]s[o]7] [2]9f4le]8]1][3]s][o]7]
NN N
c c t t $ t t a a c c t § t t t a a
t t a ¢ c t t $ t t a c ¢ t t
SR A T O S L I
L T
$ a $ a
§ §
(c) expanded node t (d) expanded node ta

Figure 4.3: Different states of the lazy suffix tree and how they are represented by our data
structure.

73

boundary of the parent node.

Example 4.2. Figure 4.3 shows how the different states of the lazy suffix tree in Figure 4.2
are represented by our data structure. The same pattern p = ttat is searched in the
lazy suffix tree of s = ttatctctta. In contrast to the original lazy suffix tree [Giegerich
et al, 2003], in our data structure groups are sorted lexicographically and suftab is a
permuted suffix array. Moreover, for every node « there is a corresponding substring
suftab[i..j) that stores the occurrences of a in the text. Some of the entries in T are empty.
They are reserved for firstchild pointers of yet unexpanded nodes, e.g. entry 1 initially
empty and after expansion refers to the first child stored at position 2. For an expanded
node «a, T[firstchild(a)] stores the length ||, e.g. entry T[14] stores 2 the length of the
concatenation string of node ta.

The whole lazy suffix tree can be constructed in 0(712 + |Z|n) time in the worst and
O(n logIZI n+ |E|n) time in the average case. The additional 0(|Z|n) running time is a
result of using the original counting sort which sorts m suffixes by their first character in
O(|Z] + m) time.

4.2.3 Extension to multiple sequences

Our approach, described in the previous subsection, can easily be extended to multiple
sequences. Given asetS§ = {s?, ..., s™} of sequences of lengths n?, ..., n™, a suffix is repre-
sented by a pair of integers (i, j), with i € [1.m] and j € [0..n'). Hence we change suftab
to be a string of pairs of length n = Zie[lum]ni and initialize it with:

suftab := (1,0)(1,1) ... (1, n! = 1)(2,0) ... (2,72 — 1)(3,0) ..(mn™ — 1). (4.4

T needs not to be changed, as all of its entries solely store prefix lengths, interval bound-
aries or child pointers. In order to construct a lazy suffix tree, whose nodes have the same
order as in the ESA based suffix tree, the sentinel relation $* < ... < $™ < min % must
be retained. In order to achieve this without introducing extra alphabet characters in the
implementation, we modified counting sort to use an extra bucket in front of all other
buckets that represents all sentinels. When sorting the suffixes R(«) by their character
at position |a|, this sentinel bucket contains all pairs (i, j) with j + |a| = n’. As counting
sort is stable, these pairs will have the same relation as in the initialization, i.e. in suftab a
suffix a$’ will be stored left of a suffix a$’ with i < j. At last these suffixes are appended
to T as leaves below a. They are appended in the same order as they occur in suftab and
left of the remaining buckets.

4.3 Applications

In the following, we show that our lazy suffix tree is a complete replacement for the en-
hanced suffix array as it creates the same suffix tree and provides the same interface for
traversing and accessing it. In general, lazy suffix trees are well suited for applications

74

where either only the upper parts of the suffix tree are traversed, e.g. if only substrings
up to a certain length should be examined, or only certain paths to the leaves are tra-
versed, e.g. searching patterns. For bottom-up traversals the enhanced suffix array is a
better solution. In the following, we show different examples where a lazy suffix tree is
well suited, and show in chapter 7 a new approach to frequency based string mining that
exploits another property of our lazy suffix tree.

4.3.1 Traversing and accessing the lazy suffix tree

To make the lazy suffix tree easily accessible, we implemented a top-down and a top-down
history suffix tree iterator for our data structure. Both iterators provide exactly the same
functionality as the top-down and a top-down history iterators introduced in Section 3.6.2.
The latter is also simply a subclass of the first extended by a stack that permits to go up
the tree. Top-down iterators start at the root node and can arbitrarily go down and go
right. If they are moved down from a node in unexpanded state the node is automatically
expanded, which makes them a complete replacement for enhanced suffix array iterators.
We also implemented variants that work on the original lazy suffix tree for the sake of
completeness, but refer the reader to [Giegerich et al, 2003] for details on how they are
implemented.

A top-down iterator consists of member variables node, lb, rb, and parentRb. Let a
be the node the iterator points at. The position of the first of the at most two correspond-
ing entries in T is stored by node. Analogously to the enhanced suffix array iterators, lb
and rb are the boundaries such that suftab[lb..rb) contains the start positions of suffixes
that have a prefix @ (our data structure) or the start positions of the remaining suffixes
(original data structure). The right boundary of the parent node is stored in parentRb.
Algorithm 4.3 shows how the iterator is initialized to point at the root node. As described
above, 3 bits are required to signal whether a node is a leaf (L), in unexpanded state (U)
or the last child (LC). We therefore use the 2 most significant bits of the first entry in T
to store the last-child and leaf bits and store the unexpanded bit in the second entry. The
remaining bits in T are used to store integers. In the following, we only describe the de-
tails of the functions GoDowN, GORIGHT, and REPLENGTH for our lazy suffix tree variant.
All other functions have been implemented as described in Sections 3.6.2 and 3.6.3.

Algorithm 4.6 shows how to move the iterator to the next sibling, which is only pos-
sible for all but the rightmost sibling, i.e. for rb # parentRb. The siblings are alpha-
betically arranged in T and in suftab. Hence, the sibling’s left boundary in suftab equals
the right boundary of the current node. Depending on whether the current node is a
leaf or a branching node it occupies one or two entries in T. Consequently, node must
be increased accordingly. Finally, the right boundary is updated and becomes lb + 1 if
the sibling is a leaf, parentRb if the sibling is the last child, or the left boundary of the
following sibling which is stored in T[node + 2] otherwise.

How to move the iterator to the leftmost child of the current node is shown in Algo-
rithm 4.5. First, the leaf bit is verified to be cleared, otherwise the node would have no
child. A set unexpanded bit in the second entry signals that the node must be expanded
first, which is done automatically. Now, the node variable can be updated with the value

75

Algorithm 4.3: GoRooT(iter)

Algorithm 4.4: UPDATERB(iter)

input : lazy suffix tree iterator iter

iter.lb < 0

iter.rb « |suftab]|
iter.parentRb « |suftab]|
iternode < 0
I[CUew-—-1
Lew—-2

input : lazy suffix tree iterator iter

if T[iter.node] & 2'C # 0 then
iterorb « iter.parentRb
else if T[iter.node] & 2" # 0 then
iterorb « iter.lb + 1
else
iterorb « T|[iternode + 2] & (24 — 1)

Algorithm 4.5: coDowN(iter)

Algorithm 4.6: GORIGHT(iter)

input : lazy suffix tree iterator iter
output : returns true on success

if T[iternode] & 2F # 0 then
return false

if T[iternode + 1] & 2Y # 0 then
EXPANDNODE(iter.node);

itermode « T[itermode + 1] & (2- — 1)

tmp « iter.rb

UPDATERB(iter)

iter.parentRb « tmp

return true

input : lazy suffix tree iterator iter
output : returns true on success

if iter.rb = iter.parentRb then
return false

iter.lb < iter.rb

if T[itermode] & 2- = 0 then
iter.node « iternode + 1

else
iter.node « iter.node + 2

UPDATERB(iter)

return true

of the node’s second entry, which refers to the first entry of the leftmost child node in T.
The right boundary rb is updated as in GORIGHT and parentRb gets its former value.

In order to determine the length of the concatenation string (without sentinel) for
the current node, we implemented the function REPLENGTH as shown in Algorithm 4.7.
It first examines whether the current node is a leaf and, if so, returns the length of the
suffix. Otherwise, it either computes the length, as described in Section 4.2.2, if the node
is unexpanded, or returns the length stored at the first child of the current node.

With the lazy suffix tree adaptation of REPLENGTH, the concatenation string and its oc-
currences in the text can be determined by REPRESENTATIVE (Algorithm 3.22) and GETOC-
CURRENCES (Algorithm 3.24) as described in Section 3.6.3 on page 57.

Algorithm 4.7: REPLENGTH((iter)

input : lazy suffix tree iterator iter

output :returns the length of the concatenation string (without sentinel)

if T[iternode] & 2" # 0 then
return n — suftab[iter.lb]
else if T[iternode + 1] & 2Y # 0 then
return cOMPUTELCP(iter.node)
else

return T [T[iter.node + 1]] & (2" — 1)

76

4.3.2 Radix trees

The linear-time construction algorithms of suffix array and Icp table described in the pre-
vious chapter save redundant character comparisons by reusing rank or lcp information
of neighboring suffixes. This is only possible if all suffixes are included in the compu-
tation. In contrast to this, the wotd algorithm does not exploit the fact that the strings
to sort are overlapping suffixes of the same text. The suffix tree is constructed by solely
comparing string characters. That makes it possible not only to expand nodes in arbitrary
order but also to construct the radix tree of arbitrary, not necessarily all suffixes.

For a given set of strings, a radix tree, also known as patricia trie [Morrison, 1968], is
a tree whose paths to the leaves represent the given strings. This is in contrast to a suffix
tree which for a given strings represents all of their suffixes. A suffix tree therefore is a
patricia tree of all suffixes.

Definition 4.1 (radix tree). The radix tree RT(S) of a set of strings § = {s?, ...,s™} € ¥*
is a rooted tree whose edges are labeled with strings over Z := Y U {$1, ., $"}, where §
is a sentinel character with §’ ¢ W and $' < ... < $™ < min . The radix tree fulfills the
following properties:

1. Each internal node is branching, i.e. it has at least two children.
2. For branching nodes the labels of outgoing edges begin with distinct characters.

3. The radix tree has m leaves numbered from 1 to m. The concatenation of edge
labels from the root to leaf i yields the string s'$".

To create the radix tree of strings s, ..., s™ with the wotd algorithm, it suffices to
change the way suftab is initialized. Instead of storing all the suffixes, we chose only the
largest suffixes, i.e. the strings itself. Thus suftab must be a string of length m initialized
with the pairs:

suftab := (1,0)(2,0) ... (m, 0). (4.5)

Because of the similarities between radix and suffix trees, the remaining parts of the al-
gorithm can be kept unchanged and the radix tree can in the same way be accessed via
suffix tree iterators.

4.3.3 Multiple exact pattern search

Given a text and a corresponding suffix tree, a single pattern p can be searched in the
text by descending the tree along the path of edges labeled with the pattern sequence. If
this is not possible, the text has no occurrence of p. Otherwise the descent ends in the
topmost node v for which p < concat(v) holds. The occurrences of p can be determined
by enumerating all leaves in the subtree of v.

A multiple pattern search is typically conducted by either searching each pattern sep-
arately in the suffix tree of the text [Weiner, 1973] or streaming the text against a keyword
tree of patterns [Aho and Corasick, 1975], which is an uncompacted radix tree where edge
labels are single characters and inner nodes may be non-branching.

77

Algorithm 4.8: EXACTMULTIRECURSION(iter4, iterB, i)

input . iterator iterA of pattern radix tree
input : iterator iterB of text suffix tree
input : length i of compared prefixes

output :all text occurrences of a pattern

// Part I: Go down a path that is not branching in both trees
Q < REPRESENTATIVE(iterA)

B < REPRESENTATIVE(iterB)

repeat

J < minf|al, |B]}
if a[i..j) # B[i.j) then return

if j < |G| then // end of edge in radix tree?
if ISLEAF(iterA) then // patterns are leaves

print “pattern ” a “ found at: ” GETOCCURRENCES(iterB)
return

if not coDown(iterA, f[j]) then return // follow the suffix tree path

@ < REPRESENTATIVE(iterA)

elseif j < || then // end of edge in suffix tree?
if not coDown(iterB, a[j]) then return // follow the radix tree path
B < REPRESENTATIVE(iterB)
iej
until |a| = |B|

// Part II: Recursively go down paths branching in both trees
if not coDown(iterA) then
print “pattern ” a “ found at: ” GETOCCURRENCES(iterB)
return
while REPLENGTH(iterA) = i do
print “pattern ” REPRESENTATIVE(iterA) “found at: ” GETOCCURRENCES(iterB)
if not GORIGHT(iterA) then return
GoDownN(iterB)
while REPLENGTH(iterB) = i do
if not GoRIGHT(iterB) then return

while true do // find pairs with equal edge beginnings

Q < REPRESENTATIVE(iterA)
B < REPRESENTATIVE(iterB)
if a[i] < B[i] then

if not GoRIGHT(iterA) then return
else if a[i] > B[i] then

if not GoRIGHT(iterB) then return
else

EXACTMULTIRECURSION(iterA, iterB, i) // recurse

if not (GoRIGHT(iterA) and GoRIGHT(iterB)) then return

78

In the following, we propose an algorithm that combines both approaches and top-
down traverses the suffix tree of the text and the radix tree of the patterns in parallel.
It recursively searches common paths in both trees and whenever a radix tree leaf is
reached, a pattern was found whose occurrences are represented by the suffixes below
the same path in the suffix tree. Beginning in the root nodes of both trees, the labels of
edges to child nodes (a, E) beginning with the same character are compared character-
wise. If the lengths of the concatenation strings differ, e.g. || < |B], only the |a|-prefix
of B can be compared and if successful the comparison continues with the pair («’, E),
where a’ is the child of @ whose edge begins with 8[|a|]. The recursion stops if such an
edge does not exist or a mismatch occurs. Whenever the whole concatenation string of
aradix leaf « is compared successfully, the pattern « is found with occurrences given by
the suffixes below E

Algorithm 4.8 shows the pseudo-code of our approach. It is called with radix and
suffix tree iterators iterA and iterB pointing at the root nodes and i = 0 at the beginning.
In the first part (lines 1-16) edge labels are compared, whereas the second part (lines 17-
35) searches for pairs of children with the same edge label beginnings. This is possible
by visiting each child at most once as the children are sorted by the first character of their
edge label. The while-loops in lines 20-22 and 24-25 handle sentinel edges which are
implemented to have an empty edge label instead of a $ character and appear left of all
non-sentinel edges.

4.3.4 Approximate pattern search

In Section 2.5 on page 19, we described a DP algorithm that sequentially scans a text of
length n to search a pattern p with up to k errors in O(kn) time on average. In typical
applications, such as searching sequenced reads in a reference genome, the text is much
larger than the pattern and even the linear search time becomes prohibitive. In the fol-
lowing, we propose a simple recursive search algorithm that descends the suffix tree of
the text and solves the in 0((2 -|1Z] - |p|)") time [Navarro and Baeza-Yates, 2000].

Searching a pattern with errors in a suffix tree requires to tolerate mismatches while
descending along the path of pattern characters from the root towards the leaves. That
means whenever a pattern character is compared with an edge character, a mismatch
only reduces the remaining number of tolerated errors, see Algorithms 4.9 and 4.10 for
the corresponding pseudo-code. Branching nodes must be left via the edge beginning
with the current pattern character and, if there are errors remaining, also via all other
edges. Approximate matches have been found if the end of the pattern has been reached
without exceeding the number of tolerated errors.

The algorithmic idea of Algorithm 4.9 can be combined with the multiple pattern
search algorithm of the previous section to approximately search multiple patterns in
a text. We again use a radix tree of patterns and a suffix tree of the text and traverse both
in parallel, starting at the root nodes. During the recursion, both concatenation strings
are compared character-wise while recording the number of mismatches. When the end
of one or both strings is reached, the search recurses into all children of the nodes or the
Cartesian product of children sets of both nodes. The recursion ends if more mismatches

79

Algorithm 4.9: APPROXIMATERECURSION(pattern, iter, i, e)

input : search pattern, suffix tree iterator
input : length i of compared prefixes of pattern and concatenation string
input : remaining number of tolerated errors e

output :all text occurrences within tolerated Hamming distance

if e = 0 then
if GoDown (iter, pattern[i..|pattern|)) then
print “pattern found at: ” GETOCCURRENCES(iter)
else
while i < |pattern| and i < REPLENGTH(iter) do
if pattern[i] # REPRESENTATIVE(iter)[i] then
if e = 0 then
return
else
e<—e—1
i<i+1
if i = |pattern| then
print “pattern found at: ” GETOCCURRENCES(iter)
else
if not coDown(iter) then return
repeat
APPROXIMATERECURSION(pattern, iter, i, e)
until not GoRIGHT(iter)

Algorithm 4.10: APPROXIMATEPATTERNSEARCH (pattern, errors)
input : pattern and number of tolerated Hamming errors
output :all approximate matches

create iterator iter of the suffix tree of the text
GORooT(iter)
APPROXIMATERECURSION(pattern, iter, 0, errors)

occurred than tolerated or a leaf in either tree is reached. If it is a leaf in the radix tree
a pattern has been found. Algorithm 4.11 shows the corresponding pseudo-code of this
algorithm. The multiple exact pattern search algorithm of the previous section is used in
line 2 as an optimization if no more errors are tolerated. The repeat-loops in lines 24 and
26 enumerate the children of the current nodes a or E depending on whether the end of
a or f§ has been reached in the comparison.

To evaluate the practical running time of the multiple approximate search algorithm,
we searched 100,000 substrings in DNA, protein, and natural language texts of length
100 million characters while varying the allowed number of mismatches and the length
of the substrings. The results are shown in Figure 4.4.

80

hs_chr2 (=1=5) sprot (|2 =24) rfc (12 = 256)
o o o
o (=3 o
(=3 (=3 (=3
S 3 S
(=3 (=3 (=}
w S w S w S
[} Q [}
c S e S £ 9
(=] (=] (=)
= Anli c Al = Al
£ £ £
5 2 ceat | 5 g 5 s
v 1lerror
3 4 A 2 errors 3 3
R o 3 errors ° °©
T T T T T T T T T T T T T
1 5 50 500 5000 1 5 50 500 5000 1 5 50 500 5000
pattern length pattern length pattern length

Figure 4.4: Running times required to search 100,000 patterns with a varying number of
tolerated errors in the first 100 M characters of a DNA, amino acid, and natural
language text. We compared the exact (Section 4.3.3) and approximate (Sec-
tion 4.3.4) recursive algorithms that search the radix tree of the patterns in the
suffix tree (enhanced suffix array) of the text. Patterns are random substrings
of varying length.

It can be seen that the number of errors has the greatest influence on running time
which increases by an order of magnitude for every additional error. The search time on
large alphabets is higher than on small alphabets due to a greater out-degree of suffix
tree nodes.

In [Siragusa et al.,, 2013a,b], we demonstrate the applicability of the above-mentioned
exact and approximate multiple backtracking approaches to the read mapping problem.
In that work, we search exact or approximate occurrences of non-overlapping seeds of
the reads in the reference sequence and extend them up to a given error rate.

The approximate search can also be extended to edit distance. Instead of comparing
the edge labels of both trees character-wise, they need to be aligned recursively with a
modified DP algorithm [Needleman and Wunsch, 1970] that updates a DP matrix which
for a pair of tree nodes reflects the pairwise alignment of both concatenation strings. For
more details, we refer the reader to [Navarro and Baeza-Yates, 2000].

81

Algorithm 4.11: APPROXIMATEMULTIRECURSION(iter4, iterB, i, e)

input : iterator iterA of pattern radix tree
input . iterator iterB of text suffix tree

input : length i of compared prefixes

input : remaining number of tolerated errors e

output :all text occurrences within tolerated Hamming distance

if e = 0 then

EXACTMULTIRECURSION(iterA, iterB, i) // no errors left, use Algorithm 4.8

else
Q < REPRESENTATIVE(iterA)
B < REPRESENTATIVE(iterB)
while i < |a| and i < |B| do

if a[i] # B[i] then // on mismatch ...
if e = 0 then // reduce the tolerated errors
return
else
e—e—1
i—i+1

if i = || then
if ISLEAF(iterA) then
print “pattern ” a “ found at: ” GETOCCURRENCES(iterB)
return
GoDownN(iterA)
if i = |F] then
if not coDown(iterB) then return
repeat
iterB' « iterB
repeat
APPROXIMATEMULTIRECURSION(iterA4, iterB, i, e)
until i # || or not GORIGHT(iterB)
iterB « iterB’
until i # || or not GORIGHT(iterA)

Algorithm 4.12: APPROXIMATEMULTIPATTERNSEARCH (patterns, errors)

input : multiple patterns and number of tolerated Hamming errors
output :all approximate matches

create pattern radix tree and tree iterator iterA
create iterator iterB of the suffix tree of the text
GORooT(iterA), coRooT(iterB)
APPROXIMATERECURSION(iterA, iterB, 0, errors)

82

CHAPTER
q-gram Index

The two indices described in the previous chapters can be seen as alternative implemen-
tations of a suffix tree. However, many applications do not require the whole suffix tree
functionality and instead only need to search patterns up to a certain length. For such
case, a g-gram index may be a much faster alternative. We first define the term g-gram
and how to construct and access a g-gram index. Finally, we explain how to use g-gram
indices in g-gram counting filters to accelerate approximate string matching. We will
later use one of the filters in our read mapper proposed in Chapter 6.

5.1 Definitions

A g-gram is a sequence of g characters over an alphabet . The substring s[i..i + q) of
a given string s is called the ungapped or contiguous q-gram at position i in s. A gener-
alization of contiguous g-grams are gapped g-grams [Burkhardt and Karkkdinen, 2003]
which are (non-contiguous) subsequences of s with length g and a certain shape.

Definition 5.1 (shape). A shape Q is a set of non-negative integers {i,, i, ..., g} with 0 =
i; < i < .. < ig Thespan of Q is span(Q) = i; + 1 and the weight of Q is the set
cardinality |Q| = gq.

The definition above includes ungapped g-grams as a special case where @ = [0..q).
Considering a given shape Q = {iy, ..., i;} the subsequence s[i + i;]s[i + i,] ... s[{ + i,] is
called (gapped) q-gram at position i in s. In the following, we only consider g-grams that
are true subsequences, i.e. 0 < i < n—span(Q). As a shortcut we denote the shape Q by a
string over {-, #} of length span(Q) where the character # only occurs at positions p € Q,
e.g. the shape Q = {0, 1, 4, 6} corresponds to ##--#-#. For example, the 3-grams of shape
##-# in the string gttca are gtc and tta.

Consider the function rank : £ — [0.|Z]|) that maps each character to its rank in
the alphabet Z, i.e. for each a, b € Z holds a < b = rank(a) < rank(b). We now want to
extend rank to arbitrary g-grams and define the g-gram code to be the rank of the g-gram
t in the set of all possible g-grams 29 in lexicographical order. The following function
code : £9 - [0..|2|™) computes the g-gram code value:

-1
code(t) =) rank(t[i]) - |Z|9"L. (5.1)

i=0

84

pos =[2 [+[s[3 e]2]s o7

s=e[t[a] e t]c[e[t]2]

Figure 5.1: Ungapped 2-gram index of ttatctctta. To look up all text occurrences of the 2-
gram ta, we first determine its code value code(ta) = 12. The directory table
dir stores at position 12 and 13 begin and end position of the substring pos[3..5).
This substring contains 1 and 8, the begin positions of all occurrences in the text.

5.2 The direct addressing g-gram index

A (direct addressing) g-gram index is a data structure that permits looking up all text
occurrences of a g-gram in a time linear to the number of occurrences.

For a string s of length n, the direct addressing g-gram index consists of two tables,
the position table pos and the directory table dir. The position table stores all positions
of gapped g-grams ordered by increasing code values.

Definition 5.2 (position table). Given a shape @ = {i;, ..., i;} and a string s of length
n, the position table pos of s is a string of length n — span(Q) + 1 over the alphabet
[0.n — span(Q)]. For every i,j € [0.n — span(Q)] holds:

[< j = code(s[pos[i]+i;] ... s[pos[i] +i,4]) < code(s[pos[j]+i;]...s[pos[j]+i,]). (5.2)

As a consequence, the occurrences of each g-gram are stored in a contiguous interval
in pos; this interval is called q-gram bucket. The directory table stores for each g-gram
the start of its bucket which equals the number of occurrences of g-grams having a less
code value.

Definition 5.3 (directory table). Given a shape Q@ = {iy, ...,i,} and a string s of length n,
the directory table dir of s is a string of length |£|? + 1 over the alphabet [0..n — span(Q)].
For every i € [0..|£]?] holds:

dir[i] = |{j € [0.n — span(Q)] | code(s[j + is] ..s[j + i) < i }| (5.3)

To determine the occurrences of a g-gram t we first need to compute the code c :=
code(t) in O(q) time. By definition, m = dir[c + 1] — dir[c] equals the number of occur-
rences and pos[dir[c]..dir[c + 1]) is the interval of occurrences. Thus, the m occurrences
of any g-gram can be retrieved in optimal O(q + m) time.

5.3 Construction

The position table of a g-gram index for ungapped g-grams can be considered as a suffix
array that is partially sorted. It contains all but the last g — 1 suffixes of the text sorted

85

by the first g characters. Hence, the position table can be constructed from a suffix ar-
ray as it is proposed by Burkhardt et al. [1999]. Recording the lowest suffix ranks of
runs of suffixes beginning with the same ungapped g-gram yields the directory table in
a sequential scan over the position table. However, in practice constructing a suffix ar-
ray is much more expensive in terms of running time and memory consumption than
constructing only a partially sorted suffix array or constructing the g-gram index using
non-comparison based sorting algorithms, e.g. counting sort or radix sort [Cormen et al.,
2001].

5.3.1 Counting sort algorithm

In SeqAn we implemented an adapted counting sort to construct the g-gram index in
O(n + |Z]9) time and memory. Its pseudo-code is given in Algorithm 5.1. Note that our
implementation uses the (¢ + 1)-th bucket for counting (line 6) and increasing the target
position (line 14) of g-grams with code value c. In this way, at the end of the algorithm
dir[c + 1] contains the end position of the c-th bucket which equals the desired begin
position of the (¢ + 1)-th bucket.

Algorithm 5.1: CONSTRUCTQGRAMINDEX(S, Q)
input : text string s over the alphabet X, shape Q
output : position table pos, directory table dir

Let {i;, ..., ig} < Q suchthati; < ..<i,
forj < 0to |Z|7 do
dir[j] < 0
forj < 0to |s| — span(Q) do
c « code(s[j + i1]s[j + ip] ... s[j + ig])
dir[c+ 1] « dir[c+1]+1
sum < max(0, |s| — span(Q) + 1)
for j « |2|? downto 0 do
sum < sum —dir[j]
dir[j] « sum
forj < 0 to |s| — span(Q) do
¢ « code(s[j + i1]s[j + iz] ... s[j + ig])
pos[dir[c + 1]] « j
dir[c + 1] « dir[c+ 1]+ 1
return (pos, dir)

5.3.2 Extension to multiple sequences

Analogously to the definition of the generalized suffix array, the g-gram index of multiple
sequences st,s?, ..., s™ differs from the single sequence index only in that pos contains
position pairs. The pair (i,j) withi € [1.m] and j € [0..|si| - span(Q)] represents a

86

gapped g-gram at position j in s'. The staightforward extension of Algorithm 5.1 to mul-
tiple sequences is shown in Algorithm 5.2. Instead of scanning a single sequence, it counts
q-grams and fills their begin positions into buckets in consecutive scans of the sequences.

Algorithm 5.2: CONSTRUCTQGRAMINDEX_MULTI(s?, ..., s™, Q)
input : multiple text strings s%, ..., s™ over the alphabet %, shape Q

output : position table pos, directory table dir

Let {i;, ..., ig} < Q@ suchthati; < ..<i,
forj < 0to [X]? do
dir[j] < 0
fori < 1tomdo
for j « 0to |s‘| — span(Q) do
¢ « code(s'[j + iy]s'[j + iz] .. ' + ig])
dir[c+ 1] « dir[c+1]+1
sum « Y max(0, |s'| — span(Q) + 1)
for j « |Z|? downto 0 do
sum « sum —dir[j]
dir[j] « sum
fori < 1tomdo
for j « 0to |s'| — span(Q) do
¢ « code(s'[j + iy]s'[j + iz] .. s'[J + ig])
pos[dir[c + 1]] « (i,))
dir[c+ 1] « dir[c+1]+1
return (pos, dir)

5.3.3 Adaptation to external memory

For large texts we provide an external memory variant of Algorithm 5.1. Algorithm 5.3
first scans the text and externally sorts pairs of code values and positions of all overlap-
ping g-grams by increasing code values. The corresponding positions of the sorted array
A are used to sequentially fill pos. The begin position of each bucket c is determined dur-
ing a scan over A and sequentially written to dir while counting the number of g-grams
with code values less than c.

5.4 The open addressing g-gram index

As described above, the directory table of the direct addressing g-gram index is a string
oflength |Z|? + 1 and the whole index consumes O(|Z|? + n) memory. Thus, for growing
values of q the available memory rapidly becomes a limiting factor, e.g. for a DNA alphabet
with |Z| = 4, g = 16, and 4 byte per entry the directory requires 16 GB of memory. For
alphabets with |X| = 256 the same amount of memory is required for g = 4. In fact,

87

Algorithm 5.3: CONSTRUCTQGRAMINDEX_EXTMEM(s, Q)
input : text string s over the alphabet Z, shape Q
output : position table pos, directory table dir

A« < (code(s[j +i]s[j +i,]...s[j + iq]),j) |j € [0..|s| — span(Q)] >
sort A by the first component
pos « (last componentof a : a € A)

dir < ()
b« 0
Clast < —1
foreach (c,j) € Ado
if ;45 < c then
fori < c;us + 1tocdo
append b to dir
Clast < €
b<b+1
fori < cjys + 1to |Z|7 do

append b to dir

the directory is only required to retrieve the position table interval of every non-empty
g-gram bucket and to determine whether a bucket is empty. However, the number of
non-empty buckets is not only bound by the number of possible different g-grams |Z|?
but also by the number of overlapping g-grams n — span(Q) + 1.

In the following, we propose the open addressing q-gram index with a memory con-
sumption of O(a~n), for a fixed load factor @ with 0 < a < 1. Instead of addressing
entries in dir directly by g-gram code values, it uses an open addressing scheme [Cor-
men et al, 2001] to map the g-gram codes (keys) of non-empty buckets to entries in dir
(values). The load factor determines the maximal ratio between non-empty buckets and
available entries of the g-gram directory and provides a trade-off between number of
collisions and memory consumption.

In addition to the directory table dir, the open addressing index uses a string C of
length |a~'n| over the alphabet [—1..|Z|%), the so-called code table. A pseudo-random
hash function hash : [0..|Z|?) - [0..|a *n]) maps a g-gram code c to an entry in dir. Our
index implementation can be used with arbitrary hash functions and by default maps the
q-gram code c to its CRC32 checksum using the SSE4.2 CPU instruction _mm_crc32_u64
[Intel, 2011].

As hash may map different values of ¢ to the same position i (collision), C[i] stores the
code that currently occupies the entry dir[i] or equals —1 if empty. Whenever a collision
with a different code occurs, the entries C [(i + j) mod |a™n|] for j = 12,22,32, ... are
probed for being empty or containing the correct code. Compared to linear probing this

Algorithm 5.4: GETBKT(c, C)

Algorithm 5.5: REQBKT(c, C)

input : code value ¢, code table C
output : position of the corresponding
entry in dir

if |C| = 0 then return c
i « hash(c) mod |C|

input : code value ¢, code table C
output : position of the corresponding
entry in dir

if |C| = 0 then return c
i « GETBKT(c, C)

d<0
while C[i] # cand C[i] # —1 do

Cli] « ¢
i« (i+2d+1)mod|C| return i
d<d+1
return {

quadratic probe sequence prevents primary clustering of buckets [Cormen et al., 2001].
The buckets in pos need to be arranged in the same order as their code values appear in
C. In this way, dir[i] stores the begin and dir[i + 1] the end position of the bucket in pos.

Algorithm 5.4 shows how to retrieve for a g-gram code c the position i of the entry in
dir that stores the corresponding bucket begin position. Algorithm 5.5 returns the same
position i or occupies a new entry if it not yet exists. The first lines of both algorithms
optionally switch to the behavior of the direct addressing index if it is more memory ef-
ficient (|]Z]|7 < 2a~'n). In that case C is empty as it is not needed. To construct the open
addressing index we modified Algorithm 5.1 (and 5.2) by inserting ¢ « REQBKT(c, C) be-
tween lines 5 and 6 (6 and 7) and ¢ « GETBKT(c, C) between lines 12 and 13 (14 and 15).
We made the same modification to Algorithm 5.6 by inserting ¢ « GETBKT(c, C) between
lines 1 and 2. Algorithm 5.3 can be modified as well if C and dir are stored in internal
memory, otherwise an external hash table [Jensen and Pagh, 2008] would be preferable.

We compared the running time and memory required to construct direct addressing
and open addressing g-gram indices of different DNA texts for different values of q. The
results are shown in Figure 5.2. The construction times and memory consumptions are
identical for ¢ < 8 as the open addressing scheme is disabled since it would consume
more memory than the direct addressing index. For g = 14, 15 the switch occurs at text
lengths around 50 Mb or 200 Mb. It can be seen that the open addressing index is at least
half as fast as the direct addressing index and for ¢ = 16 on texts smaller than 100 Mb
even faster.

5.5 Applications

The most common and simplest application of g-gram indices is to search the occur-
rences of a g-gram in a text. For a given g-gram t with code value ¢ = code(t), the
begin positions of all text occurrences are stored in a bucket pos[l..r) with [= dir[c]
and r = dir[c + 1] for the direct addressing index or [= dir[GETBKT(c,C)] and r =
dir[GETBKT(c, C) + 1] for the open addressing index. Figure 5.1 shows how to look up the
occurrences of the ungapped 2-gram ta in a direct addressing index of the text ttatctctta
over the alphabet X = {a, ¢, g, t}. The general pseudo-code for searching a direct address-
ing index is given in Algorithm 5.6.

