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Systematic evaluation of fluorescence correlation
spectroscopy data analysis on the nanosecond
time scale†

Katrin Steger,a Stefan Bollmann,a Frank Noéb and Sören Doose*a

Signal fluctuations in a fluorescence time trace on nanosecond time scales can be induced by specific

quenching interactions that report on the dynamics of biomolecules. Fluorescence correlation

spectroscopy is an analysis tool to investigate dynamic processes on time scales from pico- to

milliseconds or longer. Under certain conditions, e.g. in a solvent of high viscosity, a fluorescence

labeled dynamic biomolecule yields multiple independent correlation decays due to rotational and

translational diffusion, fluorescence quenching interactions, and fluorophore photophysics. We

compared parameter estimation for FCS data with multiple correlation decays by dynamical fingerprint

analysis and by the non-linear Levenberg–Marquardt fitting procedure and identified conditions for

which dynamical fingerprint analysis can be of advantage. In this context we identified a previously

unrecognized photophysical process in ATTO655 that introduces fluorescence intermittency on

nanosecond time scales that is absent in MR121. The optimized fitting procedure is used to resolve the

viscosity dependence of fluorescence quenching for photoinduced electron transfer probes.

Introduction

Fluorescence correlation spectroscopy (FCS) has become an
important data analysis method for the investigation of mole-
cular properties ranging from hydrodynamic radii to conforma-
tional dynamics.1–9 By probing stochastic signal fluctuations of
a low concentrated sample in thermodynamic equilibrium, e.g.
due to fluorescence quenching interactions of well-designed
and site-specifically incorporated reporter molecules, FCS has
been advantageously used to monitor conformational dynamics
of biomolecules and characterize protein dynamics. Fluores-
cence fluctuations nowadays can be observed with exquisite
sensitivity and analyzed simultaneously over orders of magni-
tude in time ranging from picoseconds to minutes. Progress is
due to technical advances including the use of confocal micro-
scopy for efficient fluorescence detection, precisely timed single-
photon recording, and efficient correlation algorithms or
hardware devices for multiple-tau correlation analysis, among
others.10–13 Cross-correlation of two single-photon avalanche

photodiode detectors combined with the use of appropriate
spectral filters ensures an optimized signal-to-noise ratio
and eliminates contributions from detector dead-times and
afterpulsing on correlations at nanosecond lag times (tlag).
Hardware correlation electronics and software correlation algo-
rithms based on multiple-tau correlation analysis are commer-
cially available, in which the temporal resolution of the
correlation curve (Dtlag) is iteratively adjusted to the absolute
lag time. That way the total number of computations needed
for generating a correlation curve over many orders of magni-
tude in time is reduced and the acquisition of FCS data in real
time is possible.

At small lag times FCS is limited by the antibunching
signature that results from the finite fluorescence radiation
rate of the fluorescing molecules.14,15 Due to the quantum
mechanical properties of a two state system, a single emitter
cannot emit multiple photons simultaneously; a fact that
results in an anticorrelation with a rise time on the order of
the fluorescence lifetime (typically few nanoseconds). At large
lag times most FCS experiments are limited by the fact that the
instrumental stability is compromised by temperature varia-
tions and slow changes in the observation volume, for example
due to shifts in the focal plane alignment. Apart from these
limitations, fluorescence fluctuations are indicative of various
interesting molecular processes, such as reorientation due to
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translational and rotational diffusion or from conformational
dynamics that change the local environment of a fluorophore
and the related fluorescence quantum yield. Often there is
particular interest for fluctuations on the nano- and micro-
second time scale. When monitoring fluorescent organic dyes
diffusing in aqueous solution, nanosecond signal fluctuations
are typically introduced by antibunching in the single fluoro-
phore emission, rotational diffusion of the fluorophore in the
polarized field of the excitation laser, photophysical processes
such as the population of long-lived triplet states by intersystem
crossing, or fluorescence quenching upon interaction between
the fluorophore and nearby quenching moieties. In many
experiments a fluorescent moiety is in close proximity to a
fluorescence quenching moiety and changes in their relative
distance or orientation influence the intensity of emitted
fluorescence. van der Waals contact of an organic fluorophore
and its quencher can be probed e.g. by photoinduced electron
transfer (PET), dimerization, or other interactions that change
the excited state probability distribution for radiative or non-
radiative transitions to the ground state.16–24 Distance changes
between solvent-separated probes around a few nanometers
can be monitored by Förster resonance energy transfer.25–31