89

running time (s) running time (s)
20 40 60 80 100

memory usage (GB)

memory usage (GB)

0

10

10

q=4

| o direct addressing
v open addr. (o =0.5)
- 2 open addr. (a =0.9)

0 50 100 150 200 250
text length (Mb)

q=15

0 50 100 150 200 250
text length (Mb)

qa=4

| o direct addressing
| v open addr. (a =0.5)
A open addr. (0 =0.9)

0 50 100 150 200 250
text length (Mb)

q=15

T T T T T T
0 50 100 150 200 250

text length (Mb)

running time (s) running time (s)
20 40 60 80 100

memory usage (GB)

memory usage (GB)

0

10

10

o

50 100 150 200 250
text length (Mb)
g=16
T T T T T T
0 50 100 150 200 250

text length (Mb)

q=8

0 50 100 150 200 250
text length (Mb)

q=16

T T T T T T
0 50 100 150 200 250

text length (Mb)

running time (s)
20 40 60 80 100

running time (s)

20 40 60 80 100

memory usage (GB)

memory usage (GB)

0

0

10

10

0 50 100 150 200 250
text length (Mb)
g=20
T T T T T T
0 50 100 150 200 250

text length (Mb)

q=14

0 50 100 150 200 250
text length (Mb)

q=20

T T T T T T
0 50 100 150 200 250

text length (Mb)

Figure 5.2: Construction time (top) and memory consumption (bottom) of direct address-
ing and open addressing q-gram indices for different values of q and load fac-
tors a. We used the DNA datasets described in Table 3.6 on page 51.

90

The g-gram index of multiple sequences can and has been successfully used to ef-
ficiently determine the number of common g-gram between pairs of sequences, e.g. in
[Goke et al., 2012] to replace costly pairwise alignments by g-gram based similarity mea-
sures or to build a guide-tree in a progressive sequence alignment as we proposed in
[Rausch et al, 2008].

In the following, we introduce two filters based on g-gram counting that accelerate
local alignment algorithms by skipping parts of the text that contain no local matches. In
Section 6.4.1 we propose a variant of the second filter that we specialized for the approx-
imate matching problem and utilize in our read mapping tool RazersS.

Algorithm 5.6: GETOCCURRENCES(¢, pos, dir)
input : g-gram t, position table pos, directory table dir
output :text occurrences of t

¢ < code(t)

occs < ()

for j « dir[c] todir[c+ 1] —1do
append pos|[j] to occs

return occs

5.5.1 g-gram counting filters for approximate matching

In Chapter 2.5 we introduced the approximate string matching problem which can be
solved with the proposed dynamic programming algorithms or the recursive suffix tree
search described in Chapter 4.3.4. However, the bilinear running time of the DP algo-
rithm makes it infeasible to millions of patterns and texts of billions of characters. The
recursive suffix tree search with a running time exponential in the number of errors is
applicable to only a small numbers of errors, e.g. 1 or 2. A remedy to this situation are fil-
ters which make it possible to reduce the search space and thus the overall running time
of approximate matching algorithms by orders of magnitude.

A lossless filter is an algorithm that speeds up the pattern search by discarding large
parts of the text that are guaranteed not to contain an approximate match. The remaining
parts, called candidate regions, are then examined using an approximate pattern match-
ing algorithm. Commonly used filters are either seed based or based on q-gram counting.
Single or multiple seed based filters define candidate regions to share a single or multiple
gapped g-grams with the pattern. Filters based on g-gram counting, which we consider
in the following, require a candidate region to have a certain number of g-grams in com-
mon with the pattern. Fundamental to most of the g-gram counting filters is the g-gram
lemma which determines this number such that the filter is lossless:

Lemma 5.1 (g-gram lemma [Owolabi and McGregor, 1988; Jokinen and Ukkonen, 1991]).
Let a,b € I™ be two strings with Hamming distance k, then a and b share at least t =
n —span(Q) + 1 — k- g common gq-grams.

91

Proof. Firstassume k = 0, then a and b are equal and have t = n — span(Q) + 1 g-grams
in common. As all g-grams have the same shape and each g-grams covers q characters,
every introduced mismatch is covered by at most g formerly common g-grams. Hence,
overall not more than kq g-grams can be destroyed by k errors and at leastt = n —
span(Q) + 1 — k - ¢ common g-grams remain. n

The threshold t is the minimal number of g-grams that two strings within Hamming
distance k share. This lemma can also be applied to edit distance if n is the length of the
larger sequence. The term common g-gram was intentionally not defined precisely as the
lemma holds for different alternative definitions [Burkhardt and Karkkainen, 2003]. One
way is to count the number of overlapping g-grams of one string that occurs at least once
in the other. The g-gram lemma is strict for ungapped shapes and the worst case can be
constructed by placing errors such that each error destroys q q-grams, e.g. at positions
q—1,2q—-1,3q -1, ..., see Figures 5.3a and 5.3b. For gapped shapes the lemma gives a
lower bound for the exact threshold and a strict closed formula has not been found yet.
However, the exact threshold can be computed using dynamic programming as proposed
by Burkhardt and Karkkainen [2003].

Although the threshold given by the lemma is lower for gapped shapes compared to
ungapped shapes with the same weight, gapped shapes may yield a higher exact thresh-
old. Even more, gapped shapes may increase the filtration specificity due to a higher
minimal coverage [Burkhardt and Kérkkdinen, 2003]. For a shape Q and a threshold t
the minimal coverage is the minimal number of characters that must match to observe t
common g-grams. The higher the minimal coverage, the less likely random hits are and
the more specific the filter is. However, most of the advantages of gapped shapes are lim-
ited to Hamming distance. Under edit distance gapped shapes have the same threshold
as ungapped shapes with the same span. As g-gram gaps are only immune to mismatches,
additional counting methods are required to also tolerate indels [Burkhardt and Karkkai-
nen, 2002].

Example 5.1. Considering strings of length n = 11 with Hamming distance k = 3. The g-
gram lemma for ungapped 3-grams gives an exact threshold oft =11-3+1-3:3 =0,
see Figure 5.3b. For the gapped shape ##-# a lower bound for the threshold would be
t = —1. However, the exact threshold t = 1 is even higher as in every mismatch pattern
at least one gapped 3-gram remains uncovered by mismatches. A worst case is shown in
Figure 5.3c.

QUASAR

The first filter algorithm that utilizes the g-gram lemma was QUASAR [Burkhardt et al,,
1999]. It searches a pattern of length m with at most k edit errors in a text and uses
the observation that the maximal length of a match is m + k. Considering the dot plot
between pattern and text, the common g-grams between pattern and match must reside
inamxX (m+k) rectangle. In order to detect mx (im+ k) rectangles with a sufficiently high
number of common g-grams, QUASAR virtually partitions the text into blocks of length

92

(I T T XTI (XTI IXI I T] [T T IXE XX T]
CI X
O
[X [
[
X1 [
X [
X1 [
[

(a) 2-errors worst case (b) 3-errors worst case (c) 3-errors worst case (gapped)

Figure 5.3: Mismatch patterns of length 11. (a) and (b) show worst cases of the q-gram
lemma where a maximal number of ungapped 3-grams is destroyed. For 3 mis-
matches, a gapped shape (c) should be preferred as it yields a higher threshold.

2b, with b = m + k, and additionally uses a second partitioning where blocks are shifted
by b (see Figure 5.4a). In this way, blocks overlap by at least m + k characters and each
match completely resides in at least one block. A g-gram index” built over the text is used
to look up the text occurrences of pattern g-grams. Each g-gram of the pattern increases
the counters of blocks that contain at least one occurrence. At the end, only blocks whose
counters are greater or equal t are output as candidates for containing a pattern match
and are further examined using an approximate string matching algorithm. QUASAR can
also be used to find local similarities by sliding a window of length w over the pattern
while updating the g-gram counters.

SWIFT

A direct successor of QUASAR is SWIFT [Rasmussen et al., 2006], a filter for local align-
ments. In contrast to QUASAR which uses an absolute error threshold k and a fixed win-
dow length, it permits to specify an error rate € and a minimum match length n, which
is more appropriate since the length of a local alignment is not known in advance. An
e-match of a pattern p is a match of a substring p’ < p with at most |&|p’|] errors. SWIFT
has a higher filtration specificity, as it counts common g-grams in partial dot plot paral-
lelograms instead of rectangles, and guarantees to detect an overlapping parallelogram
for each e-match.

We specialized the original algorithm to find approximate (semi-global) matches in-
stead of local matches and count common g-grams in full, not partial parallelograms (see
Figure 5.4b). A more detailed description of our variant can be found in Section 6.4.1.

In the following, we describe the fundamental idea of the original SWIFT algorithm.
Considering the dot plot between pattern and text, every common g-gram, called g-hit,
corresponds to a diagonal stretch of matches with length q. Obviously, all g-hits of an
alignment with k errors can cover at most k + 1 different diagonals in the dot plot. Using
the g-gram lemma, Rasmussen et al. proved that for any given € and n, there existw, q, e

1 QUASAR actually uses a suffix array. However, a g-gram index can be constructed much faster and is
also applicable to gapped shapes.

93

t
I T T T T T T T T TP T T P P P P PP T P PP TP TP TP T P P T T P P T P P P T P P P P PP TP PP TP T PP P TP P T T P P P P P PP TP I ITTI T T T ITTTT]

: N N N

|
H \ N

(a) QUASAR

(N\N\ NN\

(b) (semi-global) SWIFT

Figure 5.4: Filters based on q-gram counting. (a) shows how QUASAR partitions the dot
plot into rectangles® such that each match fits into at least one of them. Our
semi-global variant of SWIFT (b) counts q-grams in overlapping parallelo-
grams of less area such that the trace of each match is covered by at least one.
The example shows, that SWIFT is a more specific filter and for the true match
reports a much smaller candidate region (blue area) compared to QUASAR.

9 Rectangles and parallelograms are intentionally rotated to visualize their overlap.

and t such that every e-match contains 7 g-hits that reside in awx e parallelogram. Awxe
parallelogram is the intersection of e + 1 consecutive diagonals and w + 1 consecutive
columns in the dot plot.

To detect wx e parallelograms with 7 g-hits in the dot plot, the SWIFT algorithm slides
from left to right over the pattern and searches each pattern g-gram in a g-gram index
of the text. Found g-hits are counted in bins of A + e consecutive diagonals whose first
diagonal is a multiple of A. As adjacent bins share e diagonals, every w X e parallelogram
is contained in one bin. Every bin contains a g-hit counter and represents the parallelo-
gram with columns bounded by the leftmost and rightmost contained g-hit. If a g-hit is
found that is at most w — g columns apart from the rightmost g-hit, the parallelogram is
extended. Otherwise itis closed and a new one starting at the found g-hitis opened as the
two hits cannot be part of the same w X e parallelogram. A closed parallelogram whose
bin counter has reached t is output as a SWIFT hit and needs to be verified whether it
contains a part of an e-match.

The e-match verification is a non-trivial part and not covered by the work of Ras-
mussen et al. However, we proposed an algorithm that uses SWIFT for filtration and a
new verification strategy to detect and report all e-matches in [Kehr et al.,, 2011]. To ver-
ify SWIFT hits, we first examine the candidate parallelogram as to whether it contains an
e-match using a local alignment algorithm with an appropriate scoring scheme. If it con-
tains an e-match, we extend the alignment, if possible, using an X-drop strategy [Zhang
etal, 1998] and report a maximal e-match without X-drop. In a last phase we remove du-

94

plicate or overlapping matches which are the result of e-matches that contain multiple
shorter e-submatches. For more details, we refer the reader to [Kehr et al,, 2011].

Part 111

APPLICATIONS

CHAPTER

6 Read Mapping

In this chapter, we propose RazerS [Weese et al.,, 2009, 2012], a versatile read mapper
that allows to align millions of sequenced reads of arbitrary length under Hamming or
edit distance. Our algorithm supports shared-memory parallelism and utilizes the g-
gram index and g-gram based filters as proposed in Chapter 5, and a fast bit-parallel DP
algorithm for approximate string search. We first describe the existing read mapping
tools and their characteristics. Thereafter, we state a formal definition of the read map-
ping problem to solve and introduce the novel algorithmic ideas of RazerS. As such, we
presentan automatic parametrization approach that, given a user-defined loss rate, guar-
antees not to lose more reads than specified. This enables the user to run our tool either
lossless or with a controlled loss rate at higher speeds and provides a seamless tradeoff
between sensitivity and running time. At the end of this chapter, we extensively evaluate
our approach on different real-world datasets in comparison with other state-of-the-art
read mappers.

6.1 Related work

In the last years a variety of tools was designed and developed specifically for the purpose
of mapping short reads. In Table 6.1 we compare the algorithmic key features of a subset
of mappers, i.e. Bowtie [Langmead et al., 2009], Bowtie 2 [Langmead and Salzberg, 2012],
BWA [Liand Durbin, 2009], Eland [Cox, 2006], Hobbes [Ahmadi et al.,, 2012], Maq [Lietal,
2008a], mrFAST [Alkan et al., 2009], SeqMap [Jiang and Wong, 2008], SHRiIMP 2 [David
etal, 2011], Soap [Li et al.,, 2008b], Soap 2 [Li et al.,, 2009b], Zoom [Lin et al.,, 2008], and
RazerS [Weese et al., 2009, 2012]. For a thorough algorithmic comparison we refer the
reader to [Li and Homer, 2010; Fonseca et al., 2012].

All existing read mapping approaches are based on a substring index. Depending on
the type of index, they can be divided into two classes: 1) g-gram based or 2) prefix-trie
based read mappers.

q-gram based read mappers. The g-gram based approaches use a two-step strategy.
First, a filtration algorithm reduces the search space by filtering regions that cannot con-
tain a match. This includes building a g-gram index, either on the set of reads, the refer-
ence sequence, or both to efficiently find common g-grams. The remaining candidate re-
gions are then examined for true matches in a second, more time-consuming verification

98

g-gram based prefix trie based
~N
(=" =¥ [7,) [N
S = £ @ 9w e 2 N
= E =5 5 & <« g B
g §F 2855 § :is¢%
BE 2 @ u N »n £ T = R R mwn
é indexofreads ® ® - e e - e . - - -
= index of reference - e - - e _ o e o o o
seed-based o o e o o - e e . .
%" g-gram counting - - - - - o o -)
E supports indels - - - e - e o o . .
b= full sensitivity mode ®* ” ¢ e o o o e .
controllable loss rate - - - - - - e . - -
0 supports indels - - - e of e e . L
-i max. read length [bp] 32 127 60 - 240 - - 100 1000 - - - -
g max.error 2 3 2 5 - - - - - .- -2
= multiple (suboptimal) hits - - - e e o o o . e o o .

Table 6.1: Read mapping tools and their characteristics.

@ full sensitive up to 2 mismatches

b full sensitive up to 3 mismatches

¢ depends on settings, no switch to guarantees full sensitivity

4 fyll sensitive up to 5 errors

¢no help for parameter choice, default will be lossy for most settings
/limited to one gap

step. The filtration algorithms again can be divided into seed-based or q-gram counting
filters.

Most of the seed-based filters are based on the pigeonhole principle. It states that,
given two sequences within distance k, any partition of the first sequence into k+ 1 parts
contains one part that can be found without errors in the other sequence [Navarro and
Raffinot, 2002]. The shorter this seed, the more likely it is to encounter random matches,
and therefore the lower the specificity of the filter. This strategy is thus rather limited to
a small number of errors. To increase the seed length and the filtration specificity, Eland
was the first to extend this strategy and divides one sequence into k + 2 parts. Now
at least two of such parts will occur in the other sequence. These two parts retain their
relative positions as long as no indels occur in between. Eland, Maq, and Soap make use of
this observation but are therefore limited to Hamming distance. Furthermore, Eland and
Soap always use a 4-segment partition and Maq at most a 5-segment partition and can
therefore not guarantee full sensitivity for k > 2 or k > 3, respectively. SeqMap extends
the two-seed pigeonhole strategy to edit distance and searches the two parts varying the
gap length by —k, ..., k nucleotides. Not based on the pigeonhole lemma but also seed-
based filters, where a common (gapped) g-gram triggers a verification, are BLAT [Kent,
2002], PatternHunter [Ma et al., 2002], PatternHunter II [Li et al, 2003], and Zoom.

The second class of filters is based on g-gram counting and the minimal number ¢ of

99

common q-grams every k-error match must have (see Lemma 5.1 on page 90). To find
match candidates, SHRiIMP 2 scans the reference and for every read of length m reports
dot plot rectangles of size m X (m + k) with at least t common g-grams as candidates.
For SHRIMP 2, however, g and t must be set manually and the default configuration is not
guaranteed to be lossless.

Verification methods encompass approximate matching algorithms for Hamming or
edit distance [Sellers, 1980], local-alignment algorithms [Smith and Waterman, 1981],
e.g. in SHRIMP 2, or alignment algorithms that minimize the sum of base-call qualities at
mismatching bases, e.g. in Maqg. In current implementations one has to carefully distin-
guish whether both steps, the filtration and the verification step, are adequate for the
distance chosen (Hamming or edit distance). Some implementations, e.g. Maq, verify
matches using base-call qualities but filter the candidate regions using a fixed Hamming
or edit distance.

Some g-gram based read mappers primarily target sensitivity and support to output
all (including suboptimal) matches of a read up to a certain distance. This set of so-called
all-mappers includes Hobbes, SeqMap, SHRiMP 2, Hobbes, mrFAST, Zoom, and RazersS.

Prefix-trie based mappers. Another approach to read mapping utilizes the Burrows-
Wheeler transform [Burrows and Wheeler, 1994] which allows for the compression of a
text and its suffix array suftab. Ferragina et al. [2004] complemented the functionality
of this data structure so that one can count and locate all exact text occurrences of a pat-
tern p without prior uncompressing either of the two tables. This self-index, also called
FM index, uses a backward search to determine the interval suftab[L..r) of occurrences in
O(|p|) time. Lam et al. [2008] extended this idea to find all approximate pattern occur-
rences. For each read, their approach recursively descends a prefix trie, i.e. the suffix trie
of the reversed text, analogously to Algorithm 4.9 on page 79.

This idea of backward backtracking combined with heuristics to prune the search
space is used by Bowtie, Bowtie 2, BWA, and Soap 2. Whereas most of the approaches
search whole reads and recursively enumerate mismatches (Bowtie, Soap 2) or also in-
dels (BWA), Bowtie 2 uses the FM index to search exact seeds and verifies candidates with
an approximate matching algorithm, as described for seed-based filters above. In general,
the backtracking approach is not limited to prefix-tries and was successfully adapted to
suffix trees in [Hoffmann et al., 2009].

Recursive approaches are usually designed for the fast search of one or a few loca-
tions where reads map with low error rates. These search algorithms are mostly based
on heuristics and optimized for speed instead of sensitivity. As they aim at directly find-
ing the “best” location for mapping a read, they are called best-mappers. If a read has
multiple mapping locations, the best location is randomly chosen either error-based or
quality-based, where the first strategy minimizes the absolute number of errors and the
second prefers alignments where mismatches correspond to low base-call qualities. We
will show that both strategies have limitations in the presence of repeats or SNPs and that
best-mappers are not applicable to reliably detect sequence variations (Section 6.10.5).

100

reference genome

reads
Y
A
7/
7
/
7 //
Ve
7 //

@ verification
extracted matches

\\ \\
N N
O = N

Figure 6.1: Match extraction in RazerS. The reference is scanned by a q-gram based filter
which outputs candidate parallelograms that possibly contain a match. To ver-
ify whether the parallelograms contain true matches, they are searched with
an approximate string matching algorithm. At last, duplicate matches, a result
of overlapping parallelograms, are removed.

6.2 The RazersS algorithm

Some of the common problems inherent in many existing read mappers are that they
use complicated rules to chose the best match, heuristics that prohibit full-sensitivity,
or filters that must be parametrized manually. As a consequence, a clear definition of
their solution space is often impossible and they are hard to adapt to a specific biological
problem.

RazersS is a versatile g-gram based all-mapper that distinguishes itself in several re-
spects from existing algorithms. First, it can be easily parametrized and maps reads using
edit or Hamming distance (in filtration and verification phase without any restrictions).
Second, given a user-defined sensitivity (possibly 100 % making the mapper full sensi-
tive), we integrated an algorithm that automatically parametrizes the mapper such that
the chosen sensitivity will be exceeded in expectation. Finally, our implementation can
map millions of reads of any length with an arbitrary number of errors and is currently
the fastest in reporting all hits for typical read lengths and loss rates. It supports paired-
end mapping, the SAM output format [Li et al., 2009a], shared-memory parallelism, and
requires no prebuilt index.

101

RazerS consists of four modules: parameter chooser, filter, verifier, and match pro-
cessor. Based on the user-specific read mapping settings (e.g. minimal sensitivity, error
rate, given read lengths) the parameter chooser selects and parameterizes one of the two
available filters such that the required minimal sensitivity is exceeded in expectation and
the overall mapping time is minimal. Both strands of the reference genome are divided
into windows of fixed length. The selected filter constructs a g-gram index of the reads
and scans each window to collect candidate regions that possibly contain a read match.
After a window has been processed, a Hamming or edit distance verifier examines the
collected candidate regions as to whether they contain a true match. In regular intervals,
the match processor searches the recorded matches for duplicates, which are artifacts
by the filtration method. It also adapts the filters to be more stringent, if the number of
matches per read is limited and enough distinct matches have been found.

Figure 6.1 depicts the steps required to extract true matches. We describe the details
of each step in the following.

6.3 Definitions

The general read mapping problem, which we consider in the following, can be formalized
as follows:

Definition 6.1 (read mapping problem). Given a set of read sequences R < Z*, a refer-
ence sequence G € X%, and an error rate € € R, for every read r € R find all substrings
g of G that are within distance |¢|r|] to r. The occurrences of g in G are called (read)
matches.

Common distance measures are Hamming distance or edit distance, see Section 2.4.
An error rate ¢ instead of an absolute number of errors takes account to the fact that
read lengths may vary. For the sake of simplicity, we assume in the following that all
reads have the same length m and the tolerated distance is k = |¢|r|]. However, all the
proposed approaches are applicable to and were implemented for varying read lengths.

In the following sections, we consider transcripts and first need to generalize the g-
gram lemma to introduce a more precise definition of common q-grams, the g-matches.

Lemma 6.1 (generalized g-gram lemma). Given an edit transcript T between two strings
s,t € X" withk = ||T||g errors. Then T contains atleastt = |T| — k(g + 1) + 1 occurrences
of the substring M4, called q-matches.

Proof. Fork = 0holdsT = M"land T contains t = |T|—q+1 g-matches. Every additional
error x either replaces a former match Min T, if x € {R, D}, or is inserted into T, if x = I.
In the first case, the replaced M can be part of at most q former g-matches. In the second
case, the inserted I extends T by one character and is contained in at most g — 1 former
g-matches. n

In particular, the above lemma holds for Hamming transcripts as they are special edit
transcripts. The original g-gram lemma (Lemma 5.1 on page 90) is a direct consequence

102

of Lemma 6.1 as |T| is always greater than or equal to the length of the larger string. Due
to the correspondence of transcripts and alignments (Definition 2.12 on page 18), a g-
match is a diagonal stretch of length g in an alignment trace and hence corresponds to a
diagonal stretch of g matching bases in the dot plot, the so-called g-hit.

Definition 6.2 (g-hit). Two strings s,t € X* contain a so-called g-hit (i, j), if they share a
common g-gram s[i.i + q) = t[j.j + q).

The g-gram filters, which we propose in the following, search the dot plot between
reads and reference for g-hits to find match candidates.

6.4 Filtration

To make RazerS applicable to a broad spectrum of use cases, we implemented two fast
filtration algorithms: (1) SWIFT, a g-gram counting filter, and (2) the seed-based pigeon-
hole filter. Both differ in filtration specificity and processing speed. In Section 6.10.1 we
will empirically compare their specificities and overall mapping times.

6.4.1 SWIFT filter

To find potential match regions of reads in the reference genome we adapted the SWIFT
algorithm, described in Section 5.5.1, to search semi-global instead of local matches. As
a semi-global match aligns the whole read to a genomic substring, we need to consider
dot plot parallelograms that span the whole read. Hence, we can omit to open or close
parallelograms as it is done by the original SWIFT filter for local alignments.

The generalized g-gram lemma (Lemma 6.1) defines a threshold ¢, such that every
read alignment with at most k errors contains at least t g-matches. They correspond to
at least t g-hits that reside in a dot plot parallelogram of at most d = k + 1 consecutive
diagonals, as the alignment contains at most k insertions or deletions. In case of Ham-
ming distance there is a single diagonal (d = 1) completely covering all g-hits. Hence it
is sufficient to count g-hits in each possible |r| X d parallelogram, i.e. the intersection of
|r| consecutive rows and d consecutive diagonals in the dot plot. To reduce processing
overhead, we count them in larger |r| X w parallelograms, where w > d, that overlap by
d — 1 diagonals as every |r| X d parallelogram is contained in one |r| X w parallelogram,
see Figure 6.2.

As an optimization the width w is chosen such that parallelograms start at multiples
of a power of 2. In this way, the parallelogram counter can be efficiently determined by
bit-shifting the coordinate of the g-hit diagonal.

We construct a g-gram index of all overlapping read g-grams and search common g-
hits in alinear scan over the reference sequence G. During the scan only a limited number
of counters is needed per read at the same time. As every |r| X w parallelogram spans
at most |r| + w — 1 letters of G, we re-use parallelogram counters after |r| — w — q scan
steps. Each g-hit increases the counters of the parallelograms it is covered by. Whenever
a counter reaches the threshold ¢, the parallelogram is recorded as a candidate region.

103

reference genome

{

read

HA40>>0>000-40>0>]

counters

Figure 6.2: Example for q-gram counting in parallelograms®. The dot plot between a read
and a genome is covered by parallelograms that count common 3-grams, span
w = 12 diagonals, and overlap by k = 4 diagonals. The marked parallelogram
contains a 4-error read match and counts eight 3-hits that correspond to the
seven 3-matches in the transcript and one random 3-hit.

9 Parallelograms are intentionally rotated to visualize their overlap.

We extended the filter to be applicable to gapped g-grams as well, given a shape Q and
an appropriate threshold ¢t. Burkhardt and Karkkainen [2003] proposed how to compute
optimal thresholds for full-sensitivity Hamming filters. In Section 6.5.1, we introduce a
more generic approach that computes the sensitivity of Hamming and edit distance filters
for arbitrary thresholds.

6.4.2 Pigeonhole filter

The second filter is based on the pigeonhole principle, which states that if a read is cut
into k + 1 pieces, then in every approximate match of the read with at most k errors at
least one piece occurs without error [Baeza-Yates and Navarro, 1999]. If all reads have
the same length m, they are cut into |em + 1] pieces of length g = [%J where ¢ is the
tolerated error rate.

For reads of arbitrary lengths the minimal g is chosen to build a g-gram index over
the pieces of the reads. These pieces are then searched in a linear scan of the reference
sequence. For every exact match, the dot plot parallelogram, consisting of the diagonals
that are at most k diagonals apart of the matching piece, is considered as a candidate
region for a match within the tolerated edit distance. In Hamming distance mode, only the
diagonals that cover matching pieces are considered as candidate regions. The candidate
parallelograms of all matching pieces are recorded and verified in the further verification
step.

As the pigeonhole filter requires no counters and searches only non-overlapping q-
grams of the reads in the reference, it requires less processing time and a smaller index
on the expense of more verifications compared to the SWIFT filter.

104

SN NN

(a) SWIFTﬁlter

(b) Pigeonhole filter

Figure 6.3: Filters used in RazerS. The SWIFT filter (a) counts common q-grams in overlap-
ping parallelograms. Parallelograms with a sufficiently high number of com-
mon q-grams are reported as candidate regions. The pigeonhole filter (b) di-
vides the read into non-overlapping q-grams (seeds) and reports for each oc-
currence in the reference G a surrounding parallelogram as candidate region.

6.5 Lossy filtration and prediction of sensitivity

Both filters are fully sensitive if parameterized as described above, i.e. every occurrence
of a read within the tolerated edit or Hamming distance will be detected as a candidate
region and positively verified in the verification step. However, the filter parametriza-
tion depends on a number of worst cases where all errors are almost equidistantly dis-
tributed, which is small compared to all possible error distributions. Further, some se-
quencing technologies show an accumulation of sequencing errors towards the 3’ end
of the read (Sanger and Illumina) or clustered errors at SNPs (SOLiD) or homopolymer
runs (Roche/454), which lowers the worst-case probabilities compared to independent
and identically distributed errors. As an example, Figure 6.4a shows the positional er-
ror profile observed after mapping the reads of typical lllumina runs to their reference
genomes. A strong correlation between observed and predicted errors becomes appar-
ent when comparing Figure 6.4a with Figure 6.4b, which shows the average base-call
quality values.

In this section, we propose modifications that make both filters more stringent and
reduce the filtration time, the number of recorded candidate regions, and hence the over-
all mapping time. As the g-gram and pigeonhole lemmas are strict, our improvements can
only be achieved at the expense of sensitivity. To obtain control over the loss of a filter, we
additionally devise methods to compute the sensitivity of both filters that are in general
applicable to any filter based on g-gram counting or the pigeonhole principle.

The sensitivity of a filter is the probability that a randomly chosen true match (r, g)
is detected by the filter as a match candidate. Existing sensitivity estimation approaches
assume errors to be generated by a Markov process [Herms and Rahmann, 2008] or are

105

= S. aureus == M. bovis B. pertussis ws B. subtilis 40

20
30

) A
v = O

0 25 50 7‘5 1;)0 0 25 50 75 100
Read position Read position
(a) average mismatch rate (%) (b) average base-call quality

Figure 6.4: Plots of average mismatch ratio (a) and base-call quality (b) along the cycles of
typical Illumina runs. Plots by Nakamura et al. [2011].

limited to uniform error distribution [Lietal, 2003]. Our methods efficiently estimate the
filtration sensitivity under any position-dependent error distribution, e.g. as observed in
Sanger or Illumina sequencing technologies [Dohm et al, 2008; Nakamura et al,, 2011].

We consider positional error probabilities p¥, i.e. the probability that in a random
match of a read there is a mismatch at nucleotide position i. As errors we consider base
miscalls and SNPs, and before mapping we compute an average error profile over all
reads based on their base-call quality values and a user-specific mutation rate. For an
average Phred quality [Ewing and Green, 1998] value q; at position i in the reads, the
base-miscall probability y; can be computed as follows:

¥ = 107, (6.1)

With a given mutation rate u, we compute the probability p} to observe a mismatch
at position i as:

pi=1-Q1-x) A-mw. (6.2)

6.5.1 Sensitivity calculation of g-gram counting filters

A (g, t)-counting filter is a filtering algorithm that detects any pair (r, g) for which a tran-
script T from r to g exists that contains at least t g-matches. In this section, we devise
DP algorithms that efficiently compute the sensitivity of any (g, t)-counting filter and, es-
pecially, the SWIFT filter used in RazerS. Knowing the filtration sensitivity enables us to
increase q or t and reduce random hits while guaranteeing a required minimal sensitiv-

ity.

Hamming distance sensitivity. We first consider the read mapping problem for reads
of length m and matches with a Hamming distance of at most k. To determine a lower
bound for the sensitivity of a (g, t)-counting filter we could enumerate all Hamming tran-
scripts with up to k replacements and sum up the occurrence probabilities of those tran-

106

scripts having at least t substrings M?. However, as there are Z?:o (") different tran-
scripts, a full enumeration takes Q((%)k) time and is not feasible for large reads or high
error rates, e.g. of length m = 200 with k = 20 errors. We have developed a dynamic
programming approach which is significantly faster by using a recurrence similar to the
threshold calculation in [Burkhardt and Karkkainen, 2003].

Given a position-dependent error distribution p?. Then the occurrence probability
of a Hamming transcript T over the alphabet ® = {M, R} is the product of the individual
occurrence probabilities of transcript characters p(T) =]_[ll.ilo_ ! piT[i], with p!! = 1 — pk,
We calculate the sensitivities for matches with e errors for each e < k separately. Let
S(m, e, t) be the sum of occurrence probabilities of transcripts of length m, having e er-
rors, and at least t g-matches. The sensitivity of a (g, t)-counting filter to detect e-error
matches is at least:

S(m, e, t)

P(T contains > t g-matches || ll; = e) = To==s -

(6.3)
We will see how to calculate S(m, e, t) using a DP algorithm. Let p(T,j) = [, " pit)
be the occurrence probability of sub-transcript T to occur after j letters of a read. We
define R(i, e, t, T,) the sum of occurrence probabilities of transcripts T; € ®', s.t. T, has
e errors and the concatenation T, T, contains at least t substrings M?. By definition of S,
the following holds:

Stme,t)=) R(m—g.e~|Tllet.T) - p(T,m -). (6.4)

TEDY,||T|[g<e

The sum goes over all transcript ends T of length g with at most e errors. The right fac-
tor is the probability of T occurring at the end of a random transcript of length m. The
left factor is the occurrence probability sum over all transcript beginnings, s.t. the con-
catenation of beginning and end is a transcript of length m with e errors, and at least t
g-matches. With the following lemma a DP algorithm can be devised to determine R and
therefore the sensitivities S(m, e, t) foralle = 0, ..., kand t = 1, ..., t ., iInO(M k-t .- 29)
time.

Lemma 6.2. Leti,q € N; e,t € Z; T € {M,R}%. R can be calculated using the following
recurrence:

_ 1, ife=0,t<48(T)
R(0,e,t,T) = { 0 else, (6.5)
R(i,e,t,T) = p, - R({i—1,e ,t—&(T),shift(MT)) (6.6)
+ pi,-R(i—1,e—1,t— &(T),shift(R,T)),
with
shift(x,T) = xT[0.|T|—1), (6.7)
(1, fT=M
o) = { 0, else. (6:8)

Proof. See Appendix A.2. n

107

Extension to gapped shapes. Givenashape Q = {i;, i3, ..., i, } and a Hamming transcript
T, we call the gapped g-gram T[i + i,]T[i + i,] ... T[i + i;] = M a Q-match at position
i. A (Q,t)-filter is an algorithm that detects any pair (r, g) for which a transcript T from
r to g with at least t Q-matches exists. To extend the sensitivity calculation to gapped
shapes Q, the transcript T in Lemma 6.2 must be resized to cover the whole shape and
the matching criterion in §(T) must be adapted. This can be done by replacing q in (6.4)
by span(Q) and §(T) in (6.5) and (6.6) by:

1, if T[iy]T[iy] ... T[ig] = M©

6(T) = { 0, else. (69)

For two strings of length span(Q) with the Hamming transcript T € ®sP3(@, §(T) re-
turns 1 iff they share their sole Q-gram. A lemma similar to Lemma 6.2 can be proven
analogously.

Edit distance sensitivity. We now consider the read mapping problem under edit dis-
tance and propose a DP algorithm that computes the sensitivity of a g-gram filter to detect
a randomly chosen true match (r, g) with edit distance d(r, g) < k as a potential match.
Again, we consider all reads r € R to be of equal length m and reduce randomly chosen
true matches (7, g) to randomly chosen edit transcripts from r to g with ® = {M,R,D, I}.
We therefore assume a given error distribution that associates each nucleotide position
[in a read with positional error probabilities p%, p?, p;, where p} and p? are the proba-
bilities that the nucleotide r[i] is replaced or deleted, and p; the probability that a single
nucleotide is inserted after the nucleotide r[i] in g. For any transcript T from read to
genome we define ||T||r = | {i | T[i] € {M,R,D}}|, the number of read characters affected
by T. Finally, we assume the following occurrence probability of an edit transcript T

IT1-1

p(T) = Pﬂl[]o..i)uw (6.10)

i=0

with p!' = 1 —p? —p? —p]. We define the set ®(i) = {T | T € ®*, ||T||r = i} of transcripts
from reads of length i. In the following, we omit to enumerate transcripts beginning or
ending with I, as these transcripts can always be shortened resulting in a match with less
errors. Similar to (6.4) the occurrence probability sum S(m, e, t) of edit transcripts from
reads of length m, with e errors, and at least t substrings M? can be written as:

Stme,)=) R@m—qe=|Tllpt.T)-p(T,m—q), (6.11)

TeED(q), |IT||g<e,
T[|T|-1]#1

where R(i, e, t, T) is the occurrence probability sum of transcripts T, € ®(i) with e er-
rors, s.t. T,[1] # I and T, T, contains at least t substrings M?. p(T,j) = I—[ll.ilo_1 pﬁ;l[]oni)”ﬁj

is the occurrence probability of sub-transcript T to occur after j letters of a read.

108

Lemma 6.3. Lete,i,q € N; t € Z; T € ®(q). R can be calculated using the following
recurrence:

1, ife=0,t<6(T), T[0]#1I

R(0,e,t,T) { 0. else (6.12)
R(i,-1,t,T) = 0, (6.13)
R(i,e,t,T) = p,-R(i—1,e ,t—&(T),shift(M,T)) (6.14)

+ pi,-R(Gi—1,e—1,t—&(T),shift(R,T))

+ pY,-R(Gi—1,e—1,t— &(T),shift(D,T))

+ pi, Rl ,e—1,t JIT),

with
shift(x,T) = xT[0.max{i € [0.|T|—1)|T[i] # I}, (6.15)
1, ifT contains M4

8T = { o else (6.16)
Proof. See Appendix A.2. n

Accordingly, the sensitivities S(m, e, t) foralle = 0,...,kand t = 1, ..., t,,, can be
determined in O(m - k - t,,, - 47%%) time.

Algorithm 6.1: §(T') for gapped shapes
input : transcript T, shape Q
output :0,if T destroys Q-gram; 1, else
r<0,g<0
j < min{i | T[i] # I}
fori < jto|T| —1do
if T[i] # D then
gegtl
if T[i] # I then
if r € Q and (T[i] # Morr # g) then
return 0
rer+1

return 1

Extension to gapped shapes. Although “don’t care” positions of gapped shapes are not
immune to indels, we extend the edit distance sensitivity calculation to gapped shapes for
the sake of completeness. To calculate R and S for a gapped shape Q, every q in (6.11) and
Lemma 6.3 must be replaced by span(Q). Algorithm 6.1 can be used to detect whether a
common Q-gram is retained or destroyed by a transcript affecting span(Q) read charac-
ters.

109

6.5.2 Sensitivity calculation of pigeonhole filters

Alossless pigeonhole filter divides a read into at least k + 1 fragments and uses them as
seeds to detect all k-error matches. As fragments we use the first k + 1 non-overlapping
q-grams of the reads where q is chosen as large as possible. In expectation, every read
g-gram has n/49 occurrences in a genome of length n. To reduce the number of random
candidates and to reduce the overall running time, we increase q and allow the seeds to
overlap, see Figure 6.5. However, with overlapping seeds some matches will be missed
by the filter, e.g. if every odd seed overlap contains an error.

With a (g, A)-seed filter we denote a filter that uses all g-grams starting at multi-
ples of A in the read as seeds, with q/2 < A < q, such that adjacent g-grams overlap
by g — A characters. To compute the sensitivity of such a filter, we consider Hamming
transcripts between a read of length m and all of its true matches. Again, the sensitivity
for matches with e = 0,1, ..., k errors is the sum of occurrence probabilities of e-error
transcripts that are detected by the filter divided by the probability that an e-error tran-
script occurs. Instead of enumerating all possible e-error Hamming transcripts we devise
a DP algorithm that virtually splits the transcript into segments at g-gram boundaries
A q,2MA+ q, ..., (k + 1)A kA + q and denote the first 2(k + 1) segments from left to
right as xq, ¥, X1, V1 -, X, Y, See Figure 6.6. Our approach is analogously applicable to
edit distance as insertions or deletions behave like mismatches in relation to destroyed
seeds.

We first compute the probability P(|| T[i.Dlg = e) thatarandom Hamming transcript
T contains e errors in the segment T'[i..j) given positional error probabilities p} and their

T=[u[u[M[M[u[M[M[R]M[M]M]M][M]M]M][M[R]M]M][M]M]M]M[R]M]M]HM]

@A)
6e) []
7,6) | | | X |
[X | | X]
8,6) | X| | X |
[X | | X |

Figure 6.5: Examples for (q,A)-seed filters. The upper is lossless for up to 3 mismatches
and based on the pigeonhole principle. The second uses 7-grams that overlap
by one position and still recognizes the match, whereas the third uses 8-grams
and misses the match.

110

Figure 6.6: A (g, A)-seed filter, with ¢ = 8 and A = 6, for searching matches with up to
k = 3 errors (seed i consists of segments y;_,, x;, and y;, except fori = 0).

complementary probabilities p!! = 1 — p¥:
.. 1, ife=0
P(IT[DNs =€) = { N (6.17)
pY, ife=0
P(ITLi.i+ D]l =€) = { p} ife=1 (6.18)
0, else,
P(IT[iNlz =€) = iy P(IT[id = Dlle = e) (6.19)

+ Py P(IIT[i.j— Dl =e—1).

Let L(i, e, y) be the probability of the event that the first i + 1 seeds contain overall e
errors, each atleast one error, and y; contains y errors. Let X; and Y; be random variables
for the number of errors in the segments x; and y;, then L can recursively be computed
as follows:

0, fore=0

LOey) = { P(X,=e—y)-P(Y,=1y), else, (6.20)
e s-y

L(iey) = Z Z Li-1le—-s+y,y) - PX;=s—y—-y)-P(Y;=y). (6.21)
s=1y'=0

The probability that all seeds are destroyed with overall e errors is:
e e
Lay(e) = Z z L(k,e —x,y) - P(IT[kA + q .. n)|lg = x), (6.22)

y=0 x=0

and thus the sensitivity of the (g, A)-seed filter for matches with at most k errors is:

Lai(e)

k
S(g,Ak) =1— _—
S ATl = ©)

e=0

(6.23)

6.5.3 Choosing filtration parameters

Now that we are able to compute the sensitivity of a filter parametrization, we want
to automatically choose filtration parameters, such that (1) a certain sensitivity level is
achieved and (2) the running time of the mapping procedure is minimized.

111

SWIFT filter. Due to the huge parameter space of thresholds t and possible gapped
shapes Q, we have precomputed the sensitivities using a selection of different shapes and
thresholds for all read lengths from 24 to 100 bp and error rates up to 10 %. As an error
distribution we assume a typical Illumina error profile [Dohm et al., 2008]. Additionally,
all parameter combinations were used to run RazerS on simulated data, yielding a rough
estimate for the corresponding relative mapping times. Parameters for reads longer than
100 bp are extrapolated from parameters of precomputed shorter reads with the same
error rate. Given a user-defined minimum sensitivity, suitable filtration parameters are
chosen from the precomputed tables such that the anticipated running time is minimized.

If preferred, the parameter tables can be precomputed based on a machine-specific
error distribution and user-defined shapes. This error distribution can be obtained in
two ways. (1) Quality based probabilities: transform the average base-call quality value
for each position into a probability value. (2) A posteriori probabilities: map a small sub-
set of reads and determine the position-dependent error frequency. Given an error dis-
tribution the parameters for reads of length 50 bp can, for instance, be calculated within
10 minutes.

Pigeonhole filter. In contrast to the SWIFT filter, the small parameter space of the pi-
geonhole filter allows for the filter to be adjusted based on the quality-based probabilities
of the read set at hand. Before starting the mapping, RazerS estimates the sensitivities of
different filter settings and maximizes the seed length g as it has the greatest influence
on the overall running time. Beginning with the lossless settingg = A = [m/(k + 1)], it
step-wise increases q as long as the estimated sensitivity is higher than required, q does
not exceed the maximal seed length of 31, and not more than two seeds overlap (g < 24).
The corresponding step sizes A = |(m — q)/kJ are chosen such that each read contains
k + 1 overlapping seeds.

6.6 Verification

The result of the filtration step is a set of candidate regions and corresponding reads.
A candidate region is a parallelogram in the dot plot that might contain the alighment
trace of a match. Depending on the considered string metric it is verified by one of the
approximate matching algorithms explained in the following.

6.6.1 Hamming distance verification

In Hamming mode, a match covers solely one dot plot diagonal. Hence, the candidate
parallelogram can be verified by scanning each diagonal while counting the number of
mismatches between read and reference sequence. A diagonal can be skipped as soon as
the counter exceeds the number of tolerated errors. Otherwise, a match has been found.

112

6.6.2 Edit distance verification

To verify an edit distance match candidate, the reference substring covered by the candi-
date region could be searched with one of the approximate pattern matching algorithms
explained in Section 2.5. However, none of these algorithms take account of the paral-
lelogramic shape of the candidate region but instead verify the whole surrounding dot
plot rectangle. To take advantage of knowing the shape of the candidate region, we im-
plemented a banded version of Myers’ [1999] bit-vector algorithm as it was proposed in
[Hyyro, 2003] with some improvements.

Myers’ bit-vector algorithm. The original algorithm by Myers can be used for approx-
imate pattern matching in a dot plot rectangle. For each position in the reference, it de-
termines the minimal number of errors a match ending there. The underlying idea is
the same as in the DP algorithm for approximate pattern matching by Sellers [1980], but
the implementation is much more efficient as it encodes a whole DP column in two bit-
vectors and computes the adjacent column in a constant number of 12 logical and 3 arith-
metical operations. For reads up to length 64 bp, CPU registers can directly be used. For
longer reads, bit-vectors and operations must be emulated using multiple words where
only words affecting a possible match need to be updated [Ukkonen, 1985]. However, the
additional processing overhead results in a performance drop for reads of length 65 bp
and longer.

Banded variant by Hyyré. Hyyro [2003] proposed a variant of Myers’ algorithm that
only computes DP cells that are covered by a parallelogram. Hence, only the columns of
the parallelogram need to be encoded by bit-vectors, which makes it applicable to par-
allelograms with the width of up to 63 cells without the need for bit-vector emulation.
However, the banded variant as proposed in [Hyyrd, 2003] still requires to precompute
bitmasks of |Z| X m bits for each read of length m and does not support clipped parallel-
ograms. Clipping of parallelograms is, however, necessary to find the begin position of
a match in the reference and to verify parallelograms that cross the beginning or end of
the reference sequence.

Our banded algorithm. We devise a banded variant of Myers’ algorithm that supports
clipped parallelograms, requires no preprocessing information at all, and uses online-
computed pattern bitmasks of |2| Xw instead of || X m bits. Before going into algorithmic
details, we sketch the outline of the edit distance verification. In contrast to Hamming dis-
tance verification, where the difference between begin and end position of every match
equals the read length, Myers’ algorithm reports only the ends of matches. More pre-
cisely, it determines the minimal number of errors for a fixed end position and a free
begin position. To determine a corresponding begin position we search the read back-
wards with a fixed end position. As edit distance scores mismatches and indels equally,
there can be multiple best match beginnings. We choose the largest best match to option-
ally shrink it later using an alignment algorithm for affine gap costs [Gotoh, 1982] where

113

initial case

recursive case

(a) approximate matching (b) edit distance

Figure 6.7: Applications of the banded alignment algorithm are: (a) approximate pattern
matching in a band of the DP matrix, e.g. a candidate region, or (b) edit distance
computation between two sequences tolerating at most k errors.

gaps are penalized slightly more than mismatches and gap opening costs are higher than
extension costs.

In the following, we propose the algorithmic details of our banded algorithm. It is
not only applicable to approximate pattern matching in (clipped) parallelograms (Fig-
ure 6.7a) but can also be used for edit distance computation (Figure 6.7b) with a small
modification. For a given text t of length n and a given pattern p of length m we consider
the DP matrix which has m + 1 rows and n 4+ 1 columns. Let a band of w consecutive
diagonals be given where the left-most diagonal is the main diagonal shifted by ¢ diag-
onals to the left, see Figure 6.8a. The algorithm diagonally slides a column vector D of
w + 1 cells over the band. Analogously to Myers’ algorithm, D is encoded by delta bit-
vectors VP and VN of size w and a variable errors that tracks the cell values of the lower
band boundary (dark cells in Figure 6.8a). Each sliding step consists of a horizontal and
a vertical step. In the horizontal step the delta vectors DO, HP and HN are computed as
in Myers’ algorithm, see Figure 6.8c and lines 12-15 in Algorithm 6.2. From these delta
vectors VP and VN are deduced and shifted by 1 bit to the right in the vertical step, see
Figure 6.8d and lines 16-18. In contrast to Myers’ and Hyrrd’s algorithms, we shift and
update the pattern bitmasks online. In this way, we save a time consuming preprocessing
(shaded areas in Figure 6.9) and reduce the required memory from |Z| X m bits per read
to overall |X| X w bits.

In the beginning, D covers the intersection of the first column and all band diagonals
plus the diagonal left of the band as shown Figure 6.8b. As D initially represents cells
beyond the DP matrix, they have to be initialized such that they have no unintended in-
fluence on the cells within the DP matrix and such that the first DP row contains zero
values for approximate pattern matching or increasing values for the edit distance cal-
culation. Setting the pattern bitmasks to zero for cells beyond the DP matrix, VN = 0%
and VP = 1Y for approximate pattern matching or VP = 1¢*10%¥~¢"1 for edit distance
results in the desired initialization patterns depicted in Figure 6.8. The following lemma
guarantees that non-band cells are not used in the DP recurrence, and as D0 represents

114

c - - -
w+ 1< - -
p 4
w
(a) band parameters (b) initial state (c) compute (d) shift
nextvector vector
[7] [o]
-6|-6 01
5|55 ol1 2
4|-4i-4ia ofl1:2 3
-3]-3i-3i-3:-3 0|1:2:3:4
-2 |SZEEEE R 0[1:2:3:4:5
-1]-1:-1:-1:-1 -1 0l1:2:3:4:5:6
0(0:0:0:0:0:0:0 0[1:2:3:4:5:6:7
1 1
2 2
3] 3]
4 4
(e) approximate matching (f) edit distance

Figure 6.8: Band parameters (a). A band is uniquely defined by the number of consecutive
diagonals w and the row c that intersects the left-most diagonal and the first
column. The initial state (b) and the recursion steps (c,d) are shown on the top
right. The column vector initializations for approximate pattern matching (e)
and edit distance calculation (f) are shown below.

the diagonal delta of all w diagonals, the algorithm computes exactly the band depicted
in Figure 6.8a.

Lemma 6.4. Cells left and right of the band are not used for the computation of band cells.

Proof. Letk € Nwith k < min(m —¢,n) andi = ¢+ k and j = k then C;;_, is a cell on
the diagonal left of the band and C;; is in the left-most band diagonal. After shifting DO
by 1 bit to the right in line 16 of Algorithm 6.2 bit w in X is 0 and thus bit w in VN will
be 0 after the assignment in line 17. Therefore holds C;_; ;_; < C;;_; and C; ;_; have no
influence on the minimum stored in C; ;. The cells in the diagonal right (or above) of the
band have no influence as bit 0 in D0 depends only on the comparison of pattern and text
characters and the vertical delta DO[0] & (p[i] = t[j]) A VN][O]. The horizontal deltas
between band and non-band cells have no influence on DO[0] and thus no influence on
band cells. n

115

Algorithm 6.2: BANDEDMYERS(¢, p, k, w, ¢)
input (textt € X7, pattern p € X, errors k and band parameters w, ¢
output :text end positions of matches with up to k errors

foreach x € X do // initialize pattern bitmasks
B[x] « 0%

forj < Otoc—1do
Blplj1] < Blplj)] |01 10v-c

VP « 1Y; VN « 0% // initialize vertical delta vectors
errors « ¢

forpos < 0ton—1do

foreach x € ¥ do // shift and update pattern bitmasks
B[x] « B[x] » 1

if pos + ¢ < m then
B[p[pos + c]| « B[p[pos + c]] | 10v*

X « B[t[pos]] | VN // compute horizontal delta vectors
DO« ((VP+(X & VP))AVP) | X

HN <« VP & DO

HP « VN | ~ (VP | DO)

X<D0O>»1 // compute and shift vertical delta vectors
VN « X & HP

VP < HN| ~ (X | HP)

if pos < m — c then // scoring and output
errors < errors + 1 — ((DO > w-1)) & 1)
else
s= (w—2)—(pos—(m—c+1))
errors < errors + ((HP »>s) & 1)
errors < errors — ((HN »>s5) & 1)
if pos > m — c and errors < k then
report occurrence ending at pos

Before the pattern bitmasks can be used to compute the next D vector, they need to
be shifted by 1 bit to the right and for pos + ¢ < m in one bitmask bit w must be set to
represent the next pattern character p[pos + c]. This is done in line 11. Eventually, errors
must be tracked properly. As long as the second last cell of D is within the DP matrix
the last bit of DO is used to track errors down the left-most band diagonal in line 20.
Otherwise, the horizontal deltas of the last matrix row are used in lines 23 and 24 to
update errors.

To speed up the verification of false positive match candidates, we use the property
that cell values along a DP diagonal are monotonically increasing from top to bottom and

116

errors can only decrease along the last matrix row. The last row contains n + ¢ —m band
cells and thus the search can be stopped if errors > k+n+c—m.

We compared our algorithm with an unbanded implementation of Myers’ [1999] al-
gorithm combined with the optimization proposed by Ukkonen [1985], and banded and
unbanded implementations of Sellers [1980] algorithm. The average verification times
per pattern character on DNA and ASCII alphabets are shown in Figure 6.9. Hyyrd's al-
gorithm could not be compared as an implementation was not publicly available.

random DNA verifications

©
(=} 0.73 0.96 1.2 2.38
Myers banded
= | Myers
2 Sellers banded
23 Sellers
()
£
= n
S
I
Q
a n
Q
=
8
) n
Q — % Yz
o
5 10 25 36 50 75 100 150 200 250 500
read length (bp)
random text verifications
[{e)
<2 1.16
Myers banded
= @ | Myers
o
£ Sellers banded
4 Sellers
T <
% ©
E
= ™
S o7
I
3 o
g ©
= Z
R 7
s 24 7
SIS 7 B
Zz 7
7 5 4
g _ Z V % % % % % % VZ Z w
5 10 25 36 50 75 100 150 200 250 500

read length (bp)

Figure 6.9: Average verification time per read character required to verify a genomic sub-
string of 110 % the read length. We compared banded and unbanded vari-
ants of the algorithms by Myers [1999]; Sellers [1980] on different alphabets
|2| € {5,256} and read lengths. The banded algorithms use a band width of
10 % the read length. The gray bars are split into preprocessing (shaded) and
search (unshaded) times of Myers’ algorithm.

117

Algorithm 6.3: BANDEDMYERS_LARGEALPHABET(t, p, k, w, €)
input (textt € X7, pattern p € X, errors k and band parameters w, ¢
output :text end positions of matches with up to k errors

foreach x € X do
B[x] « 0%
S[x] < 0

forj « max(c—w,0)toc—1do
B[pljl] < B[plj1] | 0°77/~* 10"+

forpos < 0ton —1do

if pos + ¢ < mthen
B[p[pos + c]] = (B[p[pos + c]] > (pos — S[p[pos + c]])) | 10wt
S[p[pos + c]] = pos

B = B[t[pos]] > (pos — S[tpos])

X< B|VN

Optimization for large alphabets. As shifting all pattern bitmasks in every sliding step
takes O(|Z|n) time®, Algorithm 6.2 should only be used for small alphabets, e.g. the DNA
alphabet. For large alphabets, a small adaptation shown in Algorithm 6.3 can be made
that results in an overall running time of O(m + n + |Z|)*. In every step only one pat-
tern bitmask, i.e. B[p [pos + c]], is required to compute D0 and in only one bitmask, i.e.
B[t[pos]], bit w is set. We can omit to shift all other bitmasks by recording the number
of yet to be conducted bit shifts in S and perfom the omitted shifts at once before reading
(line 11) or updating (line 9) a pattern bitmask.

6.7 Paired-end mapping

In the paired-end sequencing protocol, DNA is fractionated into double-stranded frag-
ments having lengths within a certain interval, e.g. 200-500 bp in the Illumnia protocol.
Each fragment is sequenced from both 5’-ends and yields a pair of two reads ([,r) €
X" X X7, see Figure 6.10. To determine the genomic origin of a read pair ([, r), we consider
the two sets of all matches of [and r and call a pair of matches from both sets valid if the
following holds:

1. landr align with up to k errors each to opposite strands of the reference sequence.

2. They are aligned in correct orientation, i.e. the 3’-ends of both matches point to-
ward each other.

! assuming that w is constant

118

1

paired-end reads
T2

1

chromosome 1

chromosome 2

5 TZ

Figure 6.10: Paired-end reads (l;,r;) are sequenced from both 5’-ends of double-stranded
DNA fragments. As in most sequencing technologies the originating strand of
a mate is unknown, pair matches must be searched on both strands.

3. Thelibrary size is retained, i.e. given a mean library size y and a tolerated deviation
6, the genomic distance d of both 5’ends is in the interval d € [u — §..u + 6].

In most paired-end protocols the originating strand of a read is unknown. Hence, there
are two possible orientations a valid pair match can have, see Figure 6.10.

We extended RazersS to search all valid pair matches. Given a set of paired-end reads
R c X* X X7, it scans the reference genome from left to right in parallel with two filters
having the distance of the minimal tolerated distance p—§. Each filter searches for match
candidates of one of the two reads of all pairs. In order to be able to scan the same strand
with the two filters, we reverse-complement the right reads first. Additionally, we record
in a queue all preceding matches of the left filter within a distance of 2. Only if the right
filter finds a match candidate whose mate match candidate is stored in the queue both
candidates are verified. This guarantees that verifications are only done if both candi-
dates are within the correct distance. If for a right read match multiple enqueued left
read matches exist, we select matches with a minimal number of errors and among these
the one with a minimal deviation from the library size p.

As an optimization we use a lookup table to determine in constant time whether at
least one match candidate of a left read is contained in the queue and link all candidates
of the same read. Each candidate is verified one time at most and negatively verified
candidates are removed from the linked list.

6.8 Match processing

The overlapping parallelograms of the SWIFT filter or the multiple seeds the pigeon-
hole filter may find in a single read match, result in multiple identical or nearly identical
matches found in the verification step. To filter these duplicates, we regularly search for
matches of the same read that have an identical begin or end position and keep only those
with a minimal number of errors. Additionally we use a heuristic in the pigeonhole filter,
that for multiple seeds on the same diagonal only one candidate region is generated.

If the user specifies a maximal number M of matches per read, we sort all matches
ascendingly by the number of errors and remove all but the first M matches of each read.

119

For a read, the number of errors e in the M-th match is used to dynamically adjust the
filter and verifier in order to search only for matches with less than e errors. If e equals
0 the read can be disabled completely.

There is another general ambiguity inherent to alignments with gaps that is related
to the question which matches are different. Due to indels, a match with e errors, where
e < k, has adjacent matches with at moste + 1,e + 2, ..., k errors. An intuitive approach
would be to output only matches with a local minimum of errors. However there can
be multiple local minima even separated by matches with more than k errors that share
the same alignment trace. In [Holtgrewe et al, 2011] we approach this problem more
formally and require that two distinct matches have disjunctive optimal alignment traces
and are separated by optimal alignments with more than k errors. We implemented these
criteria in the verification step such that RazerS outputs all distinct matches. For more
details, we refer to [Holtgrewe et al., 2011].

6.9 Parallelization

We parallelized RazerS using OpenMP [Chandra et al., 2001], a C++ language extension
for shared memory parallel programming. To map reads in parallel with a fixed number
of t threads, the set of reads is divided into t subsets of equal size which are statically
assigned one-to-one to each thread. Each thread uses its own g-gram index and filter
to search candidate matches of the read subset. We use open addressing indices (Sec-
tion 5.4) which in total require O(|R|) memory independent of the number of threads.

The parallel mapping of reads is performed window-wise in alternating phases of
filtration and verification. We therefore partition both strands of the reference sequences
into windows of equal length W, e.g. W = 500,000 bp. The threads simultaneously start
filtering the first window of one strand and collect match candidates. Each thread that
completed the filtration of a window divides the set of found candidates into packages of
configured size, e.g. 100 candidates, or larger if the number of packages would exceed a
maximal number, e.g. 100 packages. The packages are appended to a global queue (green
boxes in Figure 6.11).

To realize a dynamic load-balancing, we allow threads that are behind others with
filtration to immediately proceed with the next window. All other (leading) threads ver-
ify enqueued packages until the queue is empty. Found matches (blue boxes in Fig-
ure 6.11) are returned to the thread that enqueued the package, which filters duplicates
and improves filtration parameters for reads with a sufficient number of matches (see
Section 6.8). To save memory, the threads regularly append their found matches to a
global external memory array of matches.

6.10 Experimental results

To evaluate the performance of RazerS, we conducted a number of experiments on sim-
ulated and real-world data and compared it with the best-mappers Bowtie 2, BWA, and

120

collect window mask on compaction
matches writeback at the end

)

filtration verification “é/\ /-\
S\yw '8 s

e\ He -

Figure 6.11: Parallelization in RazerS. The set of reads is equally distributed over the set of
threads T;. Each thread filters the reference window-wise and adds verifica-
tion packages (green) to a queue. Before processing the next window leading
threads verify packages from the queue with dynamic load balancing. Dupli-
cate matches are masked by each thread and the remaining matches (blue)
are appended to a global array of matches.

Soap 2 as well as the all-mappers Hobbes, mrFAST, and SHRiMP 2. For running time com-
parison, we ran the tools with 12 threads and used local disks for /0. We used default pa-
rameters, except where stated otherwise. Read mappers that accept a maximal number
of errors (mrFAST, Hobbes, Soap 2) were configured with the same error rate as RazersS.
For a fair comparison with best-mappers, we configured RazerS in a second variant to
also output one best match per read. See Section A.3 for the exact parametrization.

The involved real-world read sets are published in the European Nucleotide Archive
[Leinonen et al., 2011] and are given by their SRA/ENA id. As references we used whole
genomes of E. coli (NCBI NC_000913.2), C. elegans (WormBase WS195), D. melanogaster
(FlyBase release 5.42), and human (GRCh37.p2). The mapping times were measured on
a cluster of nodes with 72 GB RAM and 2 Intel Xeon X5650 processors (each with 6 cores)
per node running Linux 3.2.0.

6.10.1 Comparing the SWIFT and pigeonhole filters

RazerS provides support for two string metrics (Hamming and edit distance) and two
filter variants (SWIFT and pigeonhole filter). To investigate which filter performs best
on which kind of input and metric, we conducted an experimental evaluation of the time
required to map different real datasets for varying mapping settings.

For this reason, we compared the mapping times of both filters and ran RazerS with
100 % and 99 % sensitivity for reads of lengths 30, 50, 70, and 100 bp for the references
of E. colj, C. elegans, and chr. 2 of human with error rates between 0 and 10 % using Ham-
ming and edit distance. To reduce influences from the operating system we measured the
running times excluding /0.

Figure 6.12 shows the running time ratios between mapping with the pigeonhole and
SWIFT filter, where blue cells indicate a faster pigeonhole filter. We observe that for edit
distance, the pigeonhole filter always leads to shorter running times than the SWIFT fil-
ter. For Hamming distance, the pigeonhole filter is well suited for low error rates (up to

121

reference read length read set ID original length
E. coli 100 ERR022075 100
E. coli 70 ERR022075 100
E. coli 50 ERR022075 100
E. coli 30 ERR032371 36
C. elegans 100 SRR065390 100
C. elegans 70 SRR065390 100
C. elegans 50 SRR065390 100
C. elegans 30 SRR107574 34
human chr. 2 100 ERR012100 101
human chr. 2 70 SRR029194 88
human chr. 2 50 SRR029194 88
human chr. 2 30 ERR003244 37

Table 6.2: This table gives information on which datasets were used when creating the ex-
perimental maps (Figure 6.12). If original length and read length m are not
equal then the first m bases were used.

6 %), while the SWIFT filter yields better mapping times for higher error rates. Astonish-
ingly, the factors between the two methods range from 1:32 to 32:1. The differences in
mapping times can be explained by the different characteristics of both filters. Compared
to SWIFT, the simpler but less specific pigeonhole filter requires no counting and hence
less processing overhead which compensates the increased number of verifications for
low error rates. With an increase in error rate the specificity of both filters deteriorates
equally for edit distance. For Hamming distance, gapped shapes compensate this degra-
dation and make the SWIFT filter much more specific than the pigeonhole filter which is
based on ungapped g-grams.

6.10.2 Analyzing the sensitivity estimation accuracy

We verify the correctness of both filtration sensitivity estimations by assessing the dis-
crepancy between estimated and empirical sensitivity for the following two scenarios,
where the first one serves as a sanity check:

(1) Simulated data. We simulate DNA sequence reads using position-dependent er-
ror probabilities and group them according to the number of implanted errors. After
mapping the reads to the reference sequence we define the empirical sensitivity for each
group as the proportion of reads that could be mapped back to their genomic origin. Us-
ing the same error distribution as for simulation, we compute the estimated sensitivity
as described in Section 6.5.1.

(2) Real data. We map the set of reads once with 100 % sensitivity and keep as ref-
erence matches only those reads that map uniquely. Again, we group them according to
the number of errors and determine the empirical sensitivity as for simulated data. The
expected sensitivity is computed using the a posteriori probabilities (Section 6.5.3).

122

E. coli, edit, 100%

1 1 1 1

04
14
P
3
i)
S 54
S 6
9]
74
8 -
94
10
T T T T
30 50 70 100
read length (bp)
C. elegans, edit, 100%
RN S N E— —
o4
14
P
3
g 44
2
S 5
2 6
]
7
8
9
10
T T T T
30 50 70 100
read length (bp)
H. sapiens, edit, 100%
g
2
[
S
5

T T T T
30 50 70 100

read length (bp)

Figure 6.12: Experimental map for reference sequences of E. coli, C. elegans,

error rate (%)

error rate (%)

error rate (%)

E. coli, edit, 99%

1 1 1 1

10

T T T T

30 50 70 100
read length (bp)

C. elegans, edit, 99%

R S I I E—

° ||

10 1

T T T T
30 50 70 100

read length (bp)

H. sapiens, edit, 99%

R S I I —

10 1 -

T T T T
30 50 70 100

read length (bp)

error rate (%)

C. elegans, Hamming, 100%

error rate (%)

H. sapiens, Hamming, 100%

error rate (%)

E. coli, Hamming, 100%

1 1 1 1

T T T T
30 50 70 100

read length (bp)

R I S E—

0
1
2
3
4

T T T T
30 50 70 100

read length (bp)

T T
70 100

read length (bp)

error rate (%)

error rate (%)

error rate (%)

E. coli, Hamming, 99%

1 1 1 1

T T
70 100

read length (bp)

1:32

1:16

32:1

PH:SWIFT

C. elegans, Hamming, 99%

R IS I I N
8 - L
9 L
10

T T T T
30 50 70 100

read length (bp)

1:32

1:16

32:1

PH:SWIFT

H. sapiens, Hamming, 99%

R I I W —

T T

70 100

T T
30 50

read length (bp)

1:32

1:16

32:1

PH:SWIFT

and chr. 2 of human.

For read sets from different organisms we compared the time between mapping with
the pigeonhole and SWIFT filter, while varying read length, string metric, error rate,
and sensitivity. Only the mapping time was measured to eliminate the variance of
the 1/0 time on the cluster as much as possible. RazerS was run with 12 threads.
The color of each cell indicates the ratio of the running time between the pigeonhole
and the SWIFT variant, where the pigeonhole variant was faster for blue cells. Ratios
less/greater than 1:32/32:1 are plotted as 1:32/32:1.

123

Hamming distance Hamming distance, simulated
S o S o
E « S o TN
— » —
i A , g
= B v o - v
g3 o iag EF LY
2 % [] v [
S g @ S o 9]
; 3 v © ; © ol ES
1] e A AR o © 17 S ¥ Lo ©
o R o 2 o o
= o | ¥ = = o | =
8% & g 8% g 3
5 5 g® & 7 g
s '8 &R -
o R
{ IS { £
o O lerror v 2errors | Q o O lerror v 2errors |
T T T T T 1 ! T T T T T 1 !
0 20 40 60 80 100 0 20 40 60 80 100
estimated loss rate (%) estimated loss rate (%)
edit distance edit distance, simulated
S _ <} S _ o
S « | P
— v —
w X v S
< 2 v 5 o9 N g
s °® v g3 &° o° g 3
@ S S5 o v S
© § o - S T 5
= Q4 (] = Q4 (3]
o © 9 b=t w © ¥ £
2 &t roT g & Lo ©
% o | o‘;" AGZ) (ZU o | # g
o ¥ gj © o ¥ v ©
= gv o) = \g o)
=N % L9 = =% g g =
€ o | T T g € o | ﬁgﬁg T g
O « ' © L N H ©
Lo ra L0
{ £ { £
o o leror v 2errors | Q o o lerror Vv 2errors | Q
T T T T T T ! T T T T T T !
0 20 40 60 80 100 0 20 40 60 80 100
estimated loss rate (%) estimated loss rate (%)

Figure 6.13: Comparison of estimated and empirical SWIFT filter loss rates (loss rate =
1 — sensitivity) varying weight q = 8, ..., 14 and threshold t = 1, ..., 20. The
dashed line reflects the mean of relative differences 1 — % of all
estimated loss rates below a varying level.

SWIFT filter

Using the two protocols, we first examined the SWIFT filter sensitivity for simulated
36 bp reads and for a subset of the 36 bp reads in SRR001815. We inspected both Ham-
ming as well as edit distance sensitivity and did the mapping for all ungapped shapes of
weight g where 8 < g < 14 and all thresholds t where 1 < t < 20.