The difficulty in analyzing the FCS data lies in identifying an
appropriate theoretical model describing the molecular pro-
cesses that have generated the fluorescence fluctuations, fitting
it to the data, and obtaining relevant information from the
model parameters. The most common approach to analyze
correlation data is to employ w-square minimizing non-linear
fitting routines such as the Levenberg–Marquardt (LM) algo-
rithm in order to optimize the parameters of a user-defined
analytical expression for the correlation function. The expression
for the correlation function usually results from a physical
model containing the molecular and photophysical processes
influencing the experimental correlation data. Typically, such a
model contains a fixed number of prescribed exponential decay
processes, either due to photophysical or molecular state
transitions that cause a decorrelation of the fluorescence at
different timescales. The reliability of the fitting routine may be
increased by constraining fit parameters to reasonable intervals
or by fixing them to constant values that are determined in
independent experiments. Simultaneous fitting of multiple
correlation curves with the same parameters is another
approach to reduce the statistical uncertainty of the fitting
results. Stochastic approaches were developed to enable high-
throughput fitting procedures independent of manually chosen
starting values.32 Model functions are also optimized in a more
general way by using maximum likelihood estimation or
maximum entropy methods. For rating a finite number of
competing model functions Bayesian inference testing was
employed.33,34

An alternative to fitting prescribed model functions with a
fixed number of exponentials is to use methods that estimate
the amplitude density of the rate or timescale spectrum.35–38

It can be shown that in the absence of statistical noise,
the amplitude density of the rate spectrum, also known as
the power spectrum, is the forward Laplace transform of the

correlation function, while the amplitude density of the time-
scale spectrum, also called ‘‘dynamical fingerprint’’, is the
inverse Laplace transform of the correlation function.35 The
rationale for estimating the density of timescales rather than
prescribing a fixed number of exponential relaxations is that
the correlation function resulting from fluorescence changes
due to conformational dynamics can be shown to be a sum of
exponential decays, each with a timescale of an equilibrium
conformational transition.35,39 Photophysical state transitions
add more exponential decays. For each molecule, there are
infinitely many such processes. Only if the slow processes are
separated in time from the fast processes, such as in a system
with so-called two- or three-state kinetics, the spectrum has
clearly separated peaks with distinct features. Estimating the
dynamical fingerprint from the data, rather than enforcing a
model with a certain number of states, avoids enforcing the
number of conformational states in advance, and offers the
chance of finding unexpected processes. However, the ability to
resolve subtle features – such as peaks with small amplitudes,
or separation of nearby peaks – is still limited by noise and the
fundamental problem that calculating the spectrum from a
correlation function is mathematically poorly conditioned.
Additionally, noise may produce spurious peaks in the esti-
mated spectrum, and it is hence very important to ensure a
good signal-to-noise ratio by calculating the FCS function from
a large dataset. The estimation of the rate spectrum or dynamical
fingerprint is usually done using error-minimization or
likelihood-maximization approaches, often using regulariza-
tions such as maximum entropy36 or prior probabilities37 to
avoid overfitting the data.

In this work we analyzed FCS data that report on bimole-
cular PET-based quenching interactions of freely diffusing
oxazine fluorophores (MR121 or ATTO655) and quencher mole-
cules (tryptophan, Trp) with characteristic time constants of
tens to hundreds of nanoseconds.24,40,41 When monitoring
these processes at increased viscosity, as is of interest for
instance when using PET probes to understand the relationship
between polymer dynamics and solvent conditions,42 rotational
diffusion of the fluorophore electronic transition dipoles adds
an additional correlation decay. We found that standard fitting
procedures are not reliable for extracting all parameters from
such complex experimental FCS correlation curves. We there-
fore tested for systematic deviations that arise when analyzing
FCS data for model systems with multiple decays on time scales
close to the antibunching signature. We analyzed either experi-
mental FCS data for bimolecular interactions between fluoro-
phore and Trp freely diffusing in aqueous sugar solutions or
simulated correlation data. We determined conditions under
which LM fitting and dynamic fingerprint analysis yield reliable
parameter estimates. We further demonstrate that the dynamical
fingerprint analysis can be advantageous under the given
conditions for analyzing FCS data with multiple decay compo-
nents. Our results have implications for FCS analysis of
dynamic processes on nano- to millisecond time scales such
as that applied in many single-molecule fluorescence studies of
dynamic biomolecules.
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Materials and methods
Experimental FCS

FCS measurements were performed on an inverted microscope
(IX71, Olympus Deutschland GmbH, Hamburg, Germany) with
custom-made modifications. Fluorophores were excited in the
visible red light spectrum at 640 nm using a diode laser
(OBIS640, Coherent Europe B.V., Utrecht, Netherlands; in
combination with a clean-up filter) that was coupled to an oil-
immersion objective (U Plan S Apo 60�, 1.35 NA; Olympus)
using a dichroic beam splitter (645DLRP; Omega Optics;
Brattleboro, VT, USA). The laser power was adjusted to around
800 mW as measured at the back aperture of the objective. The
fluorescence signal was collected using the same objective,
filtered using a band-pass filter (700DF75, Chroma Technology
Corporation, Bellows Falls, VT, USA), split into two detection
channels using a 50 : 50 non-polarizing beam splitter cube
(Thorlabs GmbH, Munich, Germany), and imaged on two
multi-mode optical fibers with an entrance diameter of 100 mm
that served as a confocal pinhole. Fibers were coupled to the
active areas of two avalanche photodiodes (APD, SPCM-AQR-14-
FC; PerkinElmer, USA) and signals were recorded as single-
photon time traces (typically 15 min) in TTTR mode using data
acquisition electronics (PicoHarp 300, PicoQuant GmbH,
Berlin, Germany) and software (SymPhoTime Version 5.3.2,
PicoQuant). Fluorescence photons were shared by two APDs
and analyzed in cross-correlation mode in order to eliminate
effects from detector dead-times and afterpulsing. Cross-
correlation functions of the two recorded time traces were
calculated using SymPhoTime (PicoQuant). Multiple-tau corre-
lation functions were generated from a minimal lag time of
tmin = 18 ps to a maximum lag time of tmax = 0.9 s with the
number of lag times with equal lag time steps Dt being N = 8.
The temperature was controlled to (20 � 1) 1C by heating/
cooling the objective using a custom-made Peltier element. All
premixed samples were transferred onto microscope slides with
a small depression and covered by a cover slip.