As a measure of accuracy we use the relative difference between empirical and es-
timated loss rate. We observe a very good agreement for Hamming distance (see Fig-
ure 6.13). For expected loss rates between 0 and 10 % the mean relative difference for
simulated as well as real data is below 0.1 %. Considering edit distance, the expected loss
rates overestimate the empirical loss. Between 0 and 10 % of expected loss the mean rela-
tive difference is below 4 % for simulated and below 2.8 % for real data. For edit distance
the SWIFT parallelograms are broader and produce more random g-gram hits compared
to Hamming distance mapping where the parallelograms are single diagonals. This leads
to more matches than expected. The discrepancy for simulated data is slightly more pro-

124

D. melanogaster 75bp D. melanogaster 75bp, simulated

20
]

20
]
20

15
emprical loss rate (%)
10
L
D
mean relative difference (%)

15
L
%

10

emprical loss rate (%)
10
mean relative difference (%)

'
! .
L L
' '
fgﬁ o lerror 4 3errors ’& o lerror 4 3errors
o f
o J ﬁgv v 2errors & o d v 2errors

T T T
0 5 10 15 20 0 5 10 15 20
estimated loss rate (%) estimated loss rate (%)

-20

H. sapiens 100bp H. sapiens 100bp, simulated

20
]
20
20
]
DI>
2

15
L
¥
o
1

Dl ©
B
>
-10 0
mean relative difference (%)

emprical loss rate (%)
10
L

O lerror O 4errors
Vv 2errors © 5 errors Vv 2errors © 5 errors
A 3 errors A 3 errors

T T T T T T T T T T
0 5 10 15 20 0 5 10 15 20

estimated loss rate (%) estimated loss rate (%)

O lerror O 4errors

emprical loss rate (%)
10
L
;
0
mean relative difference (%)

-20
0
L

-20

Figure 6.14: Comparison of estimated and empirical pigeonhole filter loss rates varying
seed length q = 16, ..., 31 and the seed overlap q — A = 0, ..., 10. Analogously
to Figure 6.13, the dashed line reflects the mean of relative differences.

nounced. This can be explained by the observation that simulated matches are not nec-
essarily optimal, i.e. reads can be mapped with less errors than originally implanted (e.g.
an insertion next to a deletion will be aligned as one replacement). Most notably, in all
cases the empirical sensitivities are higher than expected, thereby yielding better map-
ping results than estimated.

Pigeonhole filter

Second, we repeated the two protocols for the pigeonhole filter for simulated and real
10 M fly reads of length 75bp (SRR060093) and 10 M human reads of length 100 bp
(ERR012100). Therefore, we mapped the read sets with edit distance and used a (g, A)-
seed filter while varying the g-gram length g = 16, ..., 31 and the g-gram overlapg— A =
0,...,10.

The results in Figure 6.14 show a high level of agreement for simulated reads with a
mean relative difference below 1 % for loss rates between 0 and 10 %. On real data the
predicted loss rates between 0 and 10 % show a mean relative difference of 3 % on the

125

fly and 14 % on the human read set. We explain this deviation by an observed correla-
tion of sequencing errors at adjacent positions towards the end of the read, whereas our
model assumes independence of errors. This error correlation has also been observed in
[Dohm et al., 2008] and may be the result of molecules which are out of phase for multiple
cycles in the sequencing process and lead to interferences with signals of adjacent bases.
However, this correlation shows no negative influence as in none of our experiments the
effective sensitivity was overestimated by our model.

6.10.3 Achieved speedup

To evaluate how much our implementation benefits from widely available multi-core ar-
chitectures, we mapped a relatively large dataset (10 M reads of set ERR012100) against
chr. 2 of the human genome. We ran RazerS with 1, 2, 4, and 8 threads (dynamic load
balancing). The results were compared with the trivial parallelization (static load bal-
ancing) of splitting the read set into t parts of equal size and running t separate RazerS
processes in parallel that use one thread each.

Both the runs with dynamic and static load balancing required about 89.5 min with
one thread. Mapping reads with dynamic load balancing scaled almost linearly with
speedups of 1.95, 3.95, and 7.46 for 2, 4, and 8 threads. Static load balancing scaled
worse: The speedups were 1.90, 3.63, and 6.61. With 8 threads we effectively gained
one more processor core with our dynamic balancing scheme compared to the static load
balancing.

6.10.4 Rabema benchmark results

Next, we used the Rabema benchmark [Holtgrewe et al., 2011] (v1.1) for a thorough eval-
uation and comparison of read mapping sensitivity. With Mason [Holtgrewe, 2010] we
simulated 100 k reads of length 100 bp from the whole human genome and distributed
sequencing errors like in a typical [llumina experiment (default settings). In the follow-
ing, we will denote RazerS in edit distance mode using the pigeonhole filter with a sensi-
tivity rate of x percent as R-x, e.g. R-100 for full sensitivity.

The benchmark contains the categories all, all-best, any-best, and recall and was per-
formed with a maximal error rate of 5 %. In the all-category all matches with up to 5 %
errors have to be found. In the categories any-best and all-best a mapper has to find for
each read any or all matches with minimal edit distance. The category recall requires a
mapper to find the original location of each read, which is a measure independent of the
used scoring model (edit-distance or quality-based). For each category and mapper the
Rabema benchmark determines the average fraction of found matches per read.

To compare the sensitivity fairly, we configured read mappers as best-mappers and as
all-mappers if possible (BWA, Bowtie 2, and RazerS). We parametrized the best-mappers
for high sensitivity and multiple matches. We do not consider running time here, since
best-mappers are not designed for finding all matches and consequently consume more
time (up to 3 hours in a run compared to several minutes). The aim here was to investi-
gate sensitivity and recall.

126

method all all-best any-best recall
Bowtie 2
BWA
Soap 2
R-100
R-95
Bowtie 2
BWA
Hobbes
mrFAST
SHRiIMP 2
R-100
R-95

best-mappers

all-mappers

Table 6.3: Rabema benchmark results. Rabema scores in percent (average fraction of
matches found per read). Large numbers are the total scores in each Rabema
category and small numbers show the category scores separately for reads with
(912) errors.

The results are shown in Table 6.3. As expected, the all-mappers generally perform
better than the best-mappers. Also, as expected, mappers lose more of the high-error
locations than low-error locations. Surprisingly, Bowtie 2 and BWA are better than the
all-mapper Hobbes. Soap 2 is low sensitive to reads with more than 2 errors as it al-
lows no indels and at most 2 mismatches in total. By chance it aligns some of the reads
with more errors as it replaces each N in the reads by a 6. R-100 is the most sensitive
method, followed by mrFAST (which is not fully sensitive for higher error rates), R-95,
SHRiMP 2, and Bowtie 2. Even when configured as a best-mapper (i.e. only reporting one
best match), RazerS achieves the best scores.

6.10.5 Variant detection results

The next experiment analyzes the applicability of RazerS and other read mappers in se-
quence variation pipelines. Similarly to the evaluation in [David et al, 2011], we gener-
ated 5 million read pairs of length 2 x 100 bp with sequencing errors, SNPs, and indels
from the whole human genome such that each read has an edit distance of at most 5 to its
genomic origin. To distribute sequencing errors according to a typical [llumina run, we
used the read simulator Mason with the default profile settings. The reads (pairs) were
grouped according to the numbers of contained SNPs and indels, where the group (s, i)
consists of reads (pairs) with s SNPs and i indels in total. We mapped the reads both as
single and paired-end reads and measured the sensitivities separately for each class and
read mapper.

Aread (pair) was mapped correctly if an alignment (paired alignment) has been found
within 10 bp of the genomic origin. Itis considered to map uniquely if only one alignment

127

was reported by the mapper. For each class we define recall to be the fraction of all con-
tained reads (pairs) and precision the fraction of uniquely mapped reads (pairs) that were
mapped correctly. Table 6.4 shows the results for each read mapper and class for single-
end (Table 6.4a) and paired-end reads (Table 6.4b). An extended version of this table is
given in Section A.4 on page 158.

Comparing the all-mappers results, R-100 shows the highest recall and precision val-
ues on both the single and paired-end datasets. mrFAST is also full sensitive on the single-
end dataset but has a low recall value of 8 % for pairs with 5 bp indels. SHRiMP 2 shows
full precision in all classes and experiments but misses some non-unique alignments.
Hobbes appears to have problems with indels and shows the lowest sensitivities in the
all-mapper comparison.

Surprisingly, R-100 is the most sensitive best-mapper even in the non-variant class
(0,0) where the simulated qualities could possibly give quality-based mappers an advan-
tage. For paired-end reads where matches are also ranked by their deviation from the
library size, R-100 is even more sensitive than the all-mappers Hobbes and mrFAST. As
observed in [David et al, 2011], quality-based mappers like Bowtie 2, BWA, and Soap 2
are not suited to reliably detect the origin of reads with variants. Their recall values dete-
riorate with more variants as they prefer alignments where mismatches can be explained
by sequencing errors instead of natural sequence variants. The low sensitivity of Soap 2
is again due to its limitation to at most 2 mismatches.

6.10.6 Performance comparison

In the last experiment, we compare the real-world performance of RazerS with other
read mappers. To this end, we mapped four different sets of 10 million [llumina read
pairs of length 2 X 100 bp from E. coli, C. elegans, fly, and human, as well as six simulated
datasets consisting of 1 million simulated read pairs of length 2 X 200 bp, 2 X 400 bp, and
2 x 800 bp from fly and human to their reference genomes. We mapped the reads both
as single and paired-end reads with 4 % error rate and measured running times, peak
memory consumptions, mapped reads (pairs), and reads (pairs) mapped with minimal
edit distance. We compared RazerS in default mode with other all-mappers and config-
ured it to output only one best match per read for the best-mapper comparison. Since
mrFAST supports no shared-memory parallelization, we split the reads into packages of
500 k reads and mapped them with 12 concurrent processes of mrFAST. Hobbes’ large
memory consumption also required to map the reads package-wise but with a single pro-
cess and 12 threads.

For the evaluation we use the commonly used measure of percentage of mapped reads
(pairs), i.e. the fraction of reads (pairs) that are reported as aligned in the result file of
the mapper. However, as some mappers report alignments without constraints on the
number of errors, we also determine the fraction of reads (pairs) whose best match has
an error rate of at most 0 %, ..., 4% (small numbers in the mapped reads (pairs) column
in Tables 6.5 and 6.5b).

We call a read (pair) e-mappable, if it is aligned with an error rate of ¢ by at least one
mapper and ¢ is the smallest such value. A mapper correctly maps an e-mappable read

128

(0,0) (2,0) (4,0) (1,1) (1,2) (0,3)

method recl. recl. recl. recl. recl. recl.
Bowtie 2
BWA
Soap 2
R-100
R-95
Hobbes
mrFAST
SHRIMP 2
R-100

R-95

prec. prec. prec. prec. prec. prec.

best-mappers

all-mappers

(a) single-end reads

(0,0) (4,0) (8,0) (2,2) (2,4) (0,5)
method prec. recl. prec. recl. prec. recl. prec. recl. prec. recl. prec. recl
Bowtie 2
BWA
Soap 2
R-100
R-95
Hobbes
mrFAST
SHRIMP 2
R-100
R-95

best-mappers

all-mappers

(b) paired-end reads

Table 6.4: Variant detection results. For single-end (a) and paired-end reads (b) we show
the percentages of found origins (recall) and fraction of unique reads mapped to
their origin (precision) grouped by reads with s SNPs and i indels (s, i).

(pair), if it reports at least one alignment with an error rate of €. For each mapper we
measured the percentage of correctly mapped reads (pairs), i.e. the fraction of e-mappable
reads (pairs) for € € [0,4%] that are correctly mapped. For a more detailed analysis we
additionally give the percentages separately for sets of e = 0, € € (0,1%], ..., € € (3, 4%].

The results for the fly and human Illumina datasets as well as the simulated 800 bp fly
dataset are shown in Tables 6.5a and 6.5b. More detailed tables of all datasets are given
in Section A.5 on page 159.

As can be seen, R-100 aligns all reads with the minimal number of errors and achieves
the best percentage of correctly mapped reads followed by R-95 in all experiments. A de-
crease in the specified sensitivity results in a decrease in running time and on the human
genome R-95 is up to twice as fast as R-100. As in the previous experiments, the actual
sensitivity is always higher than specified.

All-mapper comparison. For the single-end 100 bp datasets mrFAST is as sensitive
but 4 times slower than R-100. On paired-end reads it is less sensitive and apparently
has problems to map long reads with an increased number of absolute errors. In the
results of the [llumina paired-end datasets we in fact noticed some alignments with more
errors than asserted by mrFAST and an error rate above 4 %. Thus the number of totally

129

dataset SRR497711 ERR012100 simulated, m = 800
D. melanogaster H. sapiens D. melanogaster
time correctly mapped mapped reads time correctly mapped mapped reads time correctly mapped mapped reads

method [min:s] reads [%] [%] [min:s] reads [%] [%] [min:s] reads [%] (%]
" Bowtie 2 2:00 85.71 3200 S Be 5:37 96.72 o) o %t 13:48 SN 99.99 0% wer 1%
g BWA 5:35 YT 79.37 7% S BT 1345 93.53 % U170 %% 538 | 74.96 B4 68.09 o0 soo 0
£ soap2 1:55 | 91.78 35 7349 5208 67 248 i3y 89.73 1% U2 w1 (5 38.14 00 217 s
g R-100 1:28 78.92 0% U O 8556 92.99 % e 20 1:17 90.43 002w B

R-95 1:26 78.82 7% S P 43:16 92.95 1% Tt 0 115 90.43 203 o

Hobbes 4:51 76.16 3570 %t M 265:48 89.24 1270 w0 w02 - - -
é mrFAST 4:01 78.92 00 % % 413:40 92.99 1% T O 516 69.32 0% %% @
g SHRIMP2 23:40 89.91 207 30 15 131209 . 99.06 5% &7 0% 79606 e 99.31 (002 08 e
= R-100 1:51 78.92 2% 931 e 11896 92,99 1% U8 05 199 90.43 002 413 e

R-95 1:45 78.82 0 U e 5813 92.95 2% e 90 1:20 90.43 00 w7

(a) single-end reads
dataset SRR497711 ERR012100 simulated, m = 800
D. melanogaster H. sapiens D. er
time correctly mapped mapped pairs time correctly mapped mapped pairs time correctly mapped mapped pairs

method [min:s] pairs [%] [%] [min:s] pairs [%] [%] [min:s] pairs [%] (%]
8194 N0 04 wE g 94.19 5% 77 w1 39:07 99.70 0% s wa
g swa 13:33 0000 9848 SL02| 73 47 251 @4 @0 3435 o 88.06 500 710 #1196 46.44 00 232 w0
@

000 1238 1764
28.23 17.83 18.00

000 2022 5838
71.16 7003 71.16

00 22 5837
71.16 70.02_71.16

0ap 2 5:29 | 88.67 72.77 23 0% 0 824 | 91.58 87.47 BT T s 12:36

72.05 3250 6063 7004 q76.59

7252 7295

72.80 250 6063 6% 135.44

7239 7280

Hobbes 8:43 | 84.78 UIA SR ML 6248 Vo S8 % 89:35

8170
86.93 1504 7765 8527 2:22

86562 86.93

86.84 1504 7765 8523 2:19

8655 86.84

9:01
6:56

best-m,
r P
o =
v o
o

1435 7046 5155
84.05 83.53 84.05

§ mrrasT 8:26 7316 20 99 004 779.1) 87.79 150 7% w2 1047 49.69 00 %0 @3

3 il N 32,50 60.62 69.95 . 15.03 77.57 85.15 . - 91.81 000 2412 57.14

g SHRiMP2 47:07 87.36 250 w0 2762:32 97.51 1% 78 1617:26 | 9164 , - 98.62 0% %1

= R-100 7:59 72.95 230 9% 10 18427 86.93 0 e BV 2:30 7116 900 W% 3
R-95 736 72.80 20 @06 w58 1ge.0> 86.84 B0 T BB 99 7116 0% Mz s

7239 72.80 8655 86.84 7002 7116

(b) paired-end reads

Table 6.5: Performance results of single-end (a) and paired-end (b) mapping. The left
side shows the results for the first 10 M x 100 bp reads (pairs) of two Illumina
datasets. The dataset on the right consists of 1 M x 800 bp simulated reads
(pairs) with a stretched Illumina sequencing error profile. In large we show the
percentage of totally mapped reads (pairs) and in small the percentages of reads
(pairs) that are mapped with up to (5 4% **) errors. Correctly mapped reads
(pairs) show the fractions of reads (pairs) that were mapped with the overall
minimal number of errors. There were none of the 2 x 800 bp pairs without er-
ror (denoted by a “-” in the 0-error class). Hobbes could not be run on reads

longer than 100 bp.

mapped pairs is slightly higher compared to R-100 on the [llumina paired-end reads. On
single-end reads Hobbes is about 2 times slower and only on human paired-end reads
faster (up to 2 times) than R-100. It maps 5-15 % less reads correctly and also the total
number of mapped reads is less. Hobbes is not able to map reads longer than 100 bp and
some single-end read packages could not be mapped due to repeated crashes (4 of 20
for C. elegans and 1 of 20 for human). As SHRiIMP 2 does not use a maximal error rate it
outputs more mapped reads than R-100 in total. However, the percentages of correctly
mapped reads is less in all experiments. This could be due to its different scoring scheme,
where two mismatches cost less than opening a gap, but it does not explain why it misses
reads with 0 errors. SHRIMP 2 is 5-23 times slower than R-100 on the Illumina datasets
and up to 600 times slower on the 800 bp datasets.

130

Best-mapper comparison. Compared to other best-mappers, R-95 is faster or com-
parably fast on all E. coli, C. elegans, and fly datasets. For human reads of length 100 bp or
200 bp it is 2-3 times slower than BWA and equally fast or faster for longer reads. BWA
and Bowtie 2 could not be run with a maximal error rate and hence map more reads than
R-100 in total, but less correctly (in terms of edit distance) as they optimize for errors at
low-quality bases. With longer reads, BWA becomes less sensitive and BWA-SW might be
the better choice. However, we could not compare BWA-SW as it does not align the reads
from end to end. As seen before, Soap 2 is low sensitive to reads with more than 2 errors.

Memory requirement. The memory consumption of RazerS can be determined as
follows: As all contigs of the reference genome are loaded and searched one after another,
the size C of the largest contig is one summand. Another summand is the total number
of bases in the input read set, e.g. n - m for n reads of length m. Each thread filters a
subset of reads and uses a g-gram index whose size is linear in the number of contained
q-grams. Therefore, the overall size of the indices is O(n - (m — max Q)) when using a
SWIFT filter with g-grams of shape Q, or O(n-m/A) when using a (q, A)-seed pigeonhole
filter. Finally, enough space for the matches has to be allocated, which can be estimated
by O(n - @) where « is the average number of matches per read. Hence the peak memory
usage of RazerSis O(C + n - (a + m)).

In practice, RazerS requires 9 or 15 GB for mapping 10 million reads of length 100 bp
to the human genome in best-mode or all-mode. For the same input set, Bowtie 2 uses
3.3 GB, BWA uses 4.5 GB, Soap 2 uses 5.4 GB, SHRiIMP 2 uses 38 GB. Due to the lack of
parallelization or a high memory consumption we ran mrFAST and Hobbes on packages
of 500 k reads where they required 11 GB and 70 GB of memory. Section A.5 on page 159
contains tables that also show the full memory requirements.

RazerS’ memory consumption grows linearly with the number of reads and matches,
i.e.about 10 GB are required for each additional 10 Mx 100 bp reads. A large read set, e.g.
an [llumina HiSeq run, can be mapped on clusters or low memory machines by splitting
it into blocks of appropriate size and mapping them separately. The final mapping result
can be obtained by concatenating the mapping results of each block.

CHAPTER

7 Frequency String Mining

In this chapter, we propose the deferred frequency index [Weese and Schulz, 2008], an ap-
plication of the lazy suffix tree to efficiently solve arbitrary frequency based string mining
problems in multiple databases.

After defining the string frequency, frequency predicates, and some well-known fre-
quency string mining problems in Section 7.2, we introduce a novel discriminatory fre-
quency predicate the entropy substring mining problem for multiple databases based on
the notion of entropy from information theory. The predicate is motivated by the emerg-
ing substring mining problem that was introduced by Chan et al. [2003] for two databases.
The idea is to find patterns that are representative for a small subset of databases, possi-
bly one, and are absent in the rest of the databases.

We define the monotonic hull in Section 7.3 that allows to prune the set of suffix tree
nodes to a required minimum. In the subsequent two sections, we first introduce the
optimal algorithm by Fischer et al. [2006] and then give an in-depth presentation of our
algorithm, which exploits the stability of counting sort used for the node expansion of the
lazy suffix tree to compute the substring frequencies as a byproduct.

At last, we show in Section 7.6 how our approach can be applied to mine multiple
databases with a variety of frequency constraints. We apply our new predicate and search
for species specific protein domains in large protein databases. In experiments over a
broad range of pattern domains and for different types of frequency string mining prob-
lems, we demonstrate that the deferred frequency index (DFI) is the fastest currently
available algorithm for frequency based string mining. Although the algorithm of Fis-
cher et al. [2006] has in theory a better memory consumption, we can show that our
implementation uses in practice less memory. The two memory improved variants by
Fischer et al. [2008] and Kiigel and Ohlebusch [2008] use less memory in practice but
are prohibitively slow or limited to conjunctive predicates, respectively.

7.1 Related work

There have been several approaches in the context of mining exact substrings with fre-
quency constraints. Raedt et al. [2002] introduced the first O(n®) algorithm based on
the level-wise Apriori algorithm [Raedt et al., 2002], where n is the total number of char-
acters. This algorithm is not suitable for large databases due to repeated scanning of
the whole databases. Subsequently, Lee and Raedt [2005] proposed to build a suffix trie

132

work time memory multiple pruning optimal hull
Raedt et al. [2002] om® om? - .

Lee and Raedt [2005] 0O(n?) 0n?) o

Chan et al. [2003] 0(n?) o) - .

Fischer etal. [2005] O(n?) o) .

Fischer et al [2006] om) o(n) d

DFI 0(n?) O(n) o o U

Table 7.1: Existing frequency string mining algorithms and their characteristics

from the first database and stream the remaining databases against it. A more efficient
algorithm based on suffix trees was suggested by Chan et al. [2003] incorporating three
different pruning criteria. Fischer et al. [2005] were the first to use an enhanced suffix
array (Chapter 3) of the concatenated databases.

Until 2006 all approaches calculated the frequencies of substrings in the databases in
a naive manner. Fischer et al. [2006] developed a strategy to compute the frequencies of
substrings in optimal time via range minimum queries [Fischer and Heun, 2006], which
led to the first optimal O(n) time algorithm for frequency based string mining. The mem-
ory consumption of this approach was subsequently improved by Kiigel and Ohlebusch
[2008] and Fischer et al. [2008]. The details of the algorithms are explained in Section
7.4.

Fischer et al [2006] achieved optimality at the expense of complicating the algorithm
and adding another ®(n) memory for every database. In addition, all algorithms of Fis-
cher et al. need to construct the enhanced suffix array completely to calculate the fre-
quencies of all substrings afterwards and cannot benefit from search space pruning.

Our approach proposed in [Weese and Schulz, 2008] can efficiently solve any fre-
quency based string mining problem on an arbitrary number of databases. It is not only
simple but also retains the problem-specific search space pruning of the algorithms by
Raedt et al. [2002]; Chan et al. [2003], see Table 7.1. The frequencies are calculated dur-
ing the construction of a suffix tree over all databases, which enables for the first time
to limit the index construction to a problem-specific minimum referred to as the optimal
monotonic hull (Section 7.3). Most of the previous approaches and problem definitions
focussed on two databases (foreground and background database). In this work, we gen-
eralize the well-known emerging substring mining problem and devise a novel problem
definition for mining multiple databases.

7.2 Definitions

In the following, we denote a non-empty set of strings D € X" as database given an alpha-
bet X. For arbitrary strings over £ we define their frequency and support in a database.

Definition 7.1 (frequency and support). Given a database D. The frequency and the sup-

133

[0) b ba bab aab
freq(¢p, Dy, ...D 2,2,2,2 21,21 2,0,2,0 0,2,0,0
D, = {abab, babb} (D1, Ds) ()) () ()
supp(¢, D) 1 1 1 0
D, = {baab, aaab}
supp(¢, D) 1 0.5 0 1
D3 = {chab, baba} N @)
growth,, 1 2 S 0
D, = {abac, bbbb} D2=Da
H(¢, Dy, ...,Dy) 1 0.96 0.25 0

Table 7.2: Example for the definition of frequency vector, support, growth, and entropy.

port of a string ¢ € X" in D is defined as follows:

freq(¢,D) = |[{deD|p=d}, (7.1)
f ,D
supp(¢, D) % (7.2)

Obviously it holds 0 < supp(¢,D) < 1 and the support can be considered as the
normalized frequency. For multiple databases we define the frequency vector.

Definition 7.2 (frequency vector). Given multiple databases D,, ..., D,,, the frequency
vector of a string ¢p € X* is an element of Nj* and defined as:

freq(¢, Dy, ... D) = (freq(¢,Dy), ..., freq(e, D). (7.3)

On N7 we define a partial order “<”, such that for two vectors u,v € N holds u <
V S VirmW < v;. Table 7.2 gives an example for the support value and frequency
vector.

7.2.1 Predicates

A frequency predicate on a set of databases D;, ..., D,, is defined as a boolean function
over N™ with the additional constraint that the function yields false for the null vector. In
general, our approach is applicable to the task of finding patterns ¢ € £* whose frequen-
cies satisfy a predicate pred on a given database set Dy, ..., D,,,. We define the solution set
Th as a function of pred [Raedt et al., 2002]:

Th(pred) = {(],’)EZ*

Please note that the solution set solely contains substrings of the given databases, as the
null vector does not satisfy the frequency predicate. In the following, we consider three
specific examples of frequency string mining problems and define their corresponding
frequency predicates in the next section:

pred (freq(¢p, D, ..., D,,)) is true } : (7.4)

Problem 7.1 (frequent pattern mining problem). Given m databases Dy, ..., D,, of strings
over ¥ and m pairs of frequency thresholds (min;, max,), ..., (min,,, max,,), the frequent
pattern mining problem is to find all strings ¢ € X* that satisfy min; < freq(¢, D;) < max;,
foralll1<i<m

134

This problem is conjunctive (explained in Section 7.2.3) and has been considered in
a series of research papers [Fischer et al., 2005; Raedt et al., 2002; Lee and Raedt, 2005].
The next problem considers discriminatory strings for two databases D;,D, € £*. D, is
usually called positive (foreground) set, where D, is the negative (background) set. As a
measure of difference the growth-rate from D, to D, for a string ¢ is defined as:

Supb(@D1) - if supp(¢h, D,) # 0
growth, . (¢) := supp(¢,Dz) (7:5)
o0, else.

Problem 7.2 (emerging substring mining problem). Given a support condition p,, where
|D11| < ps < 1, and a minimum growth rate p, > 1, the emerging substring mining prob-

lem [Chan et al, 2003] is to detect all strings ¢ € X*, such that supp(¢,D,) = ps and
growtth_)Dl(qb) = pg

The minimum support rate p, limits the solution space to representative strings of
database D, where p, is a discrimination threshold. Patterns which satisfy the condi-
tions of Problem 7.2 are called emerging substrings. If the growth rate of the pattern is
infinite it is called jumping emerging substring, because it is a major discriminator be-
tween the databases under investigation. For example, Kobylinski and Walczak [2009]
use jumping emerging substrings for image classification. The problem is asymmetric and
the algorithm will return different outputs depending on the order of the input datasets.
Compared to Problem 7.1, the emerging substring mining problem is more suitable to con-
trast data mining, as the growth rate reflects the specificity of a pattern for the foreground
dataset more adequately than absolute frequency bounds.

Example 7.1. We now apply this problem to databases D, and D, given in Table 7.2
with p; = 1and p; = 2. The corresponding frequency predicate pred for the emerg-
ing substring mining problem is a function that maps the frequency vector (d,,d,) =
freq(¢, D,,D,) of a string ¢p € X* to a truth value as follows:

pred(d,,d;) = (dy=ps-|Di)A(d;-|D,| = Pg - d, - |D4])

(7.6)
(dy = 2) A (dy = 2d,).

The set of patterns whose frequencies satisfy pred is Th(pred) = {bab, ba}. b for example
is not an emerging substring, because supp(b,D;) = 1 but growtth_)Dl (b) =1 < p,.

In addition to [Weese and Schulz, 2008], we define a new discriminatory frequency
predicate based on entropy. Entropy is a concept from information theory that measures
the information content of a probability distribution [Cover and Thomas, 1991]. Given a
discrete random variable X, with p; = P(X = i) the entropy H is defined as:

H(X) = —Zpi Inp,. 7.7)

In accordance, we define the entropy H of a pattern ¢ in a set of databases D,, ..., D,, as:

H($, Dy, ..., D) = — Z Z;uppwrﬂo | supp(¢, D;)
i=1

. 7.8
iz supp(é,D;) O8m Y7L, supp(¢, D)) 78

135

As probability distribution we use in (7.8) the normalized support distribution and use
m as logarithmic base to normalize the entropy to a maximal value of 1.

Problem 7.3 (entropy substring mining problem). Given a support condition ps and a
maximum entropy bound a with 0 < p; < 1and 0 < a < 1, the entropy substring

mining problem is to detect all strings ¢ € X%, such that Ve[1) supp($,D;) = ps and
H(¢$,D,4,...,D,) < .

The entropy substring mining problem is symmetric and returns the same patterns in-
dependently of the order of the input datasets. Patterns ¢ that are abundant in a small
subset of databases and occur with low support in the complement set will tend to have
alow entropy H(¢, D4, ..., D,,), whereas a uniform support over all databases will result
in the highest entropy of value 1. The problem can be considered as a symmetric gener-
alization of the emerging substring mining problem to 2 and more databases. Table 7.2
shows the entropy values of different support distributions.

7.2.2 Monotonicity

We will now introduce the monotonicity property of frequency predicates that we use
later to prune the search space of our algorithm. Examples 7.2-7.4 will show that each
frequency predicate of the Problems 7.1-7.3 contains a monotonic subpredicate.

Definition 7.3. If for a frequency predicate pred : N™ — {true, false} holds that:

V uvenmusy (pred(w) = pred()), (7.9)
then pred is called monotonic.

Proposition 7.1. For a monotonic* frequency predicate pred on databases
D4, -, D,y € X" it holds that:

V¢¢EZ*,¢5¢ (pred(freq(l/J, Dy, -, D)) = pred(freq(¢, Dy, ..., Dm))) . (7.10)

Proof. Each occurrence of ¢ is also an occurrence of ¢. Thus, freq(y, D4, ..., D)
< freq(¢, D4, ..., D,,,) holds. -

Example 7.2. As seen in Example 7.1 the frequency predicate for the emerging substring
mining problem is:

pred(d,,d;) = (dy = ps - |D1]) A(dy - |D,| = Py d; - |Dy4]). (7.11)

Generally, pred is not monotonic as shown in Example 7.1. Recall that ba is emerging
although b is not. However, if we consider only the left inequality:

pred (d,d) := (dy 2 ps - |D4]), (7.12)

1 Please note that Raedt et al; Fischer et al. consider pattern predicates and we consider frequency pred-
icates. The properties of both are reciprocal and therefore they call anti-monotonic what we call monotonic.

136

pred_ is monotonic, as for all u, v € N%,u < vholdsu; = ps - |Dy| = vy = ps - |Dy]-

Obviously it holds that pred = pred_, a fact which we use later. In the next two exam-
ples we show the predicates pred and corresponding monotonic predicates pred with
pred = pred_ for the remaining two problems.

Example 7.3. Predicates for the frequent pattern mining problem:

pred(d) = (min; <d; < max;) A ... A (min,, < d,, < max,,), (7.13)
pred _(d) := (min; <d;)A..A(min, <d,). (7.14)

Example 7.4. Predicates for the entropy substring mining problem:

dd) = |V d . A i d d 7.15
i=
d; . v di
pred, (@) = | Vierwmip s 20, with w(d):Z B (7.16)

7.2.3 Conjunctive predicates

If a predicate pred on databases D4, ..., D,, can be decomposed into a conjunction of pred-
icates p; on D; such that holds:

pred(freq(¢, Dy, ..., D)) = pi(freq(é, D1)) A ... A pm(freq(e, Din)), (7.17)

we call pred a conjunctive predicate and pred , ..., pred, its factors. It is easy to see that
the predicate of Problem 7.1 is conjunctive whereas the predicates of Problem 7.2 and
7.3 are not.

7.3 Monotonic hull

We now show how to connect arbitrary frequency predicates with suffix trees. To do so,
we give a theoretical description of the minimal set of nodes that need to be expanded.

Definition 7.4. Given frequency predicates pred and pred, .
tonic hull of pred, if it is monotonic and pred = pred, , holds.

pred, . is called a mono-

The most trivial monotonic hull of each frequency predicate pred is pred, , = true.
If we take a look at the generalized suffix tree T of databases Dy, ..., D,,, we make the

following observations:

Proposition 7.2. Let pred be an arbitrary frequency predicate and pred an arbitrary

monotonic frequency predicate on Dy, ..., D,,. For all pairs of parents « and children @
in T it holds that:

137

1. If pred(freq(afB, Dy, ..., D,y)) is true then pred(freq(x, D4, ..., D,,)) is true for each
string y witha < y < afs.

2. Ifpred (freq(aB, Dy, ..., Dp,)) is true then pred (freq(a, D, ..., Dy,)) is true.

Proof. The frequency vectors of aff and y with ¢ < y < aff must be equal. If not, there
would be a branching node between a and @ which contradicts the assumption @ would
be the parent of E. Hence 1. holds. 2. is a direct consequence of Proposition 7.1 as « is
a substring of af. n

In consequence of Proposition 7.2, it is sufficient to evaluate pred only on the nodes
of T to compute the set Th(pred). For every monotonic hull pred, , of pred the set of
nodes, whose frequencies satisfies pred, ,, is a connected subgraph of T, which if non-
empty contains the root node. Outside of this subgraph there is no node fulfilling pred.
Our algorithm exclusively traverses this subgraph to compute the set Th(pred). Hence, we
are interested in keeping the subgraph as small as possible, leading to the next definition:

Definition 7.5. pred, , is called the optimal monotonic hull of pred, if it is a monotonic
hull of pred, and for each monotonic hull pred’,, of pred, it holds that pred, , = pred,.

In other words, if pred, , is optimal, the corresponding subgraph is minimal.

7.4 The linear-time algorithm by Fischer et al.

In Section 7.1, we have summarized previous algorithms for frequency based string min-
ing problems. We will give here a more detailed description for the optimal algorithm by
Fischer, Heun, and Kramer (FHK algorithm) and two variants that have been proposed
to reduce the memory consumption of the algorithm.

7.4.1 The original algorithm

For a given string s and a corresponding suffix array suftab, the lcp table Icp stores the
length of the longest common prefix between lexicographically adjacent suffixes (Sec-
tion 3.1). It can be shown that the length of the longest common prefix between non-
adjacent suffixes of rank i and j, with i < j, is the minimum over lcp values between i + 1
and j:

|Cp[l] = |1Cp{Ssuftab[i—l]'Ssuftab[i]}l' (718)
|1Cp{Ssuftab[i]:ssuftab[j]}l = kfgm]kp[k]- (7.19)

To answer so-called range minimum queries of the form:
RMQ,, (i.j) = arg min lcp[k] (7.20)

in constant time and determine the lcp value of arbitrary suffix pairs, Fischer and Heun
[2006] proposed a data structure which can be constructed in O(n) time using o(n) extra
memory.

138

The main concept of the algorithm by Fischer, Heun, and Kramer [2006] is based on
the following idea. Let Sy, (w) be the total number of occurrences of a string w in database

D; = {p}, ..., Pil} and the so-called correction term Cp, (w) be defined as the number of
recurrences of w in the same string of D;:
Sn(@) = Y {j |9l + oD = w}], (7.21)
PED;
Cp,(w) := 2 max (0, [{j | pU.j + o)) =w}| - 1). (7.22)
PED;

Then the frequency freq(w, D;) equals Sp,(w) — Cp,(w). Consider the generalized suffix
tree of the databases D4, ..., D,, and let w be the concatenation string of a branching node
w with children way, ..., wa;. Then the following holds:

l

Sp(w) = Esz,i(waj), (7.23)
=1

Cp, (@) = ZcDi(waj). (7.24)
=1

To enable the recursive computation of C, Fischer et al. precompute an auxiliary array C’
for each of the m databases using lcp range minimum queries which takes ®(m - n) time
and memory in total:

!
Co, (@) = C) () + Z Cp. (wa)). (7.25)
j=1
They observed that Cp, (w) can be calculated by adding up for every string in D; the num-
ber of its lexicographically adjacent suffix pairs that begin with w. Consequently, C, (w)
is equal to the number of suffixes that share a longest-common-prefix w with their next
greater suffix in the same database string. C’ can be computed in a linear scan of the suf-
fix array recording for every suffix the last seen suffix in the same database string. The
longest common prefix w between both suffixes is determined by a RMQ and the value
Cp,(w) is increased by one?.

The recursive computation of § and C is integrated into a bottom-up traversal of
the suffix tree (described in Section 3.9). Algorithm 7.1 shows the outline of the whole
linear-time algorithm by Fischer et al. [2006]. Their approach concatenates all strings in
D4, ..., D,y to asingle union string and corrects border effects, e.g. miscounting substrings
that cross string borders in the union string.

7.4.2 Space efficient variants

We will briefly describe two memory efficient approaches published by Kiigel and Ohle-
busch [2008]; Fischer et al. [2008] which are modifications of the original FHK algorithm.

2 In fact, Fischer et al. implemented C’Di as a string of length n and increase it at any ¢-index position of
the w-interval.

139

Algorithm 7.1: FHK(D,, ..., D,,,, pred)
input : databases Dy, ..., D,,,, frequency predicate pred

construct the suffix array SA of the union string over D4, ..., D,,
build and preprocess the Icp table for constant time range minimum queries
calculate the correction term auxiliary arrays Cp_, ..., Cp, |

foreach suffix tree node w in postorder DFS do
compute §p,(w) and Cp, (w) using the recurrences (7.23) and (7.25)
Freq < (Sp,(w) — Cp, (W), ..., Sp,,(w) — Cp, (w))
if pred(Freq) then
output strings y with @ < y < w, where « is the parent node of w

The modification by Kiigel and Ohlebusch (KO) is only applicable to conjunctive pred-
icates pred like the frequent pattern mining problem and computes separate solution sets
Th(pred,) iteratively for each factor pred, on database D;. After each iteration the so-
lution set Th(pred,) is intersected with the result of previous intersections, as the final
solution set of a conjunctive predicate is the intersection of all separate solution sets
Th(pred) = N, Th(pred,). The intersection of two solution sets is based on an algo-
rithm for suffix array merging [Jeon et al, 2005] retaining linear time complexity. The
memory consumption, however, merely depends on the total size of the largest database.

Fischer, Makinen, and Viliméki (FMV) decreased the memory consumption of the
original FHK algorithm by compressing the suffix array [Navarro and Makinen, 2007],
the Icp table [Sadakane, 2007], and the RMQ data structure [Fischer and Heun, 2007].
Their approach avoids the precomputation of the correction term auxiliary arrays and
instead computes the values Cp, (w) for nodes w on the DFS stack during the traversal
and stores the § and C numbers in a searchable partial sum data structure [Makinen and
Navarro, 2008]. The overall memory consumption of the FMV algorithm is O(nlog |Z| +
d logn) bits and the runtime is O(n log n), where d is the overall number of strings in the
databases.

7.5 A fastalgorithm based on lazy suffix trees

This section introduces the deferred frequency index (DFI) which is fundamentally based
on a generalized lazy suffix tree, i.e. a lazy suffix tree of multiple sequences as proposed
in Chapter 4. The DFI algorithm constructs only an upper part of a generalized suffix tree
in a top-down manner using a modified wotd algorithm (Algorithm 4.1 on page 66).

7.5.1 The deferred frequency index

The main idea of our algorithm is to calculate the frequency vector for a tree node during
the node expansion of its parent node in the wotd algorithm. In this way, we are able

140

Algorithm 7.2: DFI(T, @, pred, pred,)

input : unexpanded node o

Freq < SORTANDCOUNTFREQ(a)
foreach c € X and R(ac) # @ do
acf < lcp R(ac)
if pred(Freq|c]) then
Output strings y with ac < y < acf
if pred, , (Freq[c]) then
if |[R(ac)| = 1 then
add Ieaf@ asachildofainT
else
add inner node @ asachildofainT

DFI(T, acp, pred, pred,)

to restrict the set of node expansions to the optimal monotonic hull pred, , of a given
predicate pred.

Algorithm 7.2 starts with DFI(T, €, pred, pred,) on a tree T consisting of only the
unexpanded root node €. First, SORTANDCOUNTFREQ is called for the current node « in
line 1. Identically to Algorithm 4.1 on page 66, the set R(«) is divided into groups R(ac)
of suffixes that share the same character ¢ € X after their common prefix a. In addition, an
array Freq, that stores in Freq[c] the frequency vector freq(ac, D, ..., D), is returned. In
the next section we explain the implementation details of function SORTANDCOUNTFREQ.
The longest common prefix of every non-empty group R(ac) is determined and assigned
to acf in line 3. If the predicate pred evaluated with the frequency vector Freq[c] is true,
by Proposition 7.2 all strings y with ac < y < acf belong to Th(pred) and are output. In

line 6 pred, , is evaluated on Freg[c]. Only if true is returned, the subtree below the node

acf may contain a node y with y € Th(pred) and will be expanded recursively. If false is
returned, the node acf is not created, as no further subtree expansion is necessary.

Algorithm 7.2 is correct and outputs the set Th(pred) because of the following: For
each database substring ¢ there is a path from the root ending in a node or on an edge
to a node. This node has the same frequency vector as ¢ and will be visited if it satisfies
pred, , and outputiffitsatisfies pred. As pred, isamonotonic hull, nonode thatsatisfies
pred is left out by the algorithm. The algorithm consumes O(n logn) time in the average

and O(n?) time in the worst case, and O(n) memory [Giegerich et al.,, 2003].

For the frequent pattern mining problem and the emerging or entropy substring mining
problem one only needs to replace pred and pred, , in Algorithm 7.2 with the predicates
deduced in Examples 7.2-7.4, respectively. The monotonic hulls for these problems are
also optimal as Propositions A.1-A.3 prove (see Appendix). Figure 7.1 shows the DFI for

the emerging substring mining problem considered in Example 7.1.

141

0,2
a.
b b
» v
0,1 0,2
b
\J
1,0

Figure 7.1: The generalized suffix tree of our example databases D, and D,. For clarity, we
omitted sentinels $;. Considering the problem of Example 7.1, the DFI would
expand only the white nodes. Grey nodes are not built. The bold nodes ba, bab
represent the emerging substrings. Each node holds the frequency vector of its
corresponding substring (compare the frequencies of b and ba with Table 7.2).

7.5.2 Algorithmic details

In this section, we explain the function SORTANDCOUNTFREQ in detail (Algorithm 7.3).
The sets R(a) are not actually stored as sets of strings, but as intervals of the string suftab,
which contains pairs (i, j) that represent suffixes s; This string is initialized ascendingly
as described in Section 4.2.3. To determine which database a string is part of, we need
a function getDatabaseNo that returns for each sequence number i the corresponding
database number k, with s* € D,.

When soRTANDCOUNTFREQ(a, pred, pred,) is called, suftab[L.r) contains the start
positions of suffixes beginning with a. Each start position corresponds to a suffix in R(a).
Because «a is unexpanded, the suffixes in suftab[l..r) have been sorted with counting sort
[Cormen et al., 2001] up to the first |a| characters by previous function calls. As count-
ing sort is stable, the pairs (i, j) in suftab[l.r) are in ascending order. In particular, the
corresponding sequence numbers i are stored in contiguous blocks. Counting sort di-
vides R(«) into buckets R(ac) for each character c € X (lines 3-4). The frequency of each
bucket can simply be counted by counting blocks of equal sequence numbers (line 5).

We keep track of three arrays in the size of the alphabet, i.e. |Z|, namely C, Freq, and
Last. C is the original array from counting sort, and C[c] counts the occurrences of ac.
Freq stores frequency vectors, and Freq|[c][k] determines how often ac occurred in dis-
tinct sequences of D,. Last is used to construct Freq (lines 5-8).

142

Algorithm 7.3: SORTANDCOUNTFREQ (@)

input : unexpanded suffix tree node a

output :freq(ac, Dy, ...,D,,) foreachc € X

require :suftab[L.r) stores all suffixes beginning with «, suffixes from the same
sequence are contiguous in the interval

ensure :suffixes from the same sequence are contiguous in output intervals
suftab[Bucket[c]..Bucket[c + 1])

initialize C, Freq, Last with zeros
fork < ltor—1do
(i,j) < suftab[k]
if j + |a| < |s| then
¢« s'[j+ |al]
Clc] « Clc] +1
if Last[c] # i then
Last[c] « i
d < GETDATABASENO({)
Freq|c][d] « Freq[c][d] + 1

stably sort suffixes suftab[l..r) by the character at position ||
return Freq

7.6 Experimental results

To evaluate the performance of our algorithm, we conducted a number of experiments
with databases of different characteristics. We used a previously compiled set of human
and Drosophila core promoters [Fitzgerald et al, 2006], the UniProt proteome sets of
H. sapiens and M. musculus, release 12.6, and C. elegans and A. thaliana, release 15.6
[UniProt Consortium, 2008], verses of the King James Bible and the Bible in Basic En-
glish, and posts of 20 newsgroups from the UCI Machine Learning Repository [Asuncion
and Newman, 2007]. The alphabet sizes |X|, the number of contained sequences, and
references of these databases can be found in Table 7.3.

For our tests we compared our algorithm with the algorithms FHK, KO, and FMV de-
scribed in Section 7.4. All implementations were written in C++ and compiled using the
same compiler options. They run under Linux on an Intel Xeon 3.2 GHz with 2 GB of RAM.
To reduce influences from the operating system and secondary storage units, the output
was redirected to the null-device, and each experiment was repeated 5 times. We mea-
sured the running time and memory consumption of both algorithms using the GNU tools
time and memusage. In an additional run we successfully verified that the outputs of our
and the other tools are identical.

In the following we compare the performance of our approach with existent tools on
two and multiple real-world databases. Finally, we analyze the applicability of our newly
introduced entropy-based predicate in an experiment with proteomes of four species.

143

English Bibles Proteomes DNA Promoters

Newsgroups

emerging substrings

100
I

O FHK
v DFI

running time (s)
40

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

support threshold pg

30 40 50 60
I I
60

running time (s)

10
I

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

support threshold ps

©-0-0-0-0-0-0-0-0-0-0—0—0—0—0—=0

8 10 12
I I

running time (s)
6
L

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

support threshold ps

2 i

running time (s)

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

support threshold ps

running time (s)

running time (s)

running time (s)

running time (s)

60 80 100 120

40

20

20 30 40 50

10

14

10 12

8

15 20

10

frequent patterns

O FHK
v DFI

minimum frequency threshold (%)

©-0-0-0-0-0-0-0-0-0~0—0—0—0—0—0

minimum frequency threshold (%)

%—O—O—-O%)—-O—O—O—-O—O—O—O—O—O—o——%)

minimum frequency threshold (%)

minimum frequency threshold (%)

Figure 7.2: Runtime comparison of the FHK algorithm [Fischer et al, 2006] and our DFI

implementation for the emerging substring mining problem and the frequent
pattern mining problem. Experiment details are listed in Table 7.3.

144

name description |Z] length [Mb] #seqs source

D, Human Promoters 5 23 15011 Fitzgerald et al.

D, Drosophila Promoters 5 17 10914

D4 Human Proteome 24 18 40827 UniProt Consortium

D, Mouse Proteome 24 16 35344

D, King James Bible 128 4.1 31102 English Bible Online

D, Bible in Basic English 128 4.2 31102 http://www.o-bible.com
D4 Windows Newsgroup 128 3.9 2000 Machine Learning Repos.
D, Computer Newsgroup 128 3.4 3000 Asuncion and Newman
Di_, 4 Proteomes 24 58 136562 UniProt Consortium
Di_20 20 Newsgroups 128 16 12273 Machine Learning Repos.

Table 7.3: Characteristics for the different databases we used.

7.6.1 Two databases

Of all other approaches the theoretically optimal FHK algorithm [Fischer et al., 2006] has
turned out to be the fastest algorithm in practice for Problem 7.1 and 7.2. Hence, we
used the FHK algorithm as reference for the first experiment where we compared the
runtime behavior under different parameters. We searched different pairs of databases
for emerging substrings and for the solution of the frequent pattern mining problem with
different values of p; and varying min,, respectively. As p, and max, had no measurable
influence on the tested algorithms, only the results for p, = 5 and max, = |D,|/2 are
shown. The results for other values look similar [Fischer et al., 2005]. We made no other
restrictions, i.e. max; = oo, min, = 0.

Figure 3 shows that our approach is in all cases faster than the FHK algorithm, even
for small values p, or min; when the whole suffix tree needs to be constructed. As an
example, for p; = 0.2 the DFI is with 16 seconds on the proteome databases roughly four
times faster than the FHK algorithm. Considering reasonable® values of p, < 0.2 and
min,; < 0.2 - |D,| our algorithm is 1.5-4 times faster in practice. The runtime peaks for
small values of p; or min; are due to the high amount of strings in the solution space that
were reported.

In the second experiment we compared running times and memory consumptions
of the DFI, the FHK, and the memory efficient FMV algorithm for different parameter
settings of the emerging substring mining problem, see Table 7.4. The FMV algorithm is
the most memory efficient, as it occupies on average 1.69 times less memory than the DFI
and 3.55 times less memory than the FHK algorithm. However, this reduction of memory
consumption induces an average increase in running time by a factor of 212 compared
to the DFI. The DFI is generally the fastest.

3 Dong and Li [1999] report that a minimum support of 1%-20 % for finding emerging patterns could
contribute significantly to knowledge discovery.

http://www.o-bible.com

145

parameters databases time [s] memory [MB]

Ds Py DFI FHK FMV DFI FHK FMV
0.05 5 DNA Promoters 51 67 6317 469 920 246
0.1 5 DNA Promoters 47 67 6180 468 920 246
0.05 5 Proteomes 22 62 7974 329 779 233
0.1 5 Proteomes 18 62 7949 328 779 233
0.05 5 Newsgroups 3 9 1243 82 167 47
0.1 5 Newsgroups 3 9 1238 81 167 47

Table 7.4: Running times and memory consumption for the emerging substring mining
problem for different parameters on two databases.

Itisinteresting to note that the FHK algorithm as well as the DFT have an O(n) memory
consumption, but the DFI needs only about half of the memory. The FHK algorithm has
an almost constant running time and memory consumption as it does not take advantage
of the monotonic pruning of the suffix tree like our deferred approach does.

7.6.2 Multiple databases

In the third experiment we analyzed the memory behaviour of the Kiigel and Ohlebusch
[2008] variant of the FHK algorithm for the conjunctive frequent pattern mining problem.
We used an adaptation of the FHK algorithm for more than two databases provided by
Kiigel and Ohlebusch. As described in Section 7.4, the memory footprint of the KO algo-
rithm depends only on the size of the largest database and predicate parameters do not
affect the memory and time consumption of the KO algorithm. The DFI is faster by a fac-
tor of 2-20 compared to the KO algorithm and consumes 3-10 times more memory, see
Table 7.5. Generally speaking, the higher the number of databases the better the memory
improvement of the KO algorithm compared to the other algorithms. Interestingly, the
KO algorithm on 4 proteomes consumes less memory than the FMV algorithm on 2 of the
4 proteomes.

In Table 7.6 we list the results of the forth experiment, where we compared the perfor-
mance of DFI and FHK for the new entropy substring mining problem on several databases.
To do so, we adapted the implementation of the FHK algorithm for the new predicate. As
can be seen, the memory footprint of the DFI is 3-9 times smaller compared to the FHK
algorithm. Thus, the memory improvement of the DFI compared to the FHK algorithm is
higher if more databases are used, considering that in the second experiment with two
databases the memory footprint was two times smaller.

7.6.3 Detection of species specific protein domains

We sought out to test the new entropy substring mining problem on a biologically moti-
vated example. For particular biological applications of the frequent pattern mining prob-

146

parameters databases time [s] memory [MB]
min; max; DFI FHK KO DFI FHK KO
10 1000 4 Proteomes 78 154 224 660 1848 182
100 5000 4 Proteomes 63 153 224 584 1848 182
500 50000 4 Proteomes 54 153 224 575 1848 182
500 100000 4 Proteomes 52 154 223 575 1848 182

50 1000 20 Newsgroups 7 36 46 176 1526 18
200 1000 20 Newsgroups 4 37 46 175 1526 18
500 5000 20 Newsgroups 2 37 46 145 1526 18

Table 7.5: Running times and memory consumption for the frequent pattern mining prob-
lem for various parameters on multiple databases.

parameters databases time [s] memory [MB]
Ds a DFI FHK DFI FHK
0.001 0.2 4 Proteomes 65 155 629 1848
0.005 0.4 4 Proteomes 57 155 590 1848
0.01 0.7 4 Proteomes 52 156 578 1848

0.01 0.2 20 Newsgroups 59 98 217 1526
0.05 0.2 20 Newsgroups 13 41 178 1526
0.1 0.4 20 Newsgroups 11 40 177 1526

Table 7.6: Running times and memory consumption for the entropy substring mining
problem for various parameters on multiple databases.

lem or the emerging substring mining problem, we refer the reader to [Stober et al., 1996;
Brazma et al., 1998; Birzele and Kramer, 2006; MitaSitnaiteé et al., 2008].

Domains are functional substrings of proteins that are conserved in a large set of pro-
teins, which is termed a protein family. We are interested in finding protein families typ-
ical for species. We formulate this as a contrast data mining problem, where we take the
proteomes* of different species and search for protein domains that are specific to a small
subset, possibly one, of the species. A low entropy of a pattern ¢ reflects specificity to a
small subset of species, see Table 7.2. The hope is, that such pattern ¢p emanates from
real species specific protein domains.

We applied the entropy substring mining problem problem to a dataset of four pro-
teomes from different parts of the phylogenetic tree, namely the proteomes of H. sapiens,
M. musculus, A. thaliana, and C. elegans. For this task we modified our algorithm to report
only strings ¢ € Th(pred) that are not substrings of longer strings y € Th(pred) with

* A proteome is the set of all proteins of a given species.

147

pattern entropy frequency reference
¢ H($,Dy,...,D4) Dy D D3 Dy
KSDvY 0.230657 8 4 302 7 [Walker, 1994]
YSFGV 0.254649 4 5 335 14
DVYSFG 0.263708 9 6 351 11
SDVYS 0.356452 8 12 306 15
MAYDRYVAIC 0.338613 94 374 0 0 [Xieetal,2000],
AYDRYVAIC 0.343253 97 375 0 0 [Zhang and Firestein, 2002]
YDRYVAIC 0.352435 135 493 0 0
DRYVAIC 0.369871 193 632 0 0
RYVAIC 0.379256 194 634 0 1
PMLNPL 0.377389 98 306 0 0 [Zhang and Firestein, 2002]
LRNKDV 0.378017 79 283 2 0
YSLRNKD 0.385805 97 287 0 0
NPLIYSLRN 0.389852 102 294 0 0

Table 7.7: Entropy substring mining on the four proteomes H. sapiens, M. musculus,
A. thaliana, and C. elegans (D,, D,, D5, D,) with p, = 0.008 and a = 0.39.

freq(¢, D4, .-, D) = freq(y, Dy, .., D). For ease of exposition, we also omitted strings
that are prefixes of longer strings in the solution set. In Table 7.7 we list the entropy sub-
strings that have been mined using the parameters p; = 0.008 and @ = 0.39. All mined
patterns belong to three distinct motifs that we discuss in the next paragraphs.

The substrings with the lowest entropy values are specific for the plant A. thaliana.
The KSDVYSFGV motifis part of the kinase domain IX in receptor-like protein kinases (RLKs)
in higher plants [Walker, 1994]. RLKs constitute a big protein family in higher plants,
alone in A. thaliana there are more than 600 members [Morris and Walker, 2003]. They
are involved in a number of different signaling pathways like cell differentiation, plant
growth, and development.

The other two motifs that are found are abundant in mouse proteins and occur with
a lower frequency in the human proteome, but are absent in the plant and worm pro-
teomes. Both motifs are highly conserved domains of odorant or olfactory receptors
(ORs) in mouse [Xie et al., 2000; Zhang and Firestein, 2002]. ORs are located in cell mem-
branes and are responsible for the detection of odor molecules. The first motif, MAYDRY-
VAIC, is part of the transition between the transmembrane Il domain and the intercellular
loop 2 of ORs in mouse. The second motif, PMLNPLIYSLRNKDV, describes a major part of the
transmembrane domain VII of ORs in mouse. It was shown that these conserved protein
domains are specific to Class Il ORs in mouse [Zhang and Firestein, 2002]. As mentioned
above, these two motifs do also occur in human proteins and these types of ORs consti-
tute a large protein family that was found to be vertebrate specific [Berghard and Dryer,
1998]. Nevertheless, humans have only one-third the number of ORs than what has been
found in mouse [Zhang and Firestein, 2002], reflected by the pattern frequency distribu-
tion in Table 7.7.

CHAPTER

8 Conclusion and Future Work

In this thesis, we presented data structures and algorithms with applications in the anal-
ysis of high-throughput sequencing data. We developed a uniform framework for con-
structing and accessing different substring indices of a single or multiple strings in main
or external memory and showed its applicability for indexing multiple whole mammal
genomes. Moreover, we provided algorithms for typical applications based on indices,
e.g. exact and approximate pattern matching and repeat search, and in the last chapters
introduced high-throughput sequencing applications based on two of the proposed in-
dices. To make our framework and tools freely accessible to the research and user com-
munity, we implemented it as part of SeqAn [Doring et al., 2008] a platform-independent
generic C++ template library for sequence analysis. Due to its modularity, it was eas-
ily possible to integrate our framework into other alignment tools [Rausch et al., 2008;
Langmead et al., 2009; Emde et al, 2010; Kehr et al, 2011; Emde et al.,, 2012; Siragusa
etal, 2013a].

In Chapter 6, we presented RazersS, an efficient read mapping tool that guarantees to
find all reads within a user-defined Hamming or edit distance. In addition, a fixed error
model and a user-defined loss rate can be used to find the reads at higher speed with con-
trolled sensitivity. RazerS hence provides a perfect sensitivity-time tradeoff. Qur tool can
also handle paired-end reads as well as arbitrary number of errors and arbitrary read
lengths, which makes it usable for the new or improved technologies that will provide
longer reads. The latter two features are unique among the current implementations. To
provide a shared-memory parallelization we used OpenMP and dynamic load balancing.
Compared to other state-of-art read mappers, RazerS shows the highest sensitivity with
a comparable performance. It is the preferable tool for applications that require a high
sensitivity even in the presence of repeats, e.g. variation detection pipelines. The novel
algorithmic ideas used in RazerS, e.g. lossy filtering with sensitivity control or using a
banded adaptation of Myers’ algorithm for efficient bit-parallel verification, can also be
applied to improve existing read mappers with a similar filtration-verification approach.
Many algorithmic components of RazerS were integrated into SeqAn and the whole al-
gorithm was basis of similar tools for local read alignment [Hauswedell, 2009] or the
alignment of miRNA [Emde et al., 2010] or split reads [Emde et al, 2012].

In Chapter 7, we presented a new approach to constraint-based string mining that
outperforms the best-known algorithms by Fischer et al. [2006, 2008]; Kiigel and Ohle-
busch [2008] in running time as the experiments show. The better running time can
be attributed to various factors. Most importantly, the optimal monotonic hull of a fre-

150

quency predicate is incorporated to prune the search space to a minimum, resulting in
the deferred frequency index (DFI). Moreover, the frequency information is extracted as
a constant time byproduct during the suffix tree construction. Our algorithm inherits
the good cache locality of the lazy suffix tree if expanded in a depth-first search fashion
[Giegerich et al., 2003]. We used the notion of entropy from information theory and in-
troduced a symmetric, discriminatory predicate that generalizes the emerging substring
mining problem for more than two databases. In an experiment with proteomes of four
species we showed that it can be used to mine parts of protein domains that belong to
species specific protein families. Generally, the DFI is the preferable algorithm for fre-
quency based string mining. For huge datasets that the DFI cannot process in main mem-
ory, space efficient variants of the FHK algorithm [Fischer et al., 2006] should be consid-
ered. For conjunctive predicates, the KO algorithm [Kiigel and Ohlebusch, 2008] is the
next best alternative. For non-conjunctive predicates, the FMV algorithm [Fischer et al,
2008] can reduce the memory consumption at the price of a high increase in running
time.

Future Work. The work presented in this thesis can be complemented in several as-
pects of future research. First, different compressed indices could be provided to enable
larger texts to be processed in main memory with focus on generic approaches that are
efficient in practice. In [Grossi et al., 2003; Sadakane, 2003; Navarro and Makinen, 2007]
the authors devise compressed indices which are based on succinct representations of
the suffix array or the lcp table. In conjunction with a data structure for constant-time
range-minimum queries as proposed in [Fischer and Heun, 2006], a compressed variant
of the enhanced suffix array could be integrated into our framework as proposed in [Fis-
cher et al, 2008] and extended to multiple strings. Another memory improvement for
small alphabets completely refrains from using the lcp or child table and instead uses a
binary search to determine the children of a suffix tree node [Navarro and Baeza-Yates,
2000]. We implemented a prototype of the FM index [Ferragina et al., 2004] which proved
its applicability to high-throughput sequencing in different read mapping applications
[Li and Durbin, 2009; Langmead et al., 2009; Langmead and Salzberg, 2012] and allows
to traverse the prefix trie of a text. Currently, we are integrating it into our framework
and provide prefix trie iterators to ease the development of FM index based algorithms.
Another interesting direction is dynamic indexing [Salson et al., 2009, 2010], i.e. to up-
date an index according to text changes. This approach not only saves the time required
for constructing an index from scratch, it could also be used to determine and efficiently
represent the changes a set of similar texts would induce on a reference index. We are de-
veloping a data structure that, instead of applying these changes directly, allows to access
the (virtual) index of each text.

Our read mapping approach is with slight modifications also applicable to the din-
ucleotide based ABI/SOLiD sequencing technology. Therefore the reference sequence
must be converted into color space, i.e. into a sequence of 4 dinucleotide colors instead of
the 4 DNA bases, and the semi-global alignment of color-space reads could be adapted as
proposed in [Rumble et al., 2009]. Additionally, base-call qualities could not only be used
for sensitivity control, but also to optionally rank the read alignments by their plausibil-

151

ity instead of the number of errors [Li et al, 2008a]. We also plan to use SIMD extensions
[Intel, 2011] and hardware accelerators, e.g. GPUs and FPGAs, to massively parallelize
the verification of candidate regions.

Depending on the problem at hand, the implementation of our algorithm for fre-
quency string mining could be improved. If the DFI should only be used to output the
result of Th(pred), the memory consumption of the algorithm could be further reduced.
As each node is visited at most once, at any time only nodes of the suffix tree on the path
from the root to the current node need to be stored. A small alphabet (e.g. DNA) leads to
a dense suffix tree with many branching nodes at the top, as observed by Kurtz [1999]. In
that case, an improvement in running time could be expected by replacing the top of the
suffix tree with a q-gram index and in parallel traverse multiple g-gram buckets. In this
way, the memory consumption could be improved by keeping in memory only the tra-
versed subtree. Considering additional constraints during the mining process will play
an important role in further algorithmic development, e.g. reducing the solution space of
any mining approach to a succinct but representative set is one of the open challenges, as
mentioned by Han et al. [2007]. For example, Kobyliniski and Walczak [2009] aggregate
all minimal jumping emerging substrings to train discriminative image classifiers. The
top down construction of the DFI could limited to right minimal jumping emerging sub-
strings. To check for left minimality would require either the use of suffix links [Ukkonen,
1995] or an additional post processing step. Another venue is to combine the framework
of frequency based string mining with probabilistic automata that can be used to classify
sequences, e.g. to build discriminative models as presented by Slonim et al. [2003]. Due
to the efficiency of the presented approach it is possible now to construct probabilistic
automata for a set of databases in expected linear time as an extension to our previous
work [Schulz et al., 2008b].

APPENDIX

A Appendix

A.1 High-throughput sequencing technologies in detail

In the following, we explain the mechanisms and characteristics of the three most preva-
lent technologies (according to [Kodama et al,, 2012]) and in brief describe the SMRT"
and HeliScope™ single molecule sequencing technologies. More details can be found in
[Janitz, 2008; Mardis, 2008; Shendure and Ji, 2008].

IIlumina

[llumina sequencing uses a cycle-based sequencing-by-synthesis approach. The DNA
sample of interest is first fractionated by nebulization or sonication into smaller double-
stranded fragments. After blunt-ending and phosphorylating, two unique adapters are
ligated to the ends of the fragments. An eight-lane flow cell, whose surface is coated with
single-stranded primers that correspond to the adapter sequences, is used to hybridize
the single strands of the adapter-ligated fragments and bind them to the flow cell surface.
In a process called bridge PCR these fragments are amplified to clusters, i.e. local spots
of 1,000 identical copies of a single fragment.

The flow cell now contains millions of unique clusters and is sequenced in cycles. In
each cycle fluorescently labeled nucleotides are added to the flow cell. Each nucleotide
is a reversible terminator such that only one is incorporated to each nucleic acid chain in
each cycle. After the single-base extension, the labeled nucleotides are excited by a laser
and their emitted light is captured by a CCD camera, whereby the identical nucleotides in
the clusters work as amplifiers. Before starting the next cycle the fluorescent labels are
removed and the incorporated nucleotide is unblocked.

At the end all images are aligned, where clusters correspond to signals at identical
image positions across the cycles. The intensities of the four colors in the i-th image ata
certain cluster position are used to base-call the i-th base of the corresponding read and
assign a quality score.

SOLiD

In contrast to [llumina sequencing, SOLiD (Sequencing by Oligonucleotide Ligation and
Detection) is a cycle-based sequencing by ligation. The DNA sample is first fraction-
ated into smaller fragments, which are then adapter-ligated. For the amplification, the

154

Read position 0|1(2(3]|4|5(6 9110[11(12|13]|14{15[16|17|18[19|20|21|22(23|24|25|26(27| 28|
Universal seq primer (n)
1 b ole oo ole oo
AG 3' TITTTITTTIT TN,
2 2 Unive3r§alseq primer (n-1) ole ole ole ole
= Universal seq primer (n-2) .
5 3 > Bridge probe ° ole ole ole
TEITTITITITITITIY
GA ‘E
a 4 U”'Veg',sal seqprimer (0=3) | gy0e orope ° ole oo oo °
TEITTTITTTITINNITY
SU"'V?SE‘I seq primer (n-4) Bridge probe| ole ole oo oo

@ Indicates positions of interrogation Ligationcycle ll '2 3 4 /5 6 @

(a) color labels (b) primer rounds and ligation cycles

Figure A.1: SOLID color labels of the 16 dinucleotides (a). The labeling allows to convert
a sequence of overlapping dinucleotide colors into a sequence of bases, if one
involved base is known. Fragments are sequenced in rounds of multiple ligation
cycles (b). The universal primer is shortened after each round to interrogate all
bases. Image by Mardis [2008].

ABI/SOLiD platform uses emulsion PCR [Dressman et al., 2003], where small magnetic
beads are enclosed by water compartments in a water-in-oil emulsion. Thousands of
primers corresponding to one of the adapters are tethered to the bead surface. The com-
partments work as microreactors and contain all reagents required for PCR. Through lim-
ited dilution, each bead-containing compartment include at most one fragment which is
amplified on the bead surface. At the end of the amplification, each bead is coated with
millions of copies of the original single-stranded adapter-ligated fragment. After break-
ing the emulsion, the beads are separated from the micro reactors using magnetic bead
purification. The free 3’ ends of the fragments are then chemically attached to a flow cell
slide.