As a model system we present data for the bimolecular
quenching interaction between the organic fluorophore MR121
(provided by Prof. K.-H. Drexhage, Siegen University) or ATTO655
(AttoTec GmbH, Siegen, Germany) and the amino acid tryptophan
(Trp; Sigma-Aldrich Chemie GmbH, Munich, Germany). Static
quenching occurs upon formation of bimolecular complexes
through a photoinduced electron transfer process.24,40,43 FCS data
were recorded for samples with a dye concentration close to 1 nM
and Trp concentrations of 10 mM. The buffer was a mixture of
phosphate buffered saline (PBS, pH 7.3) with various amounts of
sucrose and 0.5% detergent (Tween20, Sigma) to reduce adhesion
on the glass surface. Sucrose concentrations were checked by
measurements of the refractive index (DR201-95, A. Krüss Optronik,
Hamburg, Germany) and the corresponding viscosity was deter-
mined from tabulated literature values.44

Data simulation

All data generation and analysis were carried out using the
computer software package Mathematica (Version 8.0.1.,

Wolfram Research Inc., Champaign, IL, USA). Two sets of data
simulations were carried out; either FCS data were directly
modeled or were calculated from a discrete-time Markov chain.
In the first approach FCS data curves were generated starting
with a model function of the form

GðtÞ ¼ 1þ
Xn
i¼1

GiðtÞ ¼ 1þ
Xn
i¼1

aie
�kit (1)

including n (here two or more) exponential decay components
with amplitudes ai and characteristic rate constants ki (inverse
characteristic time constants ti) for each decay component.

In order to simulate the typical multiple-tau experimental
setup, the model function was evaluated at a non-uniform
series of t-values (lag time). We generated a quasi-logarithmic
discrete lag time scale by doubling the lag time increments Dt
every L channels. Starting with a minimum lag time tmin =
100 ps, the first doubling was performed after L = 16 channels
and followed by subsequent doubling every L = 8 channels until
a series with 200 elements was calculated. The maximum lag
time is about one millisecond (tmax = 0.94 ms). This lag time
series generated with L = (16, 8, 8,. . ., 8) is typical for many FCS
hardware and software correlators since it was shown to mini-
mize triangular averaging distortions and thus to be optimal
with respect to resolution and signal-to-noise aspects.13,45

Noise was generated using a random number generator
(Mathematica 8.0.1) for normally distributed numbers that
were added to the model function. The normally distributed
noise was adjusted for each lag time to follow the typical scaling
behavior given a certain noise amplitude c:

stddevðnoiseÞ ¼ c
1ffiffiffi
t
p ; meanðnoiseÞ ¼ 0: (2)

It was shown previously that this relation is due to shot noise,
influences from background, and detector noise45,46 and holds
for our experimental FCS data up to a lag time of B10 ms.35 The
adjustable parameter for the noise amplitude c was estimated
from experimental data and accordingly varied in simulations
between 10�6 and 10�4 s1/2.

Since the latter approach neglects the fact that in real
multiple-tau FCS data noise at different lag times is correlated,
we also performed simulations of Markov-chains according to a
photophysical model with transitions between a ground (state 1),
excited (state 2), and dark state (state 3). We used rate constants
according to the three-dimensional transition matrix M =
((0, 0.3, 0), (0.3, 0, 0.1), (0.1, 0, 0)). Single-photon time series
were generated by assuming that only transitions from the
excited to the ground state result in photon detection. Poisson-
distributed background photons were added to this photon
time series and correlation functions were calculated using a
multiple-tau correlation algorithm as described.45,47 In none of
the data simulations a correlation decay due to translational
diffusion was included.

Data analysis

Simulated and experimental data were fitted using a least-
squares non-linear Levenberg–Marquardt (LM) fitting routine
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as implemented in Mathematica (Version 8.0.1.) or as imple-
mented in Origin (Version 8.5, OriginLab Corporation, North-
ampton, MA, USA). The following fit model was used:

G(t) = GD(t)(1 � Ae�kabt + Re�krott + Ke�krelt + Te�ktript)
(3)

with GD(t) = 1 when fitting simulated data or with

GDðtÞ ¼ N�1 1� t
tD

� ��1
(4)

when fitting experimental data at full length of the correlation
curve. Here N is the average number of molecules in the
observation volume and tD = oxy

2/4D is the average diffusion
time for molecules to pass through the observation volume
(with lateral dimension oxy) by translational diffusion according
to the diffusion constant D.3,48 All other parameters in eqn (3)
and throughout the manuscript are as follows: A, kab = tab

�1 are
amplitude and rate/time constant for the antibunching
process; R, krot = trot

�1 for rotational diffusion; K, krel = trel
�1

for contact-induced quenching; T, kisc = tisc
�1 for intersystem

crossing from the excited singlet to long-lived triplet states.
Dynamical fingerprints were determined as described

previously35 using the algorithm implemented in JAVA and
included in the scimex package (version of Feb 2011, https://
simtk.org/home/scimex). In this version, the diffusion part
GD(t) of the correlation function is included in the fingerprint
determination as an independent and analytical expression.
Here, fingerprints were determined using an updated version of
the computer code that included a similar treatment of the
antibunching signature using an analytical expression:

GðtÞ ¼ GDðtÞ 1� Ae�kabt þ
Z1

t¼0

gðtÞe�t=t
0
@

1
A: (5)

where A and kab are the parameters of the antibunching term
and g(t) is the dynamical fingerprint, i.e. the continuous
amplitude density of relaxation timescales in the data. In the
dynamical fingerprint algorithm, g(t) is discretized in time and
thus the integral in eqn (5) is approximated by a finite sum. The
fingerprint fitting routine thus consisted of the following steps:
(i) estimation of the diffusion component by LM fitting of GD(t)
for t > 1 ms and effectively fixing N and tD accordingly during
fingerprint determination; (ii) estimation of the noise ampli-
tude c; (iii) estimation of antibunching parameters; (iv) deter-
mination of the dynamical fingerprint and fit curve by
maximization of the likelihood function (for details see ref. 35).

Results

When using FCS to monitor conformational dynamics of
biopolymers in aqueous solution under varying environmental
conditions (temperature, viscosity, chemical additives) state of
the art electronics allow the recording of a correlation function
G(t) spanning lag times from tens of picoseconds to many
minutes. Under certain conditions (e.g. aqueous solution with
60% (w/v) sucrose at room temperature) five distinct processes

can be identified when their timescales are well separated. We
demonstrate this by showing G(t) recorded for a mixture of
freely diffusing Trp (10 mM) and MR121 (B1 nM), a red
emitting oxazine fluorophore that is efficiently quenched by
PET when forming van-der-Waals contact with Trp (Fig. 1). In
the log-linear representation of G(t) the corresponding rise or
decay components include the antibunching term around a few
ns, a rotational diffusion term due to rotation of the fluoro-
phore transition dipole within the excitation laser focus around
10–20 ns, a PET-based quenching term due to contact formation
of MR121 and Trp around 500 ns, a triplet term due to
intersystem crossing in the fluorophore around 10–20 ms, and
a translational diffusion term due to diffusional passage of the
fluorophore through the laser focus around 10 ms. Estimates
for the relaxation time of the exponential decay components are
gained from dynamical fingerprint analysis or from fitting
eqn (3) to the correlation function using a non-linear least-
squares LM fitting algorithm (Fig. 1A–C) and made visible in
the dynamical fingerprint shown in Fig. 1D. Very similar data
are generated for short peptides or nucleotides in which one
terminus is labeled with the fluorophore and the other terminus
contains a quenching moiety like Trp or guanine.49

The dynamical processes contributing to eqn (3) are theore-
tically well described by physical principles. Analytical correla-
tion functions were derived for all individual components and
some combinations of them. Antibunching describes an expo-
nential rise in the correlation time from a minimal value that
depends on the number of simultaneously observed fluorescent
emitters and background signal.14,15,50–52 For a single emitter
the correlation at zero lag time equals zero and the character-
istic rise time is the inverse product of the excitation and the
fluorescence relaxation rate constants. Rotational diffusion of
individual transition dipoles for excitation and emission relates
to the molecular shape of the fluorophore (and attached
biomolecule) and, depending on the polarization state of the
excitation light and the detectors, results in a rather compli-
cated multi-exponential decay.50,53–56 However, in most experi-
mental settings, a single exponential decay is sufficient to
describe the observed correlation function.57 Under the
assumption of a single excitation dipole and a negligible
z-component of the excitation light field, the characteristic
decay time is proportional to the rotational diffusion constant
and scales with temperature and viscosity as described by the
Stokes–Einstein–Debye equation Drot = kBT/(8pZR3). Fluores-
cence quenching due to contact-induced interactions between
a fluorophore and a quenching molecule reflects the process
that brings the two entities into contact. If the interaction
follows a two state process with well-defined association and
dissociation rate constants, a mono-exponential correlation
decay emerges with a characteristic time constant that is the
inverse of the sum of association and dissociation rate con-
stants. This mono-exponential decay has indeed been observed
in many PET-based quenching experiments including the
bimolecular complex formation between MR121/ATTO655
and Trp (Fig. 1).16 The population of long lived triplet states
due to intersystem crossing is well understood in organic
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fluorescing molecules.58,59 The exponential decay function that is
experimentally observed can be explained by a simple approxi-
mation in which the triplet state is treated as a dark-state and the
combination of ground and first electronically excited singlet
states as an on-state.60 MR121 and ATTO655 are known for small
intersystem crossing rates with the result that correlation ampli-
tudes of this process are comparably small. The correlation decay
due to translational diffusion of the fluorescing entity through the
excitation laser focus on millisecond time scales is well described
by the classical theories on diffusional motion.3,9,48