Prior to the first sequencing cycle, a universal primer that corresponds to the adapter
is annealed at the 5’ end of each amplified fragment. SOLiD uses a sequencing-by-ligation
technique. A pool of 1024 octamer primers with all possible combinations of A, C, G, and T
at the first 5 positions is fluorescently labeled according to the dinucleotide at the first 2
positions (at the 3’ end). The 16 possible dinucleotides are mapped to 4 different colors
as shown in Figure A.1a. In each cycle only one primer anneals to the 5’ end of the nucleic
acid chain. Then the flow cell is laser excited and imaged by a CCD camera. At the end of
the cycle the last 3 bases of the ligated primers and the fluorescent labels are removed
and the next cycle follows.

As in every cycle effectively 5-mers are ligated, only fragment bases at positions 1+ 5i
and 2+5i can be examined. To determine the remaining bases, the whole sequencing step
is repeated 4 times with a universal adapter that is one base shorter than the previous
round, such that positions 0 + 5i and 1 + 5i can be examined in the second round and
4 4+ 5i and 5 + 5i in the third, and so on (see Figure A.1b)

At the end of the 5 sequencing rounds, all overlapping dinucleotides in a fragment
prefix have been imaged. Analogously to [llumina sequencing, the images are aligned to
identify beads, their emitted colors and corresponding quality scores. The result of the
base-calling step is not a set of reads in base space (i.e. bases are A, (, G, or T) but in color
space (bases are 0, 1, 2, or 3 representing colors).

155

Roche/454

Roche/454 sequencing, commercially available since 2004, uses a cycled pyrosequencing
[Ronaghietal,, 1996] and the same technique for sample preparation as SOLiD. Beginning
with fragmentation and adapter ligation, the templates are then amplified on the surface
of magnetic beads by emulsion PCR, after which each bead is coated by a million of copies
of one DNA fragment. The beads are separated from the emulsion and distributed over a
picotiter plate, whose surface is covered by millions of wells, where each provides space
for only a single bead.

The actual sequencing is performed by the pyrosequencing method [Ronaghi et al,
1996], in which luciferase and other enzymes are used to generate light from the poly-
merase-driven incorporation of nucleotides. In a fixed order of cycles the plate is flown
with pure nucleotide solutions (e.g. beginning with A, followed by G,(,T,A,G,C,T,...). Wells in
which one or more nucleotides are incorporated, emit light which is captured by a CCD
camera at the bottom of the plate. The light intensity is proportional to the number of
incorporated bases and must be used to infer the length of homopolymer stretches, as
the incorporated nucleotides contain no terminating moiety. The sequence of the ligated
adapter starts with TCGA, which allows measuring the intensities of single nucleotide in-
corporations for each well to calibrate the base-calling software. However, the base call
accuracy deteriorates on large homopolymer runs (>6 bp). After the imaging, the unin-
corporated nucleotides are removed by an apyrase wash and the next cycle continues
with the next nucleotide solution.

SMRT"

Pacific Biosciences introduced in 2010 a single molecule real time (SMRT) sequencer that
enables sequencing a contiguous piece of length 1500 bp of a single molecule without
prior amplification. The fundamental idea is to immobilize DNA polymerase and to film
the incorporation of fluorescently labeled nucleotides in real time. As the sequencing
is not cycled, the base-calling cannot accurately determine the length of homopolymer
runs which must be inferred from signal lengths. However, this new approach permits
sequencing reads of length similar to first generation sequencing and promises to detect
methylated bases from deviations in the signal length.

HeliScope”™

HeliScope™ sequencing is a combination of Illumina and Roche/454 sequencing. Like
PacBio, it does not require fragment amplification and uses sequencing by synthesis with
nucleotides that contain a terminating moiety. Instead all four nucleotides being added
simultaneously to the flow cell, they are added in separate cycles (like 454). The imaging
and base-calling steps are similar to [llumina sequencing.

156

A.2 Proving sensitivity recursions

In this section, we prove the correctness the recursions proposed in Lemma 6.2 and
Lemma 6.3 (Section 6.5.1 on page 105) for the sensitivity computation of g-gram count-
ing filters.

Proof of Lemma 6.2. LetT(i,e, t,T,) € ®!, with ® = {M, R}, be the set of Hamming tran-
scripts with e errors, s.t. for every T, € T'(i,e, t,T,) the concatenation T,T, contains at
least t substrings M9. Fori < 0,e < 0,ort < 0 we define T'(i, e, t, T,) = @.

Randomly choose i,e,t € Ny, i > 0,T, € ®%,and T, € T(i,e, t,T,). Nowletx,y € ®
be the last characters of T, and T, such that for appropriate T} € ®"%, T}, € ®71 holds
T, =Tix, T, = Tyy. AsT,T, = T1xT}y contains at least t substrings M? it follows that
T1xT7 contains at least t — §(T3y). Additionally, it holds that e = ||T,|lz = ||T1x|lz =
IT: |l + llx]lz and thus ||Ti||lg = e, if x = M, and ||T1||[z = e — 1, if x = R. Because
shift(x, T,) = xT5 it follows T € T'(i — 1,e,t — 6(T,), shift(M,T,)) orT; € T(i — 1,e —
1,t — 6(T,), shift(R, T,)) and thus:

T(,et,T,) S TGi—1e ,t—8&(Ty), shift(M T,))M (A1)
U T(@i—-1e—1,t— 58(T,), shift(R, T,))R.

Now, randomly choose i’,e’,t' € N, x € &, T, € ®9,and T; € T(i’, €', t', shift(x, T,)).
Itholds |Tix| = i' + 1, ||[Tix||g = e’ + ||x||g, and if T3shift(x, T,) = T1xT,[0..|T,| — 1)
contains at least t’ substrings M?, then T;xT, contains at least t" + §(T,). Therefore, it
followsthat Tix € T(i' + 1,e' + ||x||g, t' + 6(T,), T,) and thus:

T(,et,Ty,) 2 TGi—1e ,t—8(Ty), shift(M T,))M (A.2)
U T(@i—-1e—1,t— 58(T,), shift(R, T,))R.

By the definition of R it holds that R(i, e, t, T,) =).
(A.2), (6.6) follows.

T, contains exactly 6(T,) substrings M?, therefore 7(0,¢,t,T,) = {€}ife = 0 and
0 <t <46(T,), otherwise T(0,e,t,T,) = @. With p(e) = 1, (6.5) follows. .

TLeT(etT,) p(T,). Applied to (A.1) and

Proof of Lemma 6.3. This lemma can be proven analogously to the proof above. Let ® =
{M,R,D,I}and T(i,e,t,T,) S ®(i) be the set of transcripts with e errors, s.t. for every
T,€T(,etT,), T,T, contains at least t substrings Mq.

Randomly choosei,e,t € Ny, i > 0,T, € ®(q), T,[|T;|—1] # I,and T, € T(i,e,t,T,).
Let x,y € @ be the last characters of T, and T, such that for appropriate T}, T, € ®*
holds T, = Tix, T, = T3y. Now it holds that ||T}||g = i — ||x|lr and ||T1]l = e — |Ix]le-
Additionally, T} xT; and thus also Tshift(x, T;y) contain at least t — §(T5y) substrings
MA. This proves the "C” part of (6.14). We omit the analogue rest of the proof. n

157

A.3 Read mapper parametrization

In the following we describe the parameters we used for the comparison with other read
mappers. MIN and MAX were placeholders for minimal and maximal insert size, INS is the
mean insert size and IERR the allowed deviation (INS = (MIN + MAX) / 2, IERR = (MAX -
MIN) / 2). For the tools using indices, we built the index using default options.

Bowtie 2. Version 2.0.0-beta6 was used. The number of threads was selected us-
ing the parameter -p. We used the parameter --end-to-end to enforce semi-global read
alignments. For the Rabema experiment, we used the parameters -k 100. For all other
experiments, we used the parameters -k 1. In paired-end mode, we used the parameters
--minins MIN --maxins MAX.

BWA. Version 0.6.1-r104 was used. We used the parameter -t to select the number of
reads in the aln step. The sampe and samse steps were performed using one thread since
BWA does not offer a parallelization here. When mapping for the Rabema experiment, we
passed the parameter -N to aln and -n 100 to samse. Otherwise, we passed the parameter
-n 1to samse. The insert size was not passed to BWA, however we pass the insert size and
allowed error from BWA’s output to the other read mappers.

Hobbes. Version 1.3 was used. Since we focus on edit distance, we used the 16-bit
bit-vector version as described in [Ahmadi et al., 2012]. We built the index using the
recommended® g-gram length 11. Indels were enabled using --indels. Maximal edit dis-
tance was set using -v. Multi-threading was enabled using -p. For resource measurement,
we used the output without CIGAR, for analyzing the results, we enabled CIGAR output
using --cigar. In paired-end mode, we used the parameters --pe --min MIN --max MAX.

mrFAST. Version 2.1.0.6 was used. It was used as explained in the manual?®. mrFAST
does not support multithreading. We divided the input into blocks of 500 k reads and
processed each chunk in a separate process using the program ts3. Long reads were split
into packages of 100 k reads. This way, always 8 processes were executed in parallel. We
set the edit distance error rate to 4 % of the read length.

RazersS. Version 3.1 was used. RazerS was parametrized as follows: The native or
SAM output format was selected with -of @ or -of 4. Indel support was disabled with
--no-gaps when required. The number of threads was set with the -tc parameter. The
percent recognition rate was set using the -rr parameter, e.g. -rr 100 or -rr 99. The error
rate was set through the -i parameter, e.g. -i 96 to map with 4 % errors®. The pigeonhole
or SWIFT filter was selected using -fl pigeonhole or -fl swift. As an all-mapper, the
parameter -m 1000000 was used and as a best-mapper -m 1 was used. In paired-end mode,
the parameters used were --1library-length INS --library-error IERR.

SHRIiMP 2. Version 2.2.2 was used. The number of threads was selected with --
threads. In paired-end mode, the options used are --pair-mode opp-in --isize MIN,MAX.

Soap 2. Version 2.1 was used. The number of threads was selected with -p. In paired-
end mode, the options used are -m MIN -x MAX,

L http://hobbes.ics.uci.edu/manual.jsp

Z http://mrfast.sourceforge.net/manual.html

3 http://vicerveza.homeunix.net/~viric/soft/ts/

* RazersS uses the percent identity, which is 100 minus error rate in percents.

http://hobbes.ics.uci.edu/manual.jsp
http://mrfast.sourceforge.net/manual.html
http://vicerveza.homeunix.net/~viric/soft/ts/

158

A.4 Extended variation detection tables

‘q¥'9 2]qDL SpUaIXa 2]qp3I S1Y], 'SPDA.L pua-paJind 10f S)Nsa. U0130939p UOIIDLIDA [N :Z'V d1qDL

567
66-4
00T-Y
C dINMHS
1Sv4iw
saqgoH
5674
66-4
00T-Y
¢ deos
VMg
zaumog
‘o4 oaud cpas oaud cpas daud cpas daud . cpas daud cpas daud cpas daud cpas daud cpas daud poylaw
(£'0) (s'0) (¥'7) (t44] (08) (0'9) (0'v) (07) (0'0)

siaddew-||e

siaddew-1saq

‘871 abod
uo p§'9 dJquy, Spuaixa ajqpl Sy ‘(S QI°9 uo132as) spva. pua-ajbuls .10f s} nsa. U0132239p UOIIDLIDA [Ny L'V d]qDL

S6-Y
66-4
00T-Y
CdINIYHS
1Sv4iw
saqQoH
S6-Y
66-4
00T-Y
¢ deos
VMg
zaumog
‘o4 oaud cpas oaud cpas daud cpas daud . cpas daud cpas daud cpas daud cpas daud cpas daud poylaw
(¥'0) ('0) (21) (T1) (0'v) (0'¢) (07 (0'T) (0'0)

siaddew-||e

siaddew-1s9q

159

A.5 Extended performance comparison tables

‘621 2bpd uo vg'9 ajqu], bulpuaixa ‘PIPp pua-ajbuls plLom-]pa. 10f s3Insa. [pIudWIIdAXa papudIX £V 31qDL

S6'76 1076 78'8L VY6'9L

1506 1oes bee; G676 YSEVT LY'S99 ET'8S e vevs s C88L 0LzL OVOT SKT S6-4
8676 06 . . . 06'8L 969L . . .
1506 1oty eos; 86°C6 8ETST TT69TT 6T00T e rovs apve 06°8L 0€L TTIT 6K 66
6676 T0'T6 . . . T6'8L L6'9L . . . =
1506 voss eos; 6676 867ST ST:V8ET 9TBIT ey rovs e C68L 62€L 6STT IST 00T-¥ %
L8776 1616 . . . €8'8L T69L . . . Q
o506 sirs oge; 9066 88T8E VE'9OWYT 60TTET o9, orps sovs 1668 1086 60:SST OV'EZ ZJAIMHS 8
. [}
1506 1ess ovs; 6676 VZETT 6VIL86E OV'ETY ser vovs sune 06°8L vy80T TEULE TOW ISvdiw @
wis oevs oses €890L 00TS8T BVSOT orrs oery cone 9T'9L Wiz [S6€ TISW s3qqoH
1906 e e S6'T6 V9L THE6Y ITEV e wous sone C8'SL S6LS ¥T6 9z:T S6-Y
1506 1918 oo 8676 6L98 65'8Y8 60°€L e rovs spes 06'SL S6LS vI6 9z'1 66 o
" . . N [
1506 1ot eos; 6676 9606 8T:TO0T 95'G8 se vovs sume 06°8L S6LS Sv'6 87T 00Ty %
€L'68 €L'68 6v'TL 6Y'TL w
cres recs oy EL68 187 TTIST VET gre e e 6VTL 006 LE:8 SST tdeos &
soos 8 BT coep SLvr 0E:86 SPET e ot O% se6L oz €I 089€ SES vma 3
9L'76 S8'T6 . . . 18'8L 889L . . .
vs06 150 ces, CL°96 vLEE OV:99 LES e iogs sews TL'S8 667 svi€r 00T zaumog
[%] [%] speas [aw] [scuw] [stuiw] [%] [%] speas [aw] [ssuiw] - [s:uiw] poyiaw
speaJ paddew paddew Ajpoaui0d Ajowsw swn ndd awn speas paddew paddew Ajposui0d Alowsw aswnndd swn
suaides 'H J91seSouepw g
joseiep
00TZTOYY3 TTLL6VYYS
sss os ron LL88 8658 YTUT TTT oss sree toes 6SL6 S0L5 80'T 6v0 564
seos ooes oe, 8L°88 9806 L09T 9TT o5 oree s BSLE S0LS 60'T 6v:0 66
scos oves tos, 6L'88 €026 LSOT OTT orss syee pave 6SL6 soLs 0TZ 050 00Ty I
69'L8 8898 . . . 8v'L6 €896 . . . 3
o558 orts 1 166 TLEE 85809 VWIS srss sweq cowy 8C66 €SST Tviev LT'v CTAAMHS B
. . . " o
sss wis roe 6188 LBYOT THLS TO'9 oo coee sone 65°L6 6978 0 9¢:0 lsvdiw @
€878 S6'18 . . . 8768 9988 . . .
008 srer st €878 OETE 9TUST 9V'IT goss ares wres BT68 69L SSTT 20T $3GqOH
seos oove ey LL'88 ¥8s 756 0€:T s e o 6G°L6 S0LS LST L0 S6-Y
seos oty woe, 8L°88 W8S LUIT 8ET s e vony 6G°L6 S0LS 6ST 870 66 o
y . . . ®
seos ooty 1oe, 6188 W8S THIT T s e o 6G°L6 S0L5 00T 05:0 00Ty %
S6'S8 S6°'S8 89'S6 89°S6 w
voss oves 10a; G6'G8 €18 9z:§ TET o6 coes vovs 89°G6 67L 9T:€ 0€T tdeos 3
ros mes voey EE°68 143 0§59 TTS s e e 86°L6 ¥8T [TET ¥0'€ vma 3
ozss sits tos; 8S°T6 LT YIiST 80'T ciss tree vany CE66 791 1T:ST 6T zaumog
[%] [%] spead [an] [suw] [s:unw] [%] [%] spead [an] [suiw] - [stuiw] - poylaw
speas paddew paddew Ajpoauu0d Asowsw swnndd swn speas paddew paddew Ajpoaui0d Asowsw swpndd swn
suega|a 11003
jaselep
06£5904YS 5/07T04Y3

160

'SAN0Y 96 UIYIIM JaSDIDP UDWNY
dq 008 2y dbuw 03 3]qp 30U SbM 7 JWIYHS ‘Sppa. paddpui fo daquinu moj ay3 sulpjdxa yolym s3aspipp ubwiny dq 908 pub 00 Y3
pup 3asp3vp Af dq 90% aYy3 410f paysp.1o A]paapada.l $255320.4d [SYIU dWOS 219y UMOYS J0U SNYI pub spva.l buoj burddobui o ajqpdpo
J0U S152qqO} ‘JopOuUl 10.1.18 buiwn]]] (pay23a.43s) 3Nbfap ay3 buisn UoSv Yy1m papinuils wL sybuaj uaalb ay3 o spva. pua-ajbuis W [
A0f umoys aup s3nsa. a3y], ‘6ZI a2bvd uo ng-9 a|qu], bulpuaixa ‘vIvp pua-ajbuls papnuils buoj .1of s}nsa. [pIUdWIIIAXS PaPUIIXT F'V 2]qDL

€568 €898 1876 156

6406

v oo oo 606 VO6Y VTISSY TS'BE grep sevs oy EG'68 TESE Q09T ETTT gpeg tovs fom L8'T6 TYEE 8¥°09T OVT 564
v et 00 6Y06 Y96y EOULY TVTY grzg sevs cer ES68 TESE ITTHT IVTT eyep ceno son 88'T6 TEE TET6T TTLT 664 2
v o 0o 606 Y96y SE'EVZT SYSOT gres seve cor €568 TESE LSWIS TS'BY gyop tove cews 88'C6 TVEE LO€TE OE'8T 001-¥ m
- - - - - 515 eve wr SL'66 00TSt TO'TTTZ6 VO'SOLT cros ouve vorr G666 0LS8€ €S'€TES 6T:9YS TAINHS m

e 1096 8S0SLET EOOTTT Lgo5 cyer oy BE'6S 926L ITEYTY OSTTE cyos coro serr BL'C6 S6EL TTWZOT TO'E0T LSv4w

L e %% 65706 Y967 0SHTY TTLE grrs sese or €568 TESE SOUTT TEOT cvos eone som L8'T6 TPEE ETEST SSi€ET S6-Y
v oo 0o 6V°06 Y96y TTTWY 0SB grep sess cor ES'68 TESE LV'OTT TEOT gpep tove tem 88'C6 TYEE 00'6LT LT:9T 664 o
v o 00 6V°06 Y96y TESOZT SVZOT grep sess cor ES°68 TESE SOTTIS TTUY gpo tove cewr 88°C6 TYEE LT:667 VEOT 001-Y w
i e oo CUSE w9 voisT 50T vos com cov. 60°TS 8€65 0€:CT LET 1o srte senr STTO 1595 80'S 67:0 zdeog m
oo teor 200 0929 | ooz 60T TELST 009 gris aeve cor. EEV8 EYOTT VTS8T TTOT ayes corg sovr T8'T6 6199 OEWyr €SV vme 3

(5e oete w00, 00°00T 989€ TTi9SL vz ovee ser V666 = EIVE 90T STV oe seve cenr LS66 [223 215 S 4 zaumog

[%] [%] speal [aw] [s:uiw] [%] [%] spead [aw] [suw] [suiw] [%] [%] spead [qn] [suw] [ssuiw] poyaw

speas paddew paddew Ajpoeni0d Alowaw awn ndd speas paddew paddew Ajpoesiod Alowasw awn ndd awn speas paddew paddew Appossiod Alowsw swnndd swn
sualdes "H suaides "H suaides 'H
008 = L ‘pareinuiis 00% = et ‘pareinwiis 002 = w ‘patenwis joseep

v o so. EV06 €96y SE8 0z'1 sees oree sen LV68 vL9z 9 §5:0 s eve very 986 6251 €19 81:0 S6-4
cvw 1y s00 EV'06 €96 BE® OTT sees syos e LY'68 VL9T VTL 850 Lyes seus vewr L8T6 62ST 619 8v0 664 2
A €960 8Y'8 OTT spes e e Lt'68 VIOT LS9 850 iyes vers et L8T6 62ST SS9 600 ooty 3
PR T €20V TTTHV6 90:96L grzs e i G866 YI8E TOWBY ESTU 1res wews sem 9666 8S/E€ OEV9 STL ZdINHS m

oot STIl6 CTer 9TiS 18 e sy T0'S8 weL vs0T LTt Lvos e e LT'T6 6069 620T TLT 1SV4w

v tte s00 EV06 €96y 5L STT et ses sr LV68 vL9z 159 55:0 wos evs ser 986 62ST €9 9%:0 S6-4
v ore s00 EV06 €96y TSt A sees svve ser LV'68 vL9z 99 95:0 s sere ven L8T6 62ST 659 9:0 66 o
P €96 018 LT:T or2s oeee et LU'68 Y97 SOL 95:0 Lvos e vemy L8'T6 625T T€9 97:0 00T-¥ w
seis iree oo VISE 9YST EEW ¥S:0 505 e ses 66°0S vSST Ov'E 8E0 or1s gres rem 0TI vL0T Ov'T 12:0 zdeos &
a0 o0y c00 60°89 SSOT VVOE BE'S gere rese ser LSV SE6 €0'8T OV'T rrop sevs rem E8T6 ovr Tt9 60T vme 3

et 879 SYWIT SBVET Lz tss wer V666 e SSE STBT SET opeg cone von OL°66 8Te €S 62:0 zanmog

(%] [%] speas [aw] [suw] - [stuiw] [9%] [%] speas [aw] [stuw] [9%] [9%] speas [an] [suw] - [stuw] poyaw

speas paddew paddew Ajpoaus0d Alowsw swpndd swn speas paddew paddew Ajpoaui0d Asowsw aswnpndd swn speas paddew paddew Ajpoaui00 Asowsw aswpndd awn
_wummmocm_ms ‘a _wUmNMO:N_WE ‘a LWmeMOCm_WE ‘a
008 = w ‘parejnus 00% = L ‘pare|nuwis 007 = w ‘pare|nwis wseep

161

‘621 2bpd uo qg°9 ajquy, bulpuaixa ‘PIPp pua-pa.ivd plLOM-]Da.1 10f SINSa. [DIUdWILIdAXD PapUadIX] Gy |GV

i soes om V898 9Z0€T7 0Z:9S6T TT99T oo rove oeve 08°ZL TvZel T 9€iL S6-4
i ot woe 16'98 99857 EV:00TT 9SLLT 0o sovs veve E6°TL S8YET VS'EL YYiL 664
o st e €6'98 €79/ YTLITT LTUST cons sove oo S6'TL 8GSET 8T9L 6SL 00T 3
ou sse oy TSL6 V6S8E 9TOTLIE TETILT 1o00 soue v 9EL8 8E8E 6TILES LOLY TANNMHS 3
. o
vois ess soe 6L'L8 STILS GT6YIL TT6LL oo sove oeve OTEL ze08y ST'I8 9T 1Svdw @
e e 0LTLY SO'Y88 SE68 1gis woe eers 8VT9 oies o 8LV8 | 0/8S [SSL ¥ $9qqOH
o ot e 98 8/9ET OT:66ST VVSET goos soue ceve 08°TL 66TTT 889 95:9 S6-Y
97'S8 9L78 . . . v0'0L ¥E99 . . .
i e wom 16798 89G9T E€E:TL8T €O'6ST oo sovs veve E6CL 66TTT 9769 00:L 66 o
. . y . o]
i ot woe €6°98 89S8T SELLOT 6TOLT oo sovs oeve S6°TL 66TTT 6E€6 106 00Ty %
9’18 608 €6'S9 ET'V9 w
ceut rors som LV'L8 €9¥S TET9 VT8 ares e wove LLTL or6 w8e 6TS tdeos &
98'v8 LU'T8 . . . 69 €6'S . . . @
wsil sove veer 90'88 799 TVTIVC SEVE 1yoe e wese TVEL £0S YIiLL EEET vme 3
Soe oo GSSE 8S'8ZT TS0T gyos coon oone V6'I8 6vE oviLL TE9 zaumog
[%] [%] saed [an] [ssuiw] [stuiw] [%] [%] sared [aw] [suiw] - [s:unw] poylaw
siied paddew paddew Ajjoaui00 Alowasw swn ndd awn siied paddew paddew Ajpoauiod Ajowsw awpnndd awn
suaides "H J915e8ouepw °q
joselep
00TZTO¥Y3 TTLL6VYYS
et oot sea SE0T 0SZIT SEE9 €€9 o e som 296 EITTT €19 Sr'T 64
sret et oee 8E0T 88STT 6EV9 LE9 oo cem som 996 ETTTT OV9 81 664
ser sror orer 8E0Z 9T8TT SEBL 6VL e sens com 996 ETTTT vEL €ST ooty I
9€'6T TL8T . . . 9r'€6 S8'T6 . . .)
swit voor weu U6'ES 89VE TEBETT OE:SOT orgs s som VL'LG ZI9T 9TiL6 8T8 TANNHS 8
N . ., . o
i wor e LEGL 0TSYS ETWET TOWT oot som TE'SH 89825 7z:0T 1T ISvdw 4
Jror uer sewr 99'8T 7S8T 8EE0T LTOT 1505 sons orer ST'98 96TT v¥i6E TT'S $9GqOH
it e et GEOT 0€TTT TT09 L09 oo cons e T9V6 EITTT 2¢:9 T S6-Y
it toer s 8E0T 0€CTT 6€79 0T9 oo ten om 9976 EITTT 80:9 as 66 o
. . . . o
sret trer oeer 8E0T 0£TIT v¥iv9 629 oo cens e 9976 ETTTT €€ €T 00T-¥ 7
EL'8T VEBT LET6 8ST6 w
et seor ten SYVT €€8 0Ty 95§ coss oo sem OL'V6 vL 6T:LT IS'E zdeos 3
251 seer st 0T'T8 6L LVSL TETT e vews wom L8'S6 €vE 8506 SEL vma 3
it et e BSV8 443 0S:vZ 619 vies 1 ses 69'86 6T STi6Y 60 zaumog
[%] [%] saed [aw] [suw] [s:uiw] [%] [%] sared [an] [suiw] poyiaw
siled paddew paddew Aj3oaui0d Asjowsw swpndd swp siied paddew paddew Ajpoaui0d Asowsw swnndd swnp
suegaj@) 11003
jaselep
06£5904YS 5/0770¥43

162

'SAN0Y 96 Uly3im 3aspipp uowiny dq 098 aya dow 03 ajqp 30u sbm g JWIYHS ‘s4ivd paddput fo uaquinu
Mo] ay3 suibjdxa yoym s3asbipp ubwny dq 908 pub Q0% 2Y1 pub 3asv3vp Af dq 00F 2y 10f paysp.o Ajpaivada. sassa20.4d [SyIU
2wWos ‘Japoul 40112 bunnjy (paysa.ais) 3npfap aya buisn Uosby yalm papjnuils w syIbua] uaalb ayj Jo sppa.d pua-paaivd p Ixz
A0f umoys ap s3nsad ayJ, ‘671 abvd uo qs9 ajqu], buipuaixs ‘vIpp pua-pa.ivd paypinuils buoj .1of s} nsa. [PIUdWILIAAXD PaPUIIXT 9V 2]qDL

ST'59 9085 L6TL 6509

YY66 OE99E LTTE sper s o 8969 9985 7£:00€ VEOT ey totr oy 06VL 658 1§'88T 1T'ST S6-4
YU66 9EIS9E VETE er sie e 8969 99€5 973661 OV9Z soer srrr oor T6VL 6SLE SPiTOE TE9T 664 2
VP66 ES'SEY LTEV oo e 00 8969 99ES 6S'BLE TUEE ey it a1 T6DL 6SLE THEVE 6567 ooty 3
- - - et e w0e’ 98'66 €L687 VEGEILBT BVEVTE o worr oy 8666 Y606€ 95:8/90T TT:966 T dINIHS m

6T08T VILTV6 6SEVOT o6 cor aoo OT'ST 0E9ET 9ST66T SV8ZE e sprr o LLV8 6TEYT L0:09TZ 67:LTC lSy4iw

YU66 POI99E OEITE cpor soe sy 8969 9965 80:6T€E €08 goer svrr ot 06FL 6SLE €TSLT vIWT 564
VY66 OTEWY LS8E er gre g 8969 99es 6T:TIE 04T syar soer oo T6VL 6SLE 80'S8T €0'ST 664 o
YU66 TTBES B0V o ae e 89°69 99€S ST06€E LOVE oger sorr or TEWL 6SLE 6EILTE 6E:8T 00T-¥ w
S8EL SOTTT O9TTT 1eur see e VO'6V G869 [SiEV oy w2 man et 68°TL £995 SSi9T 50:¢ tdeos §
SS60T L€:895 80°T9 19sc oro goo OLTL LETTT TS'8LE ST'SE s aver o1 VTVS 06/9 ££:06 6€:0T vme 3

08 0S:0S8 TTTL oger soe oo 1866 YYSE 60:06 €L s o o 6766 6EVE YI:WT 50:T zanmog

4] (%] sned faw] [suw] (suw] 4l (%] saed aw] [suw] (s 4l (%] sied an] [Suw] [suw] powaw

siied paddew paddew Ajppaiiod Asowsw swyndd swn siied paddew paddew Apppauiod Alowsw awn ndd awn siied paddew paddew Apppauiod Alowsw swn ndd awn
suaides 'H suaides ‘H suaides "H
008 = w ‘pajejnuils 00% = w ‘parejnwis 007 = w ‘parenwis wseep

wee L¥iST 60T et e woa 8969 ¥9€S STST IST e sen et 6L SL0€ TeTl 9Tl [T
wee SPiST o€t sece e woa 8969 Y9ES €SWT €S e v et TEWL SL0€ €TET 0ET 664 2
wee SSST o€z et e wou 8969 ¥9ES 9€ST pST e v et TEWL SL0E TO¥T €T 00T-¥ m
TIZr YLP9T6T 9TLIIT eper oo we €866 SYEE SEBLE LSE8 g wer wer L6'66 9pLE TTEET OL:ET TJIYHS m

TOEST €ST0T LVOT opee moe woe ETTL €6YCT TSSY IS oo e ey’ 8908 YOTIT L£0T 9TiT 1Sv4w

i oor o0 OTTL 66 LTST 61T apse ro wo 8969 VOES TEET THT e vers v 68VL 1 2774 S] 564
iz oor o0 OTTL 66 vTiST 61T apse iro wo 8969 VIES OEWT SVT g veut v T6WL SL0E wTT ST 664 o
iz oot o0 OTTL Tv66 09T T sess tre wo 8969 VIES VWET ST g veur er T6WL sL0e TTIT 9T ooty %
P9LT 9E'LT 6T°9€ BE'SE S6'LS T0'9S w
szt om0 00 ECST T9ST €TWTT 98T iz tre w0 SS6V LLET 9TWY OV'Y g s sor 96'TL 60T SE9T SST zdeos 3
ety oo VYOV 69ST OViEL 9TTT eoss oo oy 9STL SL6 L08E €TI0 oeq s oy OEY8 L9 L2464 vme 3

o a0, STYT LO'6E gpes ore 200 C9'66 SIS LT'89 SV'S g et cer VT66 068 LE9T STIT zaumog

[%] [%] saed [an] [s:uiw] [%] [%] sared [aw] [suw] [suiw] [%] [%] saied [qn] [suw] [suw] poylew

sied paddew paddew Ajpoani0d Adowsw awn ndd awn sied paddew paddew Ajpoani0d Alowsw swpnndd swn siied paddew paddew Appoasi0d Alowsw awpndd swn
LWuwmmocm_wE ‘a ‘_Wummmocm_wcv_ ‘a quwMMO:m_wE ‘a
008 = w ‘pajejnwis 00% = W ‘parejnwis 00Z = W ‘parejnuls 19seiep

163

A.6 Proving hull optimality
In the following, we show that the monotonic hulls proposed in Examples 7.2, 7.3, and
7.4 (Section 7.2.2 on page 135) are optimal.

Proposition A.1. Let D,, D, be two databases, ps, p, € R, and pred : N* - {true, false} be
defined as:

pred(d,,d,) = (dy = ps - |D1[) A(dy - |D,| = Pg - dy - |Dy4]). (A.3)
The monotonic hull pred, , of pred with:
pred, , (dy,d;) == (d; > p, - |Ds) (A4)

is optimal.

Proof. We assume pred, . is a non-optimal monotonic hull of pred. Then there exists
a monotonic hull pred’,; of pred with pred, =~ # pred’,. Thus, d € N? exist so that
pred, .(d,,d,) is true and pred’,(d,, d) is false. By contraposition of the monotonicity
criterion, pred’,;(d,, 0) also is false. It holds that pred(d,,0) = pred, (d,,d;) = true
and pred # pred’,;- This is a contradiction to pred’,,; being a monotonic hull of pred.
Hence the proposition holds. n

Proposition A.2. Let (miny, ..., min,,), (maxy, ..., max,,) € N™, with (min,, ..., min,,) <
(maxy, ..., max,,), and pred : N™ - {true, false} be defined as:

pred(d) = (min; < d; < max;) A ... A (min,, < d,,, < max,,). (A.5)
The monotonic hull pred, , of pred with:
pred, ,(d) := (min; < d;) A ... A (min, <d,;,) (A.6)

is optimal.

Proof. Analogously holds for a pred’,; and d € N™: pred, , (d) is true and pred’y,;(d) is
false. Thus it holds that (min,, ..., min,,) < d and pred’,;(min,, ..., min,,) also is false. It
holds that pred(ming, ..., min,,) = true and pred # pred’,;. This is a contradiction to
pred’y 1 being a monotonic hull of pred. Hence the proposition holds. n

Proposition A.3. Leta,p; E R 0 < a,ps < 1, and pred : N™ — {true, false} be defined as:

dd) =V L /\i 4@, 4 A7
pred(d) = ie[1..m]|Di| = Ps L D, - w(d) og . ID;] - w(d) <a]l, (A.7)
i=

m d.
with w(d) = Z . (A.8)

£ 1D;]

The monotonic hull pred, . of pred with:

d;

predhun(d) = <vie[1..m] |Dz| 2 ps) (Ag)

is optimal.