With well separated time scales for all the above described
processes, it is reasonable to describe the complete correlation
function as a sum of exponential correlation decays combined
with the standard correlation function for two-dimensional
diffusion as described by eqn (3) and (4). Using standard LM
fitting algorithms we fitted eqn (3) to the experimental data

with reasonable agreement as indicated by small and randomly
distributed residuals (Fig. 1B). The systematic bias on the
millisecond timescale is typically observed due to optical
aberrations that cause deviations from a Gaussian observation
volume, hence rendering eqn (4) only approximate. More
problematic however, the LM fitting revealed a strong inter-
dependence between the correlation rise due to antibunching
and the neighbouring correlation decay as shown in Fig. 2. In a
majority of experimental data sets, when the antibunching
timescale and the timescale of the closest relaxation process
are close, the negative amplitude antibunching term and the
positive amplitude relaxation term tend to cancel each other,
making it difficult to reliably fit their parameters. This is visible
by poor convergence and by the fact that the solution for the
two amplitudes is not unique as the one amplitude can
compensate for the other. We illustrate this with experimental

Fig. 1 FCS data representing bimolecular interactions between the freely diffusing fluorophore and the quencher. (A) FCS data generated with 1 nM MR121 and
10 mM Trp freely diffusing in a mixture of PBS buffer and 60% sucrose at 20 1C, overlaid with a fit function generated by the LM fitting routine. Arrows indicate the
underlying process (from left to right): antibunching, rotational diffusion, PET-quenching, intersystem crossing, diffusion. (B) Residuals of the data fit normalized to the
number of molecules N and multiplied by the square root of the lag time t. (C) Histogram of the normalized residuals shown in (B) for the interval from 18 ps to 10 ms.
The Gauss fit reveals a standard deviation with c = 5.7 � 10�6 s1/2. (D) Dynamical fingerprint of data displayed in (A) with the first two peaks (from left to right)
originating from the antibunching signature, third, fourth, and fifth peak originating from rotational diffusion, PET-quenching, and intersystem crossing, respectively.
The inset shows residuals multiplied by t1/2 for the dynamical fingerprint fit.
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FCS data for pure MR121 freely diffusing in concentrated sugar
solution (60% sucrose in PBS). LM fits for more than half of 80
repeated FCS measurements revealed unreasonably large and
highly correlated amplitudes (Fig. 2). The effect appears to be
identical whether the full data curve was analyzed or whether
the data were cut off after the rotational diffusion decay
excluding triplet and translational diffusion decay.

Investigating the origin of this fitting effect, we tested for a
number of possible causes. First, the effect was seen in a large
variety of experimental data sets collected on different setups
for different samples and with different correlation algorithms.
Second, the fitting artefact did not depend on starting values
used in the fit routine. Third, the effect seemed to be less
pronounced in simulated data. To reinforce this observation we
investigated multiple sets of data simulations varying both
model functions and noise contributions. In a first set of
simulated FCS data, we added uncorrelated and normally
distributed noise (eqn (2)) on a model function (eqn (1)). To
ensure good resemblance with experimental data, we carefully
characterized the noise in our experiments. Various theoretical
and experimental studies revealed that noise amplitudes in
multiple-tau FCS data vary with lag time and show different
behavior on various time scales.35,46,47,61–63 Since in this study
we are focusing on fast time scales, we confirmed that the noise
on the correlation data is Gauss-distributed with a standard
deviation that scales with t�1/2 for lag times in the range 18 ps
to 10 ms (Fig. 1B and C). The noise amplitude c (see eqn (2)) is
between 10�6 s1/2 and 10�4 s1/2 in typical FCS data. For
instance, the data in Fig. 1 display noise with an amplitude
of c = 5.7 � 10�6 s1/2. Residues of all fitted curves normalized to
the square root of the lag time t and displayed as a function of t
in Fig. 1B or as a histogram with a Gaussian fit in Fig. 1C
illustrate this general dependence which is independent of
excitation power and integration time. The absolute noise ampli-
tude decreases with excitation power as shown in Fig. S1 (ESI†).

We investigated noisy simulated FCS data curves generated
with a model function including two parts, the antibunching
phase with a characteristic rate constant of kAB = 0.4 � 109 s�1

and an exponential decay phase with a characteristic rate
constant of krot = 0.1 � 109 s�1. Noise was added according
to a noise amplitude of c = 6 � 10�6 s1/2 and a representative
curve is shown in Fig. S2 (ESI†). One hundred simulated data
curves were fitted with a non-linear LM fitting algorithm. The
distributions for the estimated fit parameters are shown in Fig. S2
(ESI†). It is revealed that the observed fitting artefact appears for
data with sufficient noise and rate constants closer than a factor
of B5 albeit less pronounced than in experimental data sets.

It is important to note that in these simulations the noise on
the correlation curve at various lag times is entirely uncorrelated.
This, however, is not the case in real multiple-tau FCS data.33,45,61

Therefore, in a second set of simulations, we generated correla-
tion data by calculating the correlation of individual time trace
simulations. In these simulations we assumed a Markov-state
system with three distinct states that are interconnected by
a transition matrix representing the rate constants for all
possible transitions. By selecting certain transitions (e.g. only
those from state 2 to state 1) as detectable, we generated single
photon time traces, added Poisson-distributed background
events, and calculated G(t) using a multiple-tau algorithm as
described in Materials and methods. Such data exhibit corre-
lated noise as discussed in previous studies.33,45 However, we
found no difference in the performance of LM fitting proce-
dures on any comparable simulation sets with uncorrelated or
correlated noise.

As an alternative fitting procedure we then applied a routine
to determine the dynamical fingerprints of correlation data.35

In this routine multiple steps including independent determi-
nation of the diffusion part were carried out as described
in Materials and methods. The resulting correlation curve
reassembled as superposition of exponential decay functions

Fig. 2 FCS data measured with freely diffusing MR121 in PBS buffer with 60% sucrose at 20 1C. (A) Exemplary data curve with noise of c = 4.4 � 10�6 s1/2 overlaid
with a function fitted using the LM algorithm as implemented in Mathematica. The amplitudes in this particular example were estimated as A = �4.1 and R =
4.0 (which is unrealistic). (B) Fit parameter distributions showing correlations between the two amplitudes A and R (closed squares) as generated from fitting 80
experimental FCS curves using the same LM algorithm. No correlation appears between A and corresponding w2 values (open circles).

Paper PCCP

Pu
bl

is
he

d 
on

 3
0 

A
pr

il 
20

13
. D

ow
nl

oa
de

d 
by

 F
re

ie
 U

ni
ve

rs
ita

et
 B

er
lin

 o
n 

01
/0

6/
20

13
 1

4:
09

:4
7.

 
View Article Online

http://dx.doi.org/10.1039/c3cp50644d


This journal is c the Owner Societies 2013 Phys. Chem. Chem. Phys.

from all fingerprint components fitted the data equally well
compared to LM fitting results as judged from the residual size
and randomness (Fig. 1D). To determine the accuracy of the
extracted correlation components we systematically investigated
dynamical fingerprint results in experimental and simulated data.

The dynamical fingerprints determined for bimolecular
interactions between MR121 and Trp as shown in Fig. 1D for
solvent conditions with large viscosity exhibit positive contri-
butions related to the antibunching signature and all decays
due to rotational diffusion, PET-based quenching interactions,
and intersystem crossing. Each correlation decay is reflected by
a single peak in the fingerprint distribution with a width on the
order of a few percent of the estimated time constant (from
simulated data we estimated the width of a single peak to be
around 3% of the absolute time constant for truly mono-
exponential decays). This width reflects the resolution limit of
the dynamical fingerprint determination under the given noise
conditions in the correlation data and with the number of
iterations for the fitting routine being set to 109. We judged the
quality of a single run for determining the dynamical finger-
print of a correlation curve by five criteria: (i) size and random-
ness of residuals; (ii) convergence of the log-likelihood
variation to a level of less than one per 1000 iterations; (iii)
maximum absolute value of the likelihood; (iv) similar results
in repeated runs for fingerprint determination; (v) similar
results in fingerprints of repeated measurements of the corre-
lation curve to exclude specific noise influences. Variations in
the fingerprint quality depending on the number of iterations
were demonstrated by analyzing experimental correlation data
recorded for bimolecular interactions (Fig. S3, ESI†). We found
that limiting the number of iterations to about 109 is a good
compromise to achieve good fingerprint quality at reasonable
computation time.

It should be noted that the negative amplitude of the
antibunching signature is included explicitly as analytical
single-exponential component in the fingerprint determination
and is not displayed in the fingerprints shown in the figures.
However, a spurious positive fingerprint component on the
fastest time scales results in nearly all our fingerprints that is
related to the antibunching component as a pure fingerprint
artefact (Fig. S4, ESI†). This effect is due to the change from
negative to positive decay amplitudes which cannot be entirely
resolved by the fingerprint routine. It is conceivable that using
a prior distribution that enforces smoothness in the fingerprint
could remove this artefact.37 In addition we found that the
estimated parameters for antibunching amplitude and time
constant remain close to the starting values (Fig. S4, ESI†).
However, any correlation decay on larger time scales is deter-
mined independently from the antibunching fit result (and
thus independent of the starting values) as long as sufficient
separation in time is guaranteed and starting values for the
antibunching parameters are within the range of the true
values. Due to the spurious positive fingerprint peak the
estimation of the amplitude and relaxation time constant for
the nearest correlation decay becomes biased when the separation
in time constants decreases to less than an order of magnitude.