164

Proof. Again assume non-optimality of pred, and fora pred’, andd € N™: pred, , (d)
is true and pred’,;(d) is false. Choose k such that d, /|D,| = ps and d' € N™ such that
dy, = diand d; = 0 for i # k. Then pred’,;(d") is false because pred’,; is a monotonic

hull. pred(d") is true because pred, ,(d") is true and the following holds:

Z d—: log di = di log d—;c (A.10)
i |Di| - w(d) 7™ Dy - w(d') IDie| - (@) =™ |Dy| - w(d")
=]ng 1 (A.ll)
=0 £ a. (A.12)

Thus pred # pred’,,; follows which is a contradiction to pred’,; being a monotonic hull
of pred. Hence the proposition holds. n

APPENDIX

B Curriculum Vitae

For privacy reasons, the curriculum vitae is not contained in
the online version of this thesis.

166

For privacy reasons, the curriculum vitae is not contained in
the online version of this thesis.

167

For privacy reasons, the curriculum vitae is not contained in
the online version of this thesis.

168

APPENDIX

C Declaration

I declare that this thesis is my own work and has not been submitted in any form for
another degree or diploma at any university or other institute of tertiary education.
Information derived from the published and unpublished work of others has been
acknowledged in the text and a list of references is given.

David Weese
June 5, 2013

170

BIBLIOGRAPHY

Abouelhoda, M., Kurtz, S., and Ohlebusch, E. (2004). Replacing suffix trees with enhanced
suffix arrays. J. Discrete Algorithms, 2, pages 53-86.

Abouelhoda, M. L, Kurtz, S., and Ohlebusch, E. (2002a). The enhanced suffix array and its
applications to genome analysis. In Proc. of the 2Znd Workshop on Algorithms in Bioin-
formatics, volume 2452 of LNCS, pages 449-463. Springer.

Abouelhoda, M. 1., Ohlebusch, E., and Kurtz, S. (2002b). Optimal exact string matching
based on suffix arrays. In Proc. of the 9th International Symposium on String Processing
and Information Retrieval, volume 2476 of LNCS, pages 31-43. Springer.

Adamidi, C., Wang, Y., Gruen, D., Mastrobuoni, G., You, X., Tolle, D., Dodt, M., Mackowiak,
S.D., Gogol-Déring, A., Oenal, P, Rybak, A, Ross, E., Alvarado, A. S., Kempa, S., Dieterich,
C., Rajewsky, N., and Chen, W. (2011). De novo assembly and validation of planaria
transcriptome by massive parallel sequencing and shotgun proteomics. Genome Res.,
21(7), pages 1193-1200.

Agrawal, R., Imielinski, T., and Swami, A. N. (1993). Mining association rules between sets
of items in large databases. In P. Buneman and S. Jajodia, editors, Proc. of the 1993 ACM
SIGMOD International Conference on Management of Data, pages 207-216. ACM Press.

Ahmadi, A., Behm, A., Honnalli, N., Li, C., Weng, L., and Xie, X. (2012). Hobbes: optimized
gram-based methods for efficient read alignment. Nucleic Acids Res., 40(6), page e41.

Aho, A. V. and Corasick, M. J. (1975). Efficient string matching: an aid to bibliographic
search. Commun. ACM, 18, pages 333-340.

Alkan, C, Kidd,]. M., Marques-Bonet, T., Aksay, G., Antonacci, F,, Hormozdiari, F, Kitzman,
J. 0., Baker, C.,, Malig, M., Mutly, 0., Sahinalp, S. C., Gibbs, R. A, and Eichler, E. E. (2009).
Personalized copy number and segmental duplication maps using next-generation se-
quencing. Nat. Genet., 41(10), pages 1061-1067.

Altschul, S. E, Gish, W,, Miller, W,, Myers, E. W,, and Lipman, D.]. (1990). Basic local
alignment search tool. J. Mol Biol., 215(3), pages 403-410.

Asuncion, A. and Newman, D. (2007). UCI machine learning repository. http://www.ics.
uci.edu/“mlearn/MLRepository.html.

Baeza-Yates, R. A. and Navarro, G. (1999). Faster approximate string matching. Algorith-
mica, 23(2), pages 127-158.

http://www.ics.uci.edu/~mlearn/MLRepository.html
http://www.ics.uci.edu/~mlearn/MLRepository.html

172

Baron, D. and Bresler, Y. (2005). Antisequential suffix sorting for BWT-based data com-
pression. IEEE T. Comput., 54(4), pages 385-397.

Barski, A, Cuddapah, S., Cui, K, Roh, T, Schones, D., Wang, Z., Wei, G., Chepeley, I,
and Zhao, K. (2007). High-resolution profiling of histone methylations in the human
genome. Cell, 129, pages 823-837.

Bentley, D. R, Balasubramanian, S., Swerdlow, H. P,, Smith, G. P, Milton,]., Brown, C. G,,
Hall, K. P, Evers, D.]., Barnes, C. L., Bignell, H. R,, Boutell,]. M., Bryant, J., Carter, R. |,
Keira Cheetham, R,, Cox, A.],, Ellis, D.]., Flatbush, M. R., Gormley, N. A., Humphray, S. J.,
Irving, L.]., Karbelashvili, M. S,, Kirk, S. M., Li, H,, Liu, X., Maisinger, K. S., Murray, L. |.,
Obradovic, B., Ost, T,, Parkinson, M. L., Pratt, M. R,, Rasolonjatovo, I. M. |., Reed, M. T,
Rigatti, R., Rodighiero, C., Ross, M. T, Sabot, A., Sankar, S. V., Scally, A., Schroth, G. P,
Smith, M. E., Smith, V. P, Spiridou, A., Torrance, P. E., Tzoney, S. S., Vermaas, E. H., Walter,
K., Wy, X,, Zhang, L., Alam, M. D., Anastasi, C., Aniebo, I. C., Bailey, D. M. D., Bancarz, I. R,,
Banerjee, S., Barbour, S. G., Baybayan, P. A, Benoit, V. A,, Benson, K. E, Bevis, C., Black,
P.].,, Boodhun, A, Brennan, J. S., Bridgham, |. A,, Brown, R. C,, Brown, A. A., Buermann,
D. H., Bundu, A. A, Burrows, J. C., Carter, N. P, Castillo, N., Chiara E. Catenazzi, M., Chang,
S., Neil Cooley, R., Crake, N. R,, Dada, O. 0., Diakoumakos, K. D., Dominguez-Fernandez,
B., Earnshaw, D.]., Egbujor, U. C., Elmore, D. W, Etchin, S. S., Ewan, M. R,, Fedurco, M.,
Fraser, L.]., Fuentes Fajardo, K. V,, Scott Furey, W.,, George, D., Gietzen, K.]., Goddard,
C. P, Golda, G. S., Granieri, P. A., Green, D. E., Gustafson, D. L., Hansen, N. F,, Harnish,
K., Haudenschild, C. D., Heyer, N. L., Hims, M. M,, Ho, |. T,, Horgan, A. M., Hoschler, K.,
Hurwitz, S., Ivanov, D. V,, Johnson, M. Q., James, T, Huw Jones, T. A., Kang, G.-D., Kerelska,
T. H., Kersey, A. D., Khrebtukova, 1., Kindwall, A. P, Kingsbury, Z., Kokko-Gonzales, P. 1.,
Kumar, A, Laurent, M. A,, Lawley, C. T, Lee, S. E,, Lee, X,, Liao, A. K,, Loch,]. A,, Lok, M.,
Luo, S., Mammen, R. M., Martin,]. W,, McCauley, P. G., McNitt, P, Mehta, P,, Moon, K. W,
Mullens,]J. W,, Newington, T, Ning, Z., Ling Ng, B., Novo, S. M., O’Neill, M.]J., Osborne,
M. A., Osnowski, A., Ostadan, O., Paraschos, L. L., Pickering, L., Pike, A. C., Pike, A. C,,
Chris Pinkard, D., Pliskin, D. P, Podhasky, ., Quijano, V.]., Raczy, C., Rae, V. H., Rawlings,
S. R, Chiva Rodriguez, A., Roe, P. M,, Rogers, ., Rogert Bacigalupo, M. C., Romanov, N,
Romieu, A, Roth, R. K., Rourke, N.]., Ruediger, S. T., Rusman, E., Sanches-Kuiper, R. M.,
Schenker, M. R,, Seoane,]. M., Shaw, R.],, Shiver, M. K,, Short, S. W,, Sizto, N. L., Sluis, J. P,
Smith, M. A,, Ernest Sohna Sohna, J., Spence, E. |, Stevens, K., Sutton, N., Szajkowski,
L., Tregidgo, C. L., Turcatti, G., Vandevondele, S., Verhovsky, Y., Virk, S. M., Wakelin, S.,
Walcott, G. C., Wang,]., Worsley, G.], Yan, |, Yau, L., Zuerlein, M., Rogers,]., Mullikin,
J. C., Hurles, M. E., McCooke, N.]., West, |. S., Oaks, F. L., Lundberg, P. L., Klenerman, D.,
Durbin, R., and Smith, A.]. (2008). Accurate whole human genome sequencing using
reversible terminator chemistry. Nature, 456(7218), pages 53-59.

Berghard, A. and Dryer; L. (1998). A novel family of ancient vertebrate odorant receptors.
J. Neurobiol., 37(3), pages 383-392.

Berry, M.]. and Linoff, G. S. (1997). Data Mining Techniques: For Marketing, Sales, and
Customer Support., pages 51-62. John Wiley & Sons, 1 edition.

173

Birzele, F. and Kramer, S. (2006). A new representation for protein secondary structure
prediction based on frequent patterns. Bioinformatics, 22(21), pages 2628-2634.

Brazma, A., Jonassen, I, Vilo, J., and Ukkonen, E. (1998). Predicting gene regulatory ele-
ments in silico on a genomic scale. Genome Res., 8(11), pages 1202-1215.

Burkhardt, S. and Karkkainen,]. (2002). One-gapped g-gram filters for levenshtein dis-
tance. In Proc. of the 13th Annual Symposium on Combinatorial Pattern Matching,
CPM 02, pages 225-234. Springer.

Burkhardt, S. and Karkkéinen, J. (2003). Better filtering with gapped q-grams. Fund.
Inform., 56(1,2), pages 51-70.

Burkhardt, S., Crauser, A., Ferragina, P, Lenhof, H.-P, Rivals, E., and Vingron, M. (1999).
g-gram based database searching using a suffix array (QUASAR). In Proc. of the 3rd
Annual International Conference on Research in Computational Molecular Biology, RE-
COMB 99, pages 77-83. ACM Press.

Burrows, M. and Wheeler, D.]. (1994). A block-sorting lossless data compression algo-
rithm. Technical Report 124, Digital SRC Research Report.

Chan, S, Kao, B,, Yip, C. L., and Tang, M. (2003). Mining emerging substrings. In Proc. of
the 8th International Conference on Database Systems for Advanced Applications, DAS-
FAA’03, pages 119-126. IEEE Computer Society.

Chandra, R., Dagum, L., Kohr, D., Maydan, D., McDonald,]., and Menon, R. (2001). Parallel
programming in OpenMP. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

Chen, W, Kalscheuer, V,, Tzschach, A., Menzel, C., Ullmann, R., Schulz, M. H., Erdogan, F, Li,
N, Kijas, Z., Arkesteijn, G., Pajares, I. L., Goetz-Sothmann, M., Heinrich, U., Rost, L., Dufke,
A., Grasshoff, U., Glaeser, B., Vingron, M., and Ropers, H. H. (2008). Mapping transloca-
tion breakpoints by next-generation sequencing. Genome Res., 18, pages 1143-1149.

Ching, Y.-T.,, Mehlhorn, K., and Smid, M. H. M. (1990). Dynamic deferred data structuring.
Inf. Process. Lett., 35(1), pages 37-40.

Cormen, T. H,, Leiserson, C. E., Rivest, R. L., and Stein, C. (2001). Introduction to Algorithms.
MIT Press, Cambridge, MA.

Cover, T. H. and Thomas, . A. (1991). Elements of Information Theory. Wiley-Interscience.
Cox, A.]. (2006). Eland: efficient local alignment of nucleotide data. unpublished.

Damerauy, F. (1964). A technique for computer detection and correction of spelling errors.
Commun. ACM, 7(3), pages 171-176.

David, M., Dzamba, M., Lister, D,, Ilie, L., and Brudno, M. (2011). SHRiMP2: sensitive yet
practical short read mapping. Bioinformatics, 27(7), pages 1011-1012.

174

Dementiev, R. and Sanders, P. (2003). Asynchronous parallel disk sorting. In Proc. of the
15th Annual Symposium on Parallelism in Algorithms and Architectures, SPAA’03. ACM
Press.

Dementiev, R., Kdrkkainen, J., Mehnert, J., and Sanders, P. (2005). Better external memory
suffix array construction. In C. Demetrescu, R. Sedgewick, and R. Tamassia, editors,
ALENEX/ANALCO, pages 86-97. SIAM.

Dementiev, R., Karkkainen, J., Mehnert,]., and Sanders, P. (2008a). Better external mem-
ory suffix array construction. J. Exp. Algorithmics, 12, pages 3.4:1-3.4:24.

Dementiev, R., Kettner,; L., and Sanders, P. (2008b). Stxxl: standard template library for
xxl data sets. Software Pract. Exper., 38, pages 589-637.

Dohm,]. C,, Lottaz, C., Borodina, T, and Himmelbauer, H. (2008). Substantial biases in
ultra-short read data sets from high-throughput DNA sequencing. Nucleic Acids Res.,
36(16), page e105.

Dong, G. and Li,]. (1999). Efficient mining of emerging patterns: discovering trends and
differences. In Proc. of the 5th ACM SIGKDD international conference on Knowledge
discovery and data mining, KDD '99, pages 43-52. ACM Press.

Doring, A., Weese, D., Rausch, T.,, and Reinert, K. (2008). SeqAn an efficient, generic C++
library for sequence analysis. BMC Bioinf., 9, page 11.

Dressman, D., Yan, H., Traverso, G., Kinzler, K. W,, and Vogelstein, B. (2003). Transforming
single DNA molecules into fluorescent magnetic particles for detection and enumera-
tion of genetic variations. Proc. of the National Academy of Sciences, 100(15), pages
8817-8822.

Emde, A.-K,, Grunert, M., Weese, D., Reinert, K., and Sperling, S. R. (2010). MicroRazersS:
rapid alignment of small RNA reads. Bioinformatics, 26(1), pages 123-124.

Emde, A.-K,, Schulz, M. H., Weese, D., Sun, R,, Vingron, M., Kalscheuer, V. M., Haas, S. A., and
Reinert, K. (2012). Detecting genomic indel variants with exact breakpoints in single-
and paired-end sequencing data using splazers. Bioinformatics, 28(5), pages 619-627.

Ewing, B. and Green, P. (1998). Base-calling of automated sequencer traces using Phred.
Genome Res., 8(3), pages 186-194.

Ferragina, P, Manzini, G., Makinen, V., and Navarro, G. (2004). An alphabet-friendly fm-
index. In Proc. of the 11th Symposium on String Processing and Information Retrieval
(SPIRE), volume 3246 of LNCS, pages 150-160. Springer.

Fischer,]. and Heun, V. (2006). Theoretical and practical improvements on the RMQ-
problem, with applications to LCA and LCE. In Proc. of the 16th Annual Symposium on
Combinatorial Pattern Matching (CPM), volume 4009 of LNCS, pages 36-48. Springer.

175

Fischer,]. and Heun, V. (2007). A new succinct representation of RMQ-information and
improvements in the enhanced suffix array. In Proc. of the 1st International Symposium
on Combinatorics, Algorithms, Probabilistic and Experimental Methodologies (ESCAPE),
volume 4614 of LNCS, pages 459-470. Springer.

Fischer,]., Heun, V,, and Kramer, S. (2005). Fast frequent string mining using suffix arrays.
In Proc. of the 5th IEEE International Conference on Data Mining, ICDM 05, pages 609-
612. IEEE Computer Society.

Fischer,], Heun, V,, and Kramer, S. (2006). Optimal string mining under frequency con-
straints. In Proc. of the 10th European Conference on Principles and Practice of Knowl-
edge Discovery in Databases (PKDD), volume 4213 of LNCS, pages 139-150. Springer.

Fischer,]., Mdkinen, V., and Valimaki, N. (2008). Space efficient string mining under fre-
quency constraints. In Proc. of the 8th IEEE International Conference on Data Mining,
ICDM '08, pages 193-202. IEEE Computer Society.

Fitzgerald, P. C., Sturgill, D., Shyakhtenko, A., Oliver, B., and Vinson, C. (2006). Comparative
genomics of drosophila and human core promoters. Genome Biol., 7, page R53.

Fonseca, N. A., Rung,]., Brazma, A., and Marioni, J. C. (2012). Tools for mapping high-
throughput sequencing data. Bioinformatics. 10.1093/bioinformatics/bts605.

Giegerich, R. and Kurtz, S. (1995). A comparison of imperative and purely functional
suffix tree constructions. Sci. Comput. Program., 25, pages 187-218.

Giegerich, R, Kurtz, S., and Stoye, J. (2003). Efficient implementation of lazy suffix trees.
Software Pract. Exper., 33(11), pages 1035-1049.

Glenn, T. C. (2011). Field guide to next-generation DNA sequencers. Mol. Ecol. Resour.,
11(5), pages 759-769.

Gog, S. and Ohlebusch, E. (2011). Fast and lightweight Icp-array construction algorithms.
In M. Miiller-Hannemann and R. F. F. Werneck, editors, Proc. of the Workshop on Algo-
rithm Engineering and Experiments, ALENEX '11, pages 25-34. SIAM.

Goke,]., Schulz, M. H,, Lasserre,]., and Vingron, M. (2012). Estimation of pairwise se-
quence similarity of mammalian enhancers with word neighbourhood counts. Bioin-
formatics, 28(5), pages 656-663.

Gotoh, 0. (1982). An improved algorithm for matching biological sequences. J. Mol. Biol.,
162(3), pages 705-708.

Grossi, R., Gupta, A, and Vitter, J. S. (2003). High-order entropy-compressed text indexes.
In Proc. of the 14th annual ACM-SIAM symposium on Discrete algorithms, SODA '03,
pages 841-850, Philadelphia, PA, USA. Society for Industrial and Applied Mathematics.

Gusfield, D. (1997). Algorithms on strings, trees, and sequences: Computer science and
computational biology. Cambridge University Press, New York, NY, USA.

176

Haanpag, H. (2004). Minimum sum and difference covers of abelian groups. J. Integer
Sequences, 7, pages 1-10.

Han,], Pei,], Yin, Y,, and Mao, R. (2004). Mining frequent patterns without candidate
generation: A frequent-pattern tree approach. Data Min. Knowl. Discov., 8(1), pages
53-87.

Han, J., Cheng, H., Xin, D., and Yan, X. (2007). Frequent pattern mining: current status and
future directions. Data Min. Knowl. Discov., 15(1), pages 55-86.

Hauswedell, H. (2009). BLAST-like Local Alignments with RazerS. Bachelor’s thesis, Freie
Universitat Berlin.

Herms, I. and Rahmann, S. (2008). Computing alignment seed sensitivity with proba-
bilistic arithmetic automata. In K. Crandall and]. Lagergren, editors, Algorithms in
Bioinformatics, volume 5251 of LNCS, pages 318-329. Springer.

Hillier, L. W,, Marth, G. T, Quinlan, A. R., Dooling, D., Fewell, G., Barnett, D., Fox, P,, Glass-
cock, J. I, Hickenbotham, M., Huang, W., Magrini, V.]., Richt, R.], Sander, S. N., Stewart,
D. A, Stromberg, M., Tsung, E. E, Wylie, T, Sched], T., Wilson, R. K., and Mardis, E. R.
(2008). Whole-genome sequencing and variant discovery in C. elegans. Nat. Methods,
5(2), pages 183-188.

Hoffmann, S., Otto, C., Kurtz, S., Sharma, C. M., Khaitovich, P, Vogel,]., Stadler, P. F, and
Hackermiiller,]. (2009). Fast mapping of short sequences with mismatches, insertions
and deletions using index structures. PLoS Comput. Biol., 5(9), page e1000502.

Holtgrewe, M. (2010). Mason - a read simulator for second generation sequencing data.
Technical Report TR-B-10-06, Institut fiir Mathematik und Informatik, Freie Univer-
sitdt Berlin.

Holtgrewe, M., Emde, A.-K., Weese, D., and Reinert, K. (2011). A novel and well-defined
benchmarking method for second generation read mapping. BMC Bioinf., 12, page 210.

Hu, M. and Liu, B. (2004). Mining opinion features in customer reviews. In Proc. of the 19th
National Conference on Artificial Intelligence, AAA1'04, pages 755-760. AAAI Press.

Huson, D. H., Auch, A. F, Qj,]., and Schuster, S. C. (2007). MEGAN analysis of metagenomic
data. Genome Res., 17(3), pages 377-386.

Hyyrd, H. (2003). A bit-vector algorithm for computing levenshtein and damerau edit
distances. Nordic J. of Computing, 10, pages 29-39.

Intel (2011). Intel® 64 and IA-32 Architectures Optimization Reference Manual. Intel Cor-
poration.

Janitz, M. (2008). Next-Generation Genome Sequencing: Towards Personalized Medicine.
John Wiley & Sons.

177

Jensen, M. and Pagh, R. (2008). Optimality in external memory hashing. Algorithmica,
52, pages 403-411.

Jeon, J.-E., Park, H., and Kim, D.-K. (2005). Efficient construction of generalized suffix
arrays by merging suffix arrays. Comput. Syst. Theor., 32(6), pages 268-278.

Ji, X, Bailey,]., and Dong, G. (2007). Mining minimal distinguishing subsequence patterns
with gap constraints. Knowl. Inf. Syst., 11(3), pages 259-286.

Jiang, H. and Wong, W. H. (2008). Segmap: mapping massive amount of oligonucleotides
to the genome. Bioinformatics, 24(20), pages 2395-2396.

Jokinen, P. and Ukkonen, E. (1991). Two algorithms for approximate string matching in
static texts. In A. Tarlecki, editor, Mathematical Foundations of Computer Science 1991,
volume 520 of LNCS, pages 240-248. Springer.

Karkkainen,]. and Sanders, P. (2003). Simple linear work suffix array construction. In Au-
tomata, Languages and Programming, volume 2719 of LNCS, pages 943-955. Springer.

Karkkainen, J., Sanders, P, and Burkhardt, S. (2006). Linear work suffix array construc-
tion. J. ACM, 53, pages 918-936.

Karkkainen,]., Manzini, G., and Puglisi, S.]. (2009). Permuted longest-common-prefix ar-
ray. In Proc. of the 20th Annual Symposium on Combinatorial Pattern Matching, CPM 09,
pages 181-192. Springer.

Karp, R. M., Motwani, R., and Raghavan, P. (1987). Deferred data structuring. Technical
Report UCB/CSD-87-320, EECS Department, University of California, Berkeley.

Kasai, T, Lee, G., Arimura, H., Arikawa, S., and Park, K. (2001). Linear-time longest-
common-prefix computation in suffix arrays and its applications. In Proc. of the
12th Annual Symposium on Combinatorial Pattern Matching, CPM '01, pages 181-192.
Springer.

Kehr, B., Weese, D., and Reinert, K. (2011). Stellar: fast and exact local alignments. BMC
Bioinf., 12(Suppl 9), page S15.

Kent, W. (2002). Blat-the blast-like alignment tool. Genome Res., 12(4), pages 656-64.

Kim, D. K, Sim,]. S., Park, H., and Park, K. (2005). Constructing suffix arrays in linear time.
J. Discrete Algorithms, 3(2-4), pages 126-142.

Knuth, D. E. (1997). The Art of Computer Programming, Volume 1: Fundamental Algo-
rithms (3rd Edition). Addison-Wesley.

Knuth, D. E. (1998). The Art of Computer Programming, Volume 3: Sorting and Searching
(2nd Edition). Addison-Wesley.

178

Ko, P. and Aluru, S. (2005). Space efficient linear time construction of suffix arrays. J.
Discrete Algorithms, 3(2-4), pages 143-156.

Kobylinski, t.. and Walczak, K. (2009). Jumping emerging substrings in image classifi-
cation. In X. Jiang and N. Petkov, editors, Computer Analysis of Images and Patterns,
volume 5702 of LNCS, pages 732-739. Springer.

Kodama, Y., Shumway, M., and Leinonen, R. (2012). The sequence read archive: explosive
growth of sequencing data. Nucleic Acids Res., 40(D1), pages D54-D56.

Kiigel, A. and Ohlebusch, E. (2008). A space efficient solution to the frequent string mining
problem for many databases. Data Min. Knowl. Discov., 17(1), pages 24-38.

Kurtz, S. (1999). Reducing the space requirement of suffix trees. Software Pract. Exper.,
29(13), pages 1149-1171.

Lam, T. W, Sung, W. K., Tam, S. L., Wong, C. K,, and Yiu, S. M. (2008). Compressed indexing
and local alignment of DNA. Bioinformatics, 24(6), pages 791-797.

Lander, E. S, Linton, L. M., Birren, B., Nusbaum, C., Zody, M. C., Baldwin, J., Devon, K., De-
war, K, Doyle, M., FitzHugh, W, Funke, R, Gage, D., Harris, K., Heaford, A., Howland,
J, Kann, L., Lehoczky,]J., LeVine, R, McEwan, P, McKernan, K., Meldrim,]., Mesirov,
J. P, Miranda, C., Morris, W.,, Naylor, J., Raymond, C., Rosetti, M., Santos, R., Sheridan, A,,
Sougnez, C., Stange-Thomann, N., Stojanovic, N., Subramanian, A., Wyman, D., Rogers,
J., Sulston, J., Ainscough, R., Beck, S., Bentley, D., Burton, |, Clee, C., Carter, N., Coulson,
A., Deadman, R, Deloukas, P, Dunham, A., Dunham, I., Durbin, R,, French, L., Gratham,
D., Gregory, S., Hubbard, T., Humphray, S., Hunt, A., Jones, M., Lloyd, C., McMurray, A.,
Matthews, L., Mercer, S., Milne, S., Mullikin, J. C., Mungall, A., Plumb, R., Ross, M., Shown-
keen, R,, Sims, S., Waterston, R. H., Wilson, R. K., Hillier, L. W,, McPherson,]. D., Marra,
M. A, Mardis, E. R, Fulton, L. A,, Chinwalla, A. T, Pepin, K. H., Gish, W. R,, Chissoe, S. L.,
Wendl, M. C, Delehaunty, K. D., Miner, T. L., Delehaunty, A., Kramer, J. B., Cook, L. L.,
Fulton, R. S., Johnson, D. L., Minx, P.]., Clifton, S. W.,, Hawkins, T., Branscomb, E., PredKki,
P, Richardson, P, Wenning, S., Slezak, T., Doggett, N., Cheng,]. F, Olsen, A., Lucas, S,,
Elkin, C., Uberbacher, E., Frazier, M., Gibbs, R. A,, Muzny, D. M., Scherer, S. E., Bouck,
J. B, Sodergren, E.]., Worley, K. C., Rives, C. M., Gorrell,]. H., Metzker, M. L., Naylor,
S. L., Kucherlapati, R. S, Nelson, D. L., Weinstock, G. M., Sakaki, Y., Fujiyama, A., Hat-
tori, M., Yada, T, Toyoda, A., Itoh, T., Kawagoe, C., Watanabe, H., Totoki, Y., Taylor, T,
Weissenbach,]., Heilig, R,, Saurin, W,, Artiguenave, F, Brottier, P, Bruls, T, Pelletier,
E., Robert, C., Wincker, P, Smith, D. R, Doucette-Stamm, L., Rubenfield, M., Weinstock,
K, Lee, H. M,, Dubois, ., Rosenthal, A., Platzer, M., Nyakatura, G., Taudien, S., Rump, A.,
Yang, H., Yu, J., Wang, J., Huang, G., Gu,], Hood, L., Rowen, L., Madan, A., Qin, S., Davis,
R. W, Federspiel, N. A., Abola, A. P, Proctor, M.]., Myers, R. M., Schmutz,]., Dickson,
M., Grimwood, J., Cox, D. R,, Olson, M. V., Kaul, R., Raymond, C., Shimizu, N., Kawasaki,
K., Minoshima, S., Evans, G. A., Athanasiou, M., Schultz, R., Roe, B. A,, Chen, F, Pan, H.,
Ramser, |., Lehrach, H., Reinhardt, R.,, McCombie, W. R,, de la Bastide, M., Dedhia, N,

179

Blocker, H., Hornischer, K., Nordsiek, G., Agarwala, R., Aravind, L., Bailey, . A., Bate-
man, A., Batzoglou, S., Birney, E., Bork, P, Brown, D. G., Burge, C. B., Cerutti, L., Chen,
H. C., Church, D., Clamp, M., Copley, R. R,, Doerks, T.,, Eddy, S. R,, Eichler, E. E., Furey,
T. S., Galagan, |, Gilbert,]J. G., Harmon, C., Hayashizaki, Y., Haussler, D., Hermjakob, H.,
Hokamp, K, Jang, W,, Johnson, L. S, Jones, T. A, Kasif, S., Kaspryzk, A., Kennedy, S.,
Kent, W. |, Kitts, P, Koonin, E. V,, Korf, [, Kulp, D., Lancet, D., Lowe, T. M., McLysaght, A.,
Mikkelsen, T., Moran,]. V., Mulder, N., Pollara, V. J., Ponting, C. P,, Schuler, G., Schultz,
], Slater, G., Smit, A. F, Stupka, E., Szustakowski,]., Thierry-Mieg, D., Thierry-Mieg, .,
Wagner, L., Wallis,]., Wheeler, R., Williams, A., Wolf, Y. I, Wolfe, K. H., Yang, S. P, Yeh,
R. E, Collins, E, Guyer, M. S., Peterson, |., Felsenfeld, A., Wetterstrand, K. A., Patrinos,
A., Morgan, M. |, de Jong, P, Catanese,].], Osoegawa, K., Shizuya, H., Choi, S., Chen,
Y.]., and Szustakowki, J. (2001). Initial sequencing and analysis of the human genome.
Nature, 409(6822), pages 860-921.

Langmead, B. and Salzberg, S. L. (2012). Fast gapped-read alignment with Bowtie 2. Nat.
Methods, 9(4), pages 357-359.

Langmead, B., Trapnell, C., Pop, M., and Salzberg, S. L. (2009). Ultrafast and memory-
efficient alignment of short DNA sequences to the human genome. Genome Biol., 10(3),
page R25.

Lee, S.D. and Raedt, L. D. (2005). An efficient algorithm for mining string databases under
constraints. In B. Goethals and A. Siebes, editors, Knowledge Discovery in Inductive
Databases (KDID ’04), volume 3377 of LNCS, pages 108-129. Springer.

Leinonen, R., Akhtar, R., Birney, E., Bower, L., Cerdeno-Tarraga, A., Cheng, Y., Cleland, I.,
Faruque, N., Goodgame, N., Gibson, R., Hoad, G., Jang, M., Pakseresht, N., Plaister, S.,
Radhakrishnan, R., Reddy, K., Sobhany, S., Ten Hoopen, P, Vaughan, R., Zalunin, V., and
Cochrane, G. (2011). The European nucleotide archive. Nucleic Acids Res., 39(suppl 1),
pages D28-D31.

Levenshtein, V. I. (1966). Binary codes capable of correcting deletions, insertions and
reversals. Soviet Physics - Doklady, 10, pages 707-710.

Ley, T.], Mardis, E. R,, Ding, L., Fulton, B., McLellan, M. D., Chen, K., Dooling, D., Dunford-
Shore, B. H., McGrath, S., Hickenbotham, M., Cook, L., Abbott, R., Larson, D. E., Koboldt,
D. C., Pohl, C., Smith, S., HawKkins, A., Abbott, S., Locke, D., Hillier, L. W., Miner, T., Fulton,
L., Magrini, V., Wylie, T, Glasscock, ., Conyers,]., Sander, N., Shi, X., Osborne,]. R, Minx,
P, Gordon, D., Chinwalla, A., Zhao, Y, Ries, R. E., Payton,]. E., Westervelt, P,, Tomasson,
M. H., Watson, M., Baty,]., Ivanovich,]., Heath, S., Shannon, W. D., Nagarajan, R., Walter,
M.], Link, D. C., Graubert, T. A., DiPersio, J. F,, and Wilson, R. K. (2008). DNA sequenc-
ing of a cytogenetically normal acute myeloid leukaemia genome. Nature, 456(7218),
pages 66-72.

Li, H. and Durbin, R. (2009). Fast and accurate short read alignment with burrows-
wheeler transform. Bioinformatics, 25(14), pages 1754-1760.

180

Li, H. and Homer, N. (2010). A survey of sequence alignment algorithms for next-
generation sequencing. Brief. Bioinform., 11(5), pages 473-483.

Li, H,, Ruan,], and Durbin, R. (2008a). Mapping short DNA sequencing reads and calling
variants using mapping quality scores. Genome Res., 18(11), pages 1851-1858.

Li, H., Handsaker, B., Wysoker, A., Fennell, T, Ruan,], Homer, N., Marth, G., Abecasis,
G., Durbin, R., and 1000 Genome Project Data Processing Subgroup (2009a). The se-
quence alignment/map format and SAMtools. Bioinformatics, 25(16), pages 2078-
2079.

Li, M., Ma, B., Kisman, D., and Tromp,]. (2003). Patternhunter II: highly sensitive and fast
homology search. Genome Inform., 14, pages 164-175.

Li, R, Li, Y, Kristiansen, K., and Wang, J. (2008b). Soap: short oligonucleotide alignment
program. Bioinformatics, 24(5), pages 713-714.

Li, R, Yy, C, Li, Y, Lam, T.-W,, Yiu, S.-M,, Kristiansen, K., and Wang,]. (2009b). SOAP2: an
improved ultrafast tool for short read alignment. Bioinformatics, 25(15), pages 1966-
1967.

Li, R, Zhu, H,, Ruan,], Qian, W,, Fang, X,, Shi, Z,, Li, Y,, Li, S., Shan, G., Kristiansen, K., Li,
S., Yang, H., Wang,]., and Wang,]. (2010). De novo assembly of human genomes with
massively parallel short read sequencing. Genome Res., 20(2), pages 265-272.

Lin, H., Zhang, Z., Zhang, M. Q., Ma, B., and Li, M. (2008). Zoom! zillions of oligos mapped.
Bioinformatics, 24(21), pages 2431-2437.

Ma, B., Tromp, ., and Li, M. (2002). PatternHunter: faster and more sensitive homology
search. Bioinformatics, 18(3), pages 440-445.