By further studying the dynamical fingerprints of simulated
correlation data, we investigated how accurate two independent
exponential correlation decays are identified in the fingerprint
spectrum when the gap between the two correlation decay time
constants decreases. In Fig. 3 fingerprints are presented
for correlation data generated from a model function like
eqn (1) overlaid with noise of amplitude c = 9 � 10�6 s1/2.
The time constants t1 were varied from 10�8 s to 10�6 s while
the time constant t2 was held constant at 10�7 s. It appears that
separated fingerprint peaks are found as long as the correlation
decay time constants are separated by at least a factor of two.
The accuracy of estimated time constants is within the peak
width, with a few exceptions where the relaxation times are
underestimated by less than a factor of two (Fig. 3). The same
behavior was found for simulated data with a larger noise
constant of c = 3 � 10�5 s1/2 only that the fingerprint peaks
were more noisy (similar to the behavior shown in Fig. S3, ESI†).
Very similar behavior was also found when the fast correlation
decay approaches the antibunching time scale (Fig. S5, ESI†).
Importantly, any interference between the fast correlation
decay and the antibunching component does not influence
estimation of the larger relaxation time if it is shifted by at least
an order of magnitude.

Since the situation for experimental data on bimolecular
quenching interactions is very similar, we could then analyze
experimental data with good confidence. We investigated
bimolecular interactions between MR121 and Trp freely diffusing
in aqueous solutions with various amounts of sucrose added.
An exemplary FCS data curve with fingerprint analysis was
already discussed in Fig. 1. We investigated a series of measure-
ments all performed at 20 1C in aqueous PBS solutions.
Adjusting the solvent viscosity between about 1 cP and 60 cP
by varying the sucrose concentration, all correlation decays
were shifted towards larger times. Based on the previous
validation results we determined reliable fingerprints for all
bimolecular data curves (Fig. 4). At viscosities above 10 cP the
rotational correlation decay appears between the antibunching
signature and the PET quenching decay, increasing complexity
of the FCS curve. When analyzing the data set for all viscosities
with a LM fitting routine it shows that fitting can only be
performed by including an exponential component for the
additional rotational decay component and is always influ-
enced by the described interdependence of fit parameters
representing the amplitude for antibunching and rotational
diffusional components. Since the quenching decay is spaced
by more than an order of magnitude in time, both dynamical
fingerprint and LM estimates for the relaxation time of the PET-
quenching process should be reliable. However, we observed
that LM fit estimates for the relaxation times of the quenching
component are always biased towards slightly smaller values as
compared to the dynamical fingerprint estimates (Fig. 5).

In addition we also found that the fingerprint routine is very
sensitive to comparably small decay components that might
arise from photophysical processes. Comparing data from
MR121 and the structurally very similar fluorophore ATTO655
we found that ATTO655 exhibits a previously unrecognized
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correlation decay with a characteristic relaxation time between
100 ns and a few ms and with comparably small amplitude that
does not appear in MR121 data. The oxazine dyes MR121 and
ATTO655 were previously found to be almost identical in their
photophysical characteristics including the absorption and
emission spectrum, extinction coefficient, intersystem crossing
rate, quantum yield, excited state life time, and PET quenching
susceptibility.40 However, when analyzing bimolecular inter-
actions between ATTO655 and Trp at various viscosities, this
previously unrecognized photophysical component clearly
appears as a fingerprint peak in between those from the
rotational diffusion decay and from the quenching decay.
Controls showed that it is also existent in data from pure
fluorophore solutions and thus is not related to interactions
with Trp. Depending on the excitation power and the viscosity
the photophysical peak overlays with the other peaks under
certain conditions (Fig. S6, ESI†). Similar effects were also seen
in peptide samples labeled with ATTO655 via NHS–ester
coupling to the N-terminal amino group. While the origin of

this additional fluorescence intermittency is unknown to us, it
appears that the amplitude depends on excitation power and
on solvent viscosity and the time constant is about an order of
magnitude smaller than that observed for the triplet decay. The
observation that variations in amplitude and time scales are
similar to those of the triplet kinetics suggests a direct depen-
dence between occupancy of triplet states and the faster
unknown dark states. Further studies are underway to unravel
the photophysical origin of this effect.

Discussion

This work was motivated by the quest of analyzing end-to-end
contact kinetics of unstructured peptides in aqueous solution
at increased viscosity. As benchmark we demonstrated the
fitting performance of LM and dynamic fingerprint analysis
using a sample consisting of freely diffusing fluorophore
MR121/ATTO655 and quencher Trp. This model system is
advantageous since no peptide properties influence the