Makinen, V. and Navarro, G. (2008). Dynamic entropy-compressed sequences and full-
text indexes. ACM Trans. Algorithms, 4(3), pages 32:1-32:38.

Manber, U. and Myers, E. (1993). Suffix arrays: A new method for on-line string searches.
SIAM J. Comput., 22(5), pages 935-948.

Manzini, G. (2004). Two space saving tricks for linear time Icp array computation. In
T. Hagerup and]. Katajainen, editors, Algorithm Theory - SWAT '04, volume 3111 of
LNCS, pages 372-383. Springer.

Manzini, G. and Ferragina, P. (2004). Engineering a lightweight suffix array construction
algorithm. Algorithmica, 40, pages 33-50.

Mardis, E. R. (2008). Next-generation DNA sequencing methods. Annu. Rev. Genomics
Hum. Genet., 9(1), pages 387-402.

Marschall, T., Martin, M., and Rahmann, S. (2009). A BWT-based suffix array construction.
In Biological Sequence Analysis Using the SeqAn C++ Library, pages 261-282. CRC Press.

181

McCreight, E. M. (1976). A space-economical suffix tree construction algorithm. J. ACM,
23(2), pages 262-272.

Meissner, A., Mikkelsen, T. S., Gu, H., Wernig, M., Hanna, |., Sivachenko, A., Zhang, X., Bern-
stein, B. E., Nusbaum, C,, Jaffe, D. B., Gnirke, A., Jaenisch, R., and Lander, E. S. (2008).
Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature,
454(7205), pages 766-770.

MitaSianaite, 1., Rigotti, C., Schicklin, S., Meynie, L., Boulicaut,].-F, and Gandrillon, O.
(2008). Extracting signature motifs from promoter sets of differentially expressed
genes. In Silico Biol., 8(0043), pages 17-39.

Montgomery, S., Sammeth, M., Gutierrez-Arcelus, M., Lach, R,, Ingle, C., Nisbett,]., Guigo,
R., and Dermitzakis, E. (2010). Transcriptome genetics using second generation se-
quencing in a Caucasian population. Nature, 464(7289), pages 773-777.

Morris, E. R. and Walker,]. C. (2003). Receptor-like protein kinases: the keys to response.
Curr. Opin. Plant Biol,, 6(4), pages 339-342.

Morrison, D. R. (1968). Patricia - practical algorithm to retrieve information coded in
alphanumeric. J. ACM, 15(4), pages 514-534.

Mortazavi, A., Williams, B., McCue, K., Schaeffer, L., and Wold, B. (2008). Mapping and
quantifying mammalian transcriptomes by RNA-seq. Nat. Methods, 5(7), pages 621-
628.

Myers, E. W. (1999). A fast bit-vector algorithm for approximate string matching based
on dynamic programming. J. ACM, 46(3), pages 395-415.

Nakamura, K., Oshima, T,, Morimoto, T, Ikeda, S., Yoshikawa, H., Shiwa, Y., Ishikawa, S.,
Linak, M. C., Hirai, A., Takahashi, H., Altaf-Ul-Amin, M., Ogasawara, N., and Kanaya, S.
(2011). Sequence-specific error profile of [llumina sequencers. Nucleic Acids Res.,
39(13), page €90.

Navarro, G. and Baeza-Yates, R. (2000). A hybrid indexing method for approximate string
matching. J. Discrete Algorithms, 1(1), pages 205-239.

Navarro, G. and Makinen, V. (2007). Compressed full-text indexes. ACM Comput. Surv.,
39(1), pages 2:1-2:61.

Navarro, G. and Raffinot, M. (2002). Flexible Pattern Matching in Strings, chapter 6.5,
pages 162-166. Cambridge University Press.

Needleman, S. B. and Wunsch, C. D. (1970). A general method applicable to the search for
similarities in the amino acid sequence of two proteins. J. Mol. Biol., 48, pages 443-453.

Ning, Z., Cox, A.]., and Mullikin, J. C. (2001). SSAHA: A fast search method for large DNA
databases. Genome Res., 11(10), pages 1725-1729.

182

Owolabi, O. and McGregor, D. R. (1988). Fast approximate string matching. Software
Pract. Exper., 18(4), pages 387-393.

Puglisi, S.]., Smyth, W. F,, and Turpin, A. H. (2007). A taxonomy of suffix array construction
algorithms. ACM Comput. Surv., 39, pages 1-31.

Raedt, L. D., Jaeger, M,, Lee, S. D., and Mannila, H. (2002). A theory of inductive query
answering. In Proc. of the Znd IEEE International Conference on Data Mining, ICDM '02,
pages 123-130. IEEE Computer Society.

Rasmussen, K. R,, Stoye,]., and Myers, E. W. (2006). Efficient g-gram filters for finding all
e-matches over a given length. J. Comput. Biol., 13(2), pages 296-308.

Rausch, T, Emde, A.-K., Weese, D., Doring, A., Notredame, C., and Reinert, K. (2008).
Segment-based multiple sequence alignment. Bioinformatics, 24(16), pagesi187-192.

Rausch, T, Koren, S., Denisov, G., Weese, D., Emde, A.-K., Doring, A., and Reinert, K. (2009).
A consistency-based consensus algorithm for de novo and reference-guided sequence
assembly of short reads. Bioinformatics, 25(9), pages 1118-1124.

Redhead, E. and Bailey, T. L. (2007). Discriminative motif discovery in DNA and protein
sequences using the DEME algorithm. BMC Bioinf., 8, page 385.

Richard, H., Schulz, M. H,, Sultan, M., Niirnberger, A., Schrinner, S., Balzereit, D., Dagand,
E. Rasche, A, Lehrach, H., Vingron, M., Haas, S. A, and Yaspo, M.-L. (2010). Prediction
of alternative isoforms from exon expression levels in RNA-seq experiments. Nucleic
Acids Res., 38(10), page e112.

Roberts, A., Pimentel, H., Trapnell, C., and Pachter, L. (2011). Identification of novel tran-
scripts in annotated genomes using RNA-seq. Bioinformatics, 27(17), pages 2325-
2329.

Robertson, G., Schein, J., Chiu, R., Corbett, R., Field, M., Jackman, S. D., Mungall, K., Lee, S.,
Okada, H. M., Qian, J. Q., Griffith, M., Raymond, A., Thiessen, N., Cezard, T., Butterfield,
Y.S., Newsome, R, Chan, S. K,, She, R,, Varhol, R., Kamoh, B., Prabhu, A.-L., Tam, A., Zhao,
Y., Moore, R. A, Hirst, M., Marra, M. A,, Jones, S.]. M., Hoodless, P. A., and Birol, I. (2010).
De novo assembly and analysis of RNA-seq data. Nat. Methods, 7(11), pages 909-912.

Rodrigue, S., Materna, A. C., Timberlake, S. C., Blackburn, M. C., Malmstrom, R. R, Alm, E.].,
and Chisholm, S. W. (2010). Unlocking short read sequencing for metagenomics. PLoS
ONE, 5(7), page e11840.

Ronaghi, M., Karamohamed, S., Pettersson, B., Uhlén, M., and Nyrén, P. (1996). Real-time
DNA sequencing using detection of pyrophosphate release. Anal Biochem., 242(1),
pages 84-89.

Rumble, S. M., Lacroute, P, Dalca, A. V., Fiume, M., Sidow, A., and Brudno, M. (2009).
SHRiMP: Accurate mapping of short color-space reads. PLoS Comput. Biol., 5(5), page
e1000386.

183

Sadakane, K. (2003). New text indexing functionalities of the compressed suffix arrays.
J. Algorithms, 48, pages 294-313.

Sadakane, K. (2007). Compressed suffix trees with full functionality. Theor. Comput. Syst.,
41(4), pages 589-607.

Salson, M., Lecroq, T, Léonard, M., and Mouchard, L. (2009). A four-stage algorithm for
updating a burrows-wheeler transform. Theoret. Comput. Sci., 410(43), pages 4350-
4359.

Salson, M., Lecroq, T, Léonard, M., and Mouchard, L. (2010). Dynamic extended suffix
arrays. J. Discrete Algorithms, 8(2), pages 241-257.

Sanger, F, Nicklen, S., and Coulson, A. R. (1977). DNA sequencing with chain-terminating
inhibitors. PNAS, 74(12), pages 5463-5467.

Schmidt, D., Wilson, M. D., Ballester, B., Schwalie, P. C., Brown, G. D., Marshall, A., Kutter,
C., Watt, S., Martinez-Jimenez, C. P, Mackay, S., Talianidis, I., Flicek, P,, and Odom, D. T.
(2010). Five-vertebrate ChIP-seq reveals the evolutionary dynamics of transcription
factor binding. Science, 328(5981), pages 1036-1040.

Schulz, M. H., Weese, D., Rausch, T, Doring, A., Reinert, K., and Vingron, M. (2008a). Fast
and adaptive variable order markov chain construction. In K. Crandall and J. Lagergren,
editors, Algorithms in Bioinformatics, volume 5251 of LNCS, pages 306-317. Springer.

Schulz, M. H,, Bauer, S., and Robinson, P. N. (2008b). The generalised k-truncated suffix
tree for time- and space-efficient searches in multiple DNA or protein sequences. Int.
J. Bioinform. Res. Appl., 4(1), pages 81-95.

Schulz, M. H., Zerbino, D. R, Vingron, M., and Birney, E. (2012). Oases: robust de novo
RNA-seq assembly across the dynamic range of expression levels. Bioinformatics,
28(8), pages 1086-1092.

Sellers, P. H. (1980). The theory and computation of evolutionary distances: Pattern
recognition. J. Algorithms, 1(4), pages 359-373.

Shendure, J. and Ji, H. (2008). Next-generation DNA sequencing. Nat. Biotechnol., 26(10),
pages 1135-1145.

Shi, F. (1996). Suffix arrays for multiple strings: A method for on-line multiple string
searches. In |. Jaffar and R. Yap, editors, Concurrency and Parallelism, Programming,
Networking, and Security, volume 1179 of LNCS, pages 11-22. Springer.

Simpson, . T. and Durbin, R. (2012). Efficient de novo assembly of large genomes using
compressed data structures. Genome Res., 22(3), pages 549-556.

Siragusa, E., Weese, D., and Reinert, K. (2013a). Fast and accurate read mapping with
approximate seeds and multiple backtracking. Nucleic Acids Res., 41(7), page e78.

184

Siragusa, E., Weese, D., and Reinert, K. (2013b). Scalable string similarity search/join with
approximate seeds and multiple backtracking. In Proceedings of the Joint EDBT/ICDT
2013 Workshops, pages 370-374. ACM.

Slonim, N., Bejerano, G., Fine, S., and Tishby, N. (2003). Discriminative feature selection
via multiclass variable memory Markov models. EURASIP J. Applied Signal Processing,
2, pages 93-102.

Smith, T. F. and Waterman, M. S. (1981). Identification of common molecular subse-
quences. J. Mol. Biol., 147, pages 195-197.

Stein, L. (2010). The case for cloud computing in genome informatics. Genome Biol.,
11(5), page 207.

Stober, G., Nothen, M. M., Porzgen, P, Briiss, M., Bonisch, H., Knapp, M., Beckmann, H,,
and Propping, P. (1996). Systematic search for variation in the human norepinephrine
transporter gene: Identification of five naturally occurring missense mutations and
study of association with major psychiatric disorders. Am. . Med. Genet., 67(6), pages
523-532.

Trapnell, C., Williams, B., Pertea, G., Mortazavi, A., Kwan, G., Van Baren, M., Salzberg, S.,
Wold, B., and Pachter, L. (2010). Transcript assembly and quantification by RNA-seq
reveals unannotated transcripts and isoform switching during cell differentiation. Nat.
Biotechnol., 28(5), pages 511-515.

Ukkonen, E. (1985). Finding approximate patterns in strings. J. Algorithms, 6(1), pages
132-137.

Ukkonen, E. (1995). On-line construction of suffix trees. Algorithmica, 14(3), pages 249-
260.

UniProt Consortium (2008). The universal protein resource (UniProt). Nucleic Acids Res.,
36(suppl_1), pages D190-195. ftp://ftp.ebi.ac.uk/pub/databases/integr8/uniprot/
proteomes.

Venter,]. C,, Adams, M. D., Myers, E. W, Li, P. W,, Mural, R.], Sutton, G. G., Smith, H. O,
Yandell, M., Evans, C. A, Holt, R. A,, Gocayne,]. D., Amanatides, P.,, Ballew, R. M., Hu-
son, D. H,, Wortman, J. R,, Zhang, Q., Kodira, C. D., Zheng, X. H., Chen, L., Skupski, M.,
Subramanian, G., Thomas, P. D., Zhang,]., Gabor Miklos, G. L., Nelson, C., Broder, S,
Clark, A. G., Nadeau,]., McKusick, V. A,, Zinder, N., Levine, A.], Roberts, R.], Simon, M.,
Slayman, C., Hunkapiller, M., Bolanos, R., Delcher, A, Dew, I, Fasulo, D., Flanigan, M.,
Florea, L., Halpern, A., Hannenhallj, S., Kravitz, S., Levy, S., Mobarry, C., Reinert, K., Rem-
ington, K., Abu-Threideh, |., Beasley, E., Biddick, K., Bonazzi, V., Brandon, R., Cargill, M.,
Chandramouliswaran, 1., Charlab, R., Chaturvedi, K., Deng, Z., Di Francesco, V., Dunn,
P, Eilbeck, K., Evangelista, C., Gabrielian, A. E., Gan, W,, Ge, W,, Gong, F,, Gu, Z., Guan,
P, Heiman, T.], Higgins, M. E,, Ji, R. R, Ke, Z., Ketchum, K. A,, Lai, Z, Lei, Y,, Li, Z,, Li, J.,
Liang, Y, Lin, X,, Lu, F, Merkulov, G. V,, Milshina, N., Moore, H. M,, Naik, A. K., Narayan,

ftp://ftp.ebi.ac.uk/pub/databases/integr8/uniprot/proteomes
ftp://ftp.ebi.ac.uk/pub/databases/integr8/uniprot/proteomes

185

V. A, Neelam, B, Nusskern, D., Rusch, D. B,, Salzberg, S., Shao, W, Shue, B, Sun,]., Wang,
Z.,Wang, A., Wang, X.,, Wang,]., Wei, M., Wides, R, Xiao, C., Yan, C., Yao, A, Ye,]., Zhan, M.,
Zhang, W,, Zhang, H., Zhao, Q., Zheng, L., Zhong, F,, Zhong, W.,, Zhu, S., Zhao, S., Gilbert,
D., Baumhueter, S., Spier, G., Carter, C., Cravchik, A., Woodage, T, Alj, F, An, H., Awe,
A., Baldwin, D., Baden, H., Barnstead, M., Barrow, 1., Beeson, K., Busam, D., Carver, A.,
Center, A., Cheng, M. L., Curry, L., Danaher, S., Davenport, L., Desilets, R., Dietz, S., Dod-
son, K., Doup, L., Ferriera, S., Garg, N., Gluecksmann, A., Hart, B., Haynes,], Haynes, C,,
Heiner, C,, Hladun, S., Hostin, D., Houck, J., Howland, T., Ibegwam, C., Johnson,]., Kalush,
F, Kline, L., Koduruy, S., Love, A., Mann, F,, May, D., McCawley, S., McIntosh, T., McMullen,
[, Moy, M., Moy, L., Murphy, B., Nelson, K., Pfannkoch, C., Pratts, E., Puri, V., Qureshi, H.,
Reardon, M., Rodriguez, R., Rogers, Y. H,, Romblad, D., Ruhfel, B., Scott, R, Sitter, C.,
Smallwood, M., Stewart, E., Strong, R, Suh, E., Thomas, R., Tint, N. N, Tse, S., Vech, C,,
Wang, G., Wetter, ., Williams, S., Williams, M., Windsor, S., Winn-Deen, E., Wolfe, K,
Zaveri,]., Zaveri, K., Abril,]J. F, Guigé, R., Campbell, M.], Sjolander, K. V,, Karlak, B,
Kejariwal, A., Mi, H., Lazareva, B., Hatton, T., Narechania, A., Diemer, K., Muruganujan,
A, Guo, N,, Sato, S., Bafna, V, Istrail, S., Lippert, R, Schwartz, R., Walenz, B., Yooseph, S.,
Allen, D., Basu, A, Baxendale,]., Blick, L., Caminha, M., Carnes-Stine,], Caulk, P, Chiang,
Y. H,, Coyne, M., Dahlke, C., Mays, A., Dombroski, M., Donnelly, M., Ely, D., Esparham, S.,
Fosler, C., Gire, H., GlanowskKi, S., Glasser, K., Glodek, A., Gorokhov, M., Graham, K., Grop-
man, B., Harris, M., Helil,], Henderson, S., Hoover, |., Jennings, D., Jordan, C., Jordan,].,
Kasha,], Kagan, L., Kraft, C., Levitsky, A., Lewis, M,, Liu, X,, Lopez,]., Ma, D., Majoros, W.,
McDaniel,]., Murphy, S., Newman, M., Nguyen, T., Nguyen, N., Nodell, M., Pan, S., Peck, J.,
Peterson, M., Rowe, W,, Sanders, R., Scott,]., Simpson, M., Smith, T, Sprague, A., Stock-
well, T,, Turner, R, Venter, E., Wang, M., Wen, M., Wu, D., Wu, M,, Xia, A., Zandieh, A., and
Zhu, X. (2001). The sequence of the human genome. Science, 291, pages 1304-1351.

Vyverman, M., De Baets, B., Fack, V,, and Dawyndt, P. (2012). Prospects and limitations of
full-text index structures in genome analysis. Nucleic Acids Res., 40(15), pages 6993-
7015.

Walker, J. C. (1994). Structure and function of the receptor-like protein kinases of higher
plants. Plant Mol. Biol., 26, pages 1599-1609.

Wang,]., Wang, W,, Li, R, Li, Y,, Tian, G., Goodman, L., Fan, W,, Zhang, |, Li,]., Zhang, |., Guo,
Y, Feng, B, Li, H,, Ly, Y,, Fang, X,, Liang, H., Du, Z,, Li, D., Zhao, Y., Huy, Y., Yang, Z., Zheng,
H., Hellmann, I, Inouye, M., Pool,]., Yi, X,, Zhao,]., Duan,]., Zhou, Y., Qin, J., Ma, L., Li, G.,
Yang, Z., Zhang, G., Yang, B, Yu, C,, Liang, F, Li, W,, Li, S,, Li, D,, Ni, P, Ruan, J,, Li, Q., Zhu,
H, Liu, D,, Ly, Z,, Li, N, Guo, G., Zhang,]., Ye,], Fang, L., Hao, Q., Chen, Q., Liang, Y., Su,
Y, san, A, Ping, C,, Yang, S., Chen, F, Li, L., Zhou, K., Zheng, H., Ren, Y,, Yang, L., Gao, Y,,
Yang, G., Li, Z., Feng, X., Kristiansen, K., Wong, G. K.-S., Nielsen, R., Durbin, R., Bolund,
L., zhang, X,, Li, S., Yang, H., and Wang,]. (2008). The diploid genome sequence of an
Asian individual. Nature, 456(7218), pages 60-65.

Weese, D. (2006). Entwurf und Implementierung eines generischen Substring-Index.
Diploma thesis, Humboldt University Berlin.

186

Weese, D. and Schulz, M. H. (2008). Efficient string mining under constraints via the
deferred frequency index. In Proc. of the 8th Industrial Conference on Data Mining
(ICDM '08), volume 5077 of LNAI, pages 374-388. Springer.

Weese, D., Emde, A.-K., Rausch, T, Doring, A., and Reinert, K. (2009). RazerS - fast read
mapping with sensitivity control. Genome Res., 19(9), pages 1646-1654.

Weese, D., Holtgrewe, M., and Reinert, K. (2012). RazerS 3: faster, fully sensitive read
mapping. Bioinformatics, 28(20), pages 2592-2599.

Weese, D., Schulz, M. H., Holtgrewe, M., and Richard, H. (2013). Fiona: a versatile and
automatic strategy for read error correction. to appear.

Weiner, P. (1973). Linear pattern matching algorithms. In Proc. of the 14th Symposium on
Switching and Automata Theory, SWAT ’73, pages 1-11. IEEE Computer Society.

Xie, S. Y., Feinstein, P, and Mombaerts, P. (2000). Characterization of a cluster comprising
100 odorant receptor genes in mouse. Mamm. Genome, 11(12), pages 1070-1078.

Zhang, X. and Firestein, S. (2002). The olfactory receptor gene superfamily of the mouse.
Nat. Neurosci., 5(12), pages 124-133.

Zhang, Z., Berman, P, and Miller, W. (1998). Alignments without low-scoring regions. J.
Comput. Biol.,, 5(2), pages 197-210.

LIST

1.1
1.2

2.1
2.2
2.3

3.1
3.2
3.3
34
3.5
3.6
3.7
3.8
3.9
3.10
3.11

4.1
4.2
4.3
4.4

5.1
5.2
5.3
5.4

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8

OF FIGURES

DNAdoublehelix. 4
A multipleread alignment. L. 11
Suffix treeexamples e 16
A transcript between two sequences 17
Global pairwise sequence alignments 20
Suffix array and Icp tableexample, 27
Suffix tree, Icp-interval tree, linked ¢-indices, and child table 28
Skew step 1: Sample and sorttriples 32
Skew step 2: Extend sorting to remaining triples 32
Skew step 3: Merge sorted lists of suffixes 34
Construction peak memoryusageo i 51
Binary search on the suffixarray 53
Binary search with mlr-heuristic 54
Comparison of ESA based search algorithms 54
Suffix treeiterators 59
Repeatexamples e e 60
Different states of the lazy suffixtree 67
Original lazy suffix tree data structure 69
Our lazy suffix tree data structure 72
Approximate pattern searchtimes 80
g-gramindexexample 84
q-gram index construction time and memory consumption 89
g-gram lemma worstCases i 92
Filters based on g-gram counting 93
Match extractioninRazerS o L 100
g-gram counting in parallelograms 103
FiltersusedinRazerS 104
Typical lllumina error profile 105
Examples for (q,A)-seed filters 109
Parameters of the pigeonholefilter 110
Applications of the banded alignment algorithm 113

Clipped band parameters, steps of the algorithm, and initialization 114

188

6.9 Average verification time per read character 116
6.10 Paired-endreads 118
6.11 Parallelizationin RazerS 120
6.12 Mapping time ratios between the SWIFT and pigeonhole filter 122
6.13 Validation of the SWIFT filter sensitivity estimation 123
6.14 Validation of the pigeonhole filter sensitivity estimation 124
7.1 Generalized suffix tree example with string frequencies 141
7.2 Running time comparisonso 143

A.1 SOLiD color labels of the 16 dinucleotides 154

LIST OF TABLES

1.1

3.1
3.2
3.3
34
3.5
3.6
3.7

6.1
6.2
6.3
6.4
6.5

7.1
7.2
7.3
7.4
7.5
7.6
7.7

Al
A2
A3
A4
A5
A6

Comparison of high-throughput sequencing technologies 5
Differencecovers. e 35
Shift values used in SKEW3 and SKEW7 37
Enhanced suffix array construction algorithms available in SeqAn 49
Datasets used for ESAexperiments 50
Construction times for ASCIl datasets. 50
Construction times for DNAdatasets 51
Construction times and peak memory usage for large DNA datasets 52
Comparison of read mappingtools 98
Datasets used for the experimentalmaps 121
Rabema benchmarkresults. 126
Variation detectionresults 128
Performanceresults 129
Existing frequency string mining algorithms and their characteristics . . 132
Examples for frequency, support, growth, and entropy 133
Databases used in our experiments e 144
Emerging substring miningresults 145
Frequent pattern miningresults 146
Entropy substring miningresults 146
Entropy substring mining on four proteomes 147
Full variation detection results for single-endreads 158
Full variation detection results for paired-endreads 158
Extended experimental results for real-world single-end data. 159
Extended experimental results for long simulated single-end data. 160
Extended experimental results for real-world paired-end data.. 161

Extended experimental results for long simulated paired-end data. 162

190

LIST OF ALGORITHMS

3.1
3.2
3.3
34
35
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20
3.21
3.22
3.23
3.24

4.1
4.2
4.3
4.4
4.5
4.6
47
4.8
4.9
4.10
4.11

SKEW3(S) « v v v i e e e e e e e 37
SKEWT7(S) « v i i e e e e e e e 38
SKEW7_EXTMEM(S) o i e 40
SKEW7_MULTI(S?, ..., S™) « v oo e e e e e e e e e e e 42
CONSTRUCTLCPTABLE(s,suftab) 43
CONSTRUCTLCPTABLE_INPLACE(s,suftab) 44
CONSTRUCTLCPTABLE_EXTMEM(s,suftab) 46
CONSTRUCTLCPTABLE_MULTI(s?, ..., s™,suftab) 47
BOTTOMUPTRAVERSAL(ICp) o o e e 48
CONSTRUCTCHILDTABLE(lCp) o o e 49
FINDLOWER(S, D) - - « v« o o e e e e e e e e e e e e e e 53
FINDUPPER(S,) - « « v« v e 53
FINDLOWERH(S,p) - o o e e 54
FINDUPPERH(S,p) - o o e e e e e 54
GOROOT(Iter) o i e e e 55
ISNEXTL(E) .« o v o o e e e e e e e e e e e 55
GODOWN(Iter) o o 55
GORIGHT(iter) o e e e e e e 55
GONEXT_PRE(Qt) o o i e e e e e 56
GONEXT_POST(it) o o i e e e e 56
REPLENGTH(Iter) o i i e e e e e e e e 57
REPRESENTATIVE(IteT) o i i i e e e e e e e e e e e 58
PARENTEDGELABEL(iter) i e e i e e 58
GETOCCURRENCES(Iter) . . . v o i e e e e e e e e e e e e 58
WOTDEAGER(T, @) . . . o o o e e e e e e 66
CREATESUFFIXTREE(S)« o i i o e e e e e e e e e 67
GOROOT(iter) 75
UPDATERB(iter) 75
GODOWN(Iter) o o 75
GORIGHT(Iter) o o i e e e e e e e e e e e 75
REPLENGTH(Iter) i i e e e e e e e 75
EXACTMULTIRECURSION(iterA,iterB,i) i i i i e e 77
APPROXIMATERECURSION(pattern,iter,i,e)« o v o v v oo .. 79
APPROXIMATEPATTERNSEARCH (pattern,errors) 79

APPROXIMATEMULTIRECURSION(iter4, iterB,i,e) 81

192

4.12 APPROXIMATEMULTIPATTERNSEARCH(patterns,errors) 81
5.1 CONSTRUCTQGRAMINDEX(S, Q) . . . « v o v i e e e e e e e e e 85
5.2 CONSTRUCTQGRAMINDEX_MULTI(s,...,s™, Q) i 86
5.3 CONSTRUCTQGRAMINDEX_EXTMEM(S,Q) v 87
54 GETBKT(c,C) o o e 88
55 REQBKT(C,C) o o e 88
5.6 GETOCCURRENCES(t,pos,dir) it 90
6.1 &(T)forgappedshapes 108
6.2 BANDEDMYERS(t,p, k,W,C) . . . o o o 115
6.3 BANDEDMYERS_LARGEALPHABET(t,p, k,w,c) 117
7.1 FHK(Dy, ..., Dp,pred) . . . o oo e e 139
7.2 DFI(T, a,pred, pred,) - o 140
7.3 SORTANDCOUNTFREQ(@) v v v i i e e e e e e e e 142

LIST OF NOTATIONS

bp

Mb
MB

GB
LYo
5

ZTL

€

|s]

s[i]

s;, suf(s, i)
[i.J]
[i./)
No

<, <

) —

(o | o)
Icp$§

<
<q
$,¢/
concat(v)
s

rank(a)
R,D, I
IT1le

IT1lr
R

G
D

freq(¢, D)

lex

base pair, character of the alphabet {ACGT}
megabase, 1 million base pairs or characters
megabyte, 1 MB = 1024 kB = 1,048,576byte
gigabyte, 1GB=1024MB
finitealphabets L
set of all possible strings over the alphabet®
set of all possible strings over the alphabet X with lengthn
empty String e
lengthof strings
character of s at position i (counting from0)
suffix of s beginning at positioni
setofintegersi,i+ 1,....,J
setofintegersi,i+1,...j—1
set of non-negative integers L.
strict and non-strict substring relation
definition of a string analogous to the set notation
longest common prefix of aset S of strings
lexicographicalorder
lexicographical prefix order, compares only prefixes of length g
(virtual) sentinel characters to well-define the suffixtree
edge label concatenation on the path from root to suffix tree node v
suffix tree node whose edge label concatenationiss
rank of character a in the underlying alphabet
edit operations that replace, delete, or insert a character
number of edit operations in transcriptT
number of matches, replacements, and deletions in transcriptT
sequenced reads, setof strings L.
reference sequence, string L.
database, setofstrings o
absolute number of strings in D that contain ¢ atleastonce

supp(¢, D) relative number of strings in D that contain ¢ atleastonce

194

INDEX

alignment, 17, 80, 90, 93,99, 101, 111
all-mapper, 99, 119, 126, 128
alphabet, 13, 62,115

integer alphabet, 30
array, 13

backward search, 99
best-mapper, 99, 119, 125, 129
Burrows-Wheeler transform, 99

candidate region, 90, 101-103, 111
Cartesian order, 14

character, 13

compressed index, 29

concatenation string, 16, 56, 57, 66, 75

database, 132
deferred data structure, 65
difference cover, 34
minimal, 34
perfect, 34
DNA, 3

edit
distance, 17,91, 111
operations, 17
emerging substring, 134
mining problem, 131, 134, 135,
145, 146
entropy, 134
substring mining problem, 131,
135, 145, 146

FM index, 99
frequency, 132
predicate, 133
vector, 133
frequent pattern mining problem, 133,
136,138, 142-146, 163

generalized

repeated pair, 61

suffix array, 40

suffix tree, 16, 71, 136, 139, 141
growth rate, 133, 134

Hamming distance, 17,90, 91, 111
hull, see monotonic hull

jumping emerging substring, 134

k-error
match, 19, 98, 108
problem, 19
k-mismatch, 19
problem, 19, 78

£-indices, 29
f-interval, 26
Icp table, 25
lcp values, 26
lcp-interval, 26
tree, 29
lexicographical
naming, 15
order, 14
longest common prefix, 14

maximal repeat, see repeat
maximal unique match, 59
minimal coverage, 91
mlr-heuristic, 50

monotonic hull, 136, 137, 163
monotonic predicate, 135

MUM, see maximal unique match

w-interval, 26

partial suffix tree, 66
pigeonhole filter, 102, 108

196

prefix trie, 99
protein, 4

q-gram, 13, 83
code, 83
index, 84
construction, 85, 86
search, 90
lemma, 90, 101
shape, 83
g-hit, 93,101
g-match, 101
QUASAR, 91

radix tree, 76
read mapping, 101
repeat
maximal, 59
supermaximal, 59
repeated pair, 59
generalized, 61
left maximal, 59
maximal, 59
right maximal, 59

representative, see concatenation string

RNA, 4
RNA-seq, 4

self-index, 29

SeqAn, 7

shape, 83

skew algorithm, 30

string, 13

succinct index, 29

suffix, 13

suffix array, 25
enhanced, 25
generalized, 40
inverse, 25

suffix tree, 16

generalized, 16, 71, 136, 139, 141

lazy, 65
suffix trie, 16, 131

supermaximal repeat, see repeat

support, 132

SWIFT, 93,102, 105

table, 13

top-down iterator, 54
transcript, 17

tuple, 13

unique match, 63

	Part I Introduction
	Introduction
	Preface
	Sanger sequencing
	High-throughput sequencing technologies
	Applications of high-throughput sequencing
	Overview
	Index data structures
	Read mapping
	Frequency string mining

	Mathematical Preliminaries
	Notations
	Relations
	Suffix tree
	Transcripts and alignments
	Approximate matching

	Part II Index Data Structures
	Enhanced Suffix Array
	Definitions
	Suffix array
	LCP table
	Child table

	Representation
	Construction of the suffix array
	The linear-time algorithm by Kärkkäinen et al.
	Difference covers
	Our algorithms
	External memory variant
	Extension to multiple sequences

	Construction of the lcp table
	The linear-time algorithm by Kasai et al.
	Space-saving variant
	Adaptation to external memory
	Extension to multiple sequences

	Construction of the child table
	Bottom-up suffix tree traversal
	The linear-time algorithm by Abouelhoda et al.
	Adaptation to external memory and multiple sequences

	Applications
	Searching the suffix array
	Traversing the suffix tree
	Accessing the suffix tree
	Repeat search

	Lazy Suffix Tree
	The wotd algorithm
	Lazy construction and representation
	The original data structure
	Our data structure
	Extension to multiple sequences

	Applications
	Traversing and accessing the lazy suffix tree
	Radix trees
	Multiple exact pattern search
	Approximate pattern search

	q-gram Index
	Definitions
	The direct addressing q-gram index
	Construction
	Counting sort algorithm
	Extension to multiple sequences
	Adaptation to external memory

	The open addressing q-gram index
	Applications
	q-gram counting filters for approximate matching

	Part III Applications
	Read Mapping
	Related work
	The RazerS algorithm
	Definitions
	Filtration
	SWIFT filter
	Pigeonhole filter

	Lossy filtration and prediction of sensitivity
	Sensitivity calculation of q-gram counting filters
	Sensitivity calculation of pigeonhole filters
	Choosing filtration parameters

	Verification
	Hamming distance verification
	Edit distance verification

	Paired-end mapping
	Match processing
	Parallelization
	Experimental results
	Comparing the SWIFT and pigeonhole filters
	Analyzing the sensitivity estimation accuracy
	Achieved speedup
	Rabema benchmark results
	Variant detection results
	Performance comparison

	Frequency String Mining
	Related work
	Definitions
	Predicates
	Monotonicity
	Conjunctive predicates

	Monotonic hull
	The linear-time algorithm by Fischer et al.
	The original algorithm
	Space efficient variants

	A fast algorithm based on lazy suffix trees
	The deferred frequency index
	Algorithmic details

	Experimental results
	Two databases
	Multiple databases
	Detection of species specific protein domains

	Conclusion and Future Work
	Appendix
	High-throughput sequencing technologies in detail
	Proving sensitivity recursions
	Read mapper parametrization
	Extended variation detection tables
	Extended performance comparison tables
	Proving hull optimality

	Curriculum Vitae
	Declaration
	Bibliography
	Index