Fig. 3 Dynamical fingerprints generated for simulated FCS data. Data were simulated using the model function eqn (1) overlaid with noise following eqn (2) with a
noise amplitude c = 9 � 10�6 s1/2. The relaxation time of the one correlation decay was varied from 10�5 ms to 10�3 ms (as stated in the figure) while the relaxation
time of the other decay was kept constant at 10�4 ms. The data curves in each panel show a single dynamic fingerprint for three different simulations.
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observed contact-induced quenching rates; however, the various
processes that introduce fluorescence fluctuation are compar-
able rendering the analysis procedure identical. We found
that LM fitting is often compromised by the fact that the
antibunching rise and the first decay partly compensate each
other in most experimental data curves. The problem appears
to be less pronounced with simulated data curves of multiple-
tau FCS data, indicating that a minor difference between the
sum of purely mono-exponential components (eqn (1)) and
experimental data exists that we could not resolve. We could
show that relaxation time estimates for the PET quenching
interaction under experimental conditions of low viscosity,
where no rotational diffusion decay is visible and the anti-
bunching rise is well separated from the PET quenching decay,
are linear as expected and identical to estimates by the

dynamical fingerprint analysis. In contrast, at large viscosities,
where the rotational diffusion decay is clearly visible and close
to the antibunching rise, LM estimates for the relaxation time
of the PET quenching interaction are biased towards smaller
values as compared to dynamical fingerprint results. On the
other hand, dynamical fingerprint analysis performed equally
well with experimental and simulated data. The relaxation time
constants for the ground-state complex formation (reported by
PET quenching) as estimated by dynamical fingerprint analysis
are thus reliable estimates under all conditions. They confirm
the expected linear dependence between relaxation time con-
stants and viscosity up to a viscosity of B10 cP. At larger
viscosities above 10 cP deviations towards smaller relaxation
time constants for the quenching decay (Fig. 5) are also found
with fingerprint analysis (thus being unrelated to detrimental

Fig. 4 Dynamical fingerprints determined for experimental FCS data that were recorded for mixtures of freely diffusing fluorophore MR121 (B1 nM) and Trp
(10 mM) in PBS buffer with various concentrations of sucrose (as indicated in the figure) at 20 1C. From right to left the fingerprints reveal components due to triplet
populations, quenching interactions, rotational diffusion, and antibunching artifacts. The data curves in each panel show repeated fingerprint estimates for a single
FCS measurement.
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fitting effects). The deviation is in contrast to physical expecta-
tion of a linear scaling between quenching relaxation time and
viscosity for a diffusion-controlled process and must be related
to the molecular reporter system.

The fact that relaxation time constants at increased viscosity
above 10 cP are smaller than expected from extrapolating the
linear dependence at small viscosity could be induced by a
destabilization of the quenched ground-state complexes form-
ing between fluorophore and Trp. Entanglement of association
and dissociation rate constants could resolve this effect but will
require precise estimates of the amplitudes for the individual
decay components. We have unfortunately not yet succeeded in
estimating reliable amplitude values in such complex FCS data.
The ultimate goal in kinetic studies of biophysical processes is
to determine the complete Markov model containing all mole-
cular and photophysical states and the transition rate con-
stants. Even in the simplest case of a two state system this is
only possible with an accurate estimation of fingerprint ampli-
tudes. Although the relative amplitudes in a dynamical finger-
print plot should in principle be well defined, fitting artefacts
like the spurious positive peak arising from the antibunching
signature prohibit a correct determination. Future work is
required to improve the fingerprint algorithm to provide
both relaxation rate constants and absolute amplitudes of all
exponential processes.

A second possible explanation for the deviation of relaxation
times from a linear viscosity dependence arises from the
observation that fast PET quenching interactions with relaxa-
tion times of tens of nanoseconds appear to be slightly slower
than observed by collisional quenching interactions.40,41 It is

feasible that formation of the quenched complex between the
fluorophore and the quencher requires a certain time that is on
the order of nanoseconds as soon as they encounter each other
by translational diffusion. If the diffusional process for the
encounter is slow enough, a quenched complex is formed for
each encounter and the difference in time scales disappears.

In any case, this study has shown that the deviation between
relaxation times estimated by the PET quenching process and a
linear viscosity dependence, as previously observed with glyco-
sylated peptides under equally large viscosities,49 is due to the
reporter system and can be even increased by a destructive
fitting effect when standard LM fitting is applied.

Conclusions

We found that multiple-tau FCS data typically observed for
biopolymer dynamics in viscous solution, exhibiting three or
more correlation decay components on nano- to microsecond
time scales, are often prone to fitting artifacts when analyzed by
standard fitting routines. Both LM and dynamical fingerprint
fitting is unreliable for the given noise conditions if time scales
for two relaxation decays are closer than about an order of
magnitude. An antibunching rise together with a correlation
decay close in time are not resolved in dynamic fingerprint
analysis and estimated with unrealistic and highly correlated
amplitudes in LM fitting. However, we identified experimental
conditions under which fitting of FCS data for bimolecular
quenching interactions yields reliable data for a wide range of
viscosities. Our analysis of bimolecular PET-quenching inter-
actions reveals deviations from an expected linear scaling of
quenching relaxation times with solvent viscosity towards
smaller times. In addition we identified a previously unrecog-
nized photophysical effect on the fluorescence intermittency in
ATTO655 that is absent in MR121. All these results have
implications for understanding end-to-end contact formation
of peptides at large viscosity.
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2011, 13, 16912–16927.
40 S. Doose, H. Neuweiler and M. Sauer, ChemPhysChem, 2005,

6, 2277–2285.
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