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Abstract

We introduce the software package ReaDDy for simulation of detailed spatiotemporal mechanisms of dynamical processes
in the cell, based on reaction-diffusion dynamics with particle resolution. In contrast to other particle-based reaction kinetics
programs, ReaDDy supports particle interaction potentials. This permits effects such as space exclusion, molecular crowding
and aggregation to be modeled. The biomolecules simulated can be represented as a sphere, or as a more complex
geometry such as a domain structure or polymer chain. ReaDDy bridges the gap between small-scale but highly detailed
molecular dynamics or Brownian dynamics simulations and large-scale but little-detailed reaction kinetics simulations.
ReaDDy has a modular design that enables the exchange of the computing core by efficient platform-specific
implementations or dynamical models that are different from Brownian dynamics.
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Introduction

Which molecules interact at which place and in which

sequence, in order to orchestrate a specific cellular function?

Understanding the detailed spatiotemporal mechanisms behind

cellular processes is one of the main topics in current biology. This

topic is driven by recent experimental advances, e.g. in super-

resolution microscopy, which permit proteins to be counted and

individually located in a cell, and demonstrated the existence of

complex multiprotein architectures [1] [2][3] [4]. The detailed

mechanism of signal transduction events, such as phototransduc-

tion [5] or neurotransmission [6], involves the spatial coordination

of molecules on length scales of 1 to 1000 nanometers, within

timescales ranging from microseconds to seconds. Despite the

recent advances in experimentation, it is still impossible to directly

see such processes in detail. Computational approaches are thus

essential to model the localization, the dynamical motion and the

reaction kinetics of macromolecules, and thus help to fill in the

space- and timescales that are not directly resolvable experimen-

tally.

We propose that a computational model should include the

following features to realistically simulate signaling mechanisms in

cells:

1. Single particle resolution: In typical conditions, a given protein type

occurs with order of 1000 copies in the volume of a cell [7]. In

some organelles, proteins occur with copy numbers between 1

and 100, sometimes with a surprisingly precise stoichiometry

[8]. These facts suggest, that concentration-based approaches

such as ODE and PDE approaches are often inadequate

[9,10], and that treating proteins and other signaling molecules

as explicit particles, with a specific location in space, is both

feasible and necessary.

2. Diffusion: Biomolecules can only interact when they can

physically reach one another. In many fast processes, e.g. in

signal transduction, the time required for the molecules to form

encounters becomes limiting, either because diffusion is slow

compared to the reaction rates, or because the accessible space

is limited [11]. For such situations, classical systems biology

approaches such as ODE’s and Gillespie are inadequate, as

they assume all species to be well-mixed. The particle dynamics

should be explicitly modeled, e.g. through diffusion.

3. Interaction potentials: Biomolecules are densely packed in the cell,

resulting in macromolecular crowding, as impressively demon-

strated by the groups of Elcock [12], Ellison [13] and Skolnick

[14]. Such space exclusions may play a role at molecular

scaffolds [15] and may even be used in an ordered way to

control reaction pathways, e.g. in the rod cell phototransduc-

tion module [16]. Furthermore, there is much evidence that

both specific and non-specific attractive interactions exist

between macromolecules. These may lead to formation of

clusters [17], metastable pre-complexes [18] and other types of

co-localization [19,20]. Such clustering and co-localization

leads to an effective reduction of the search space for binding

partners, and may be essential for efficient signaling. These

facts suggest, that it is important to include interaction

potentials that permit to model repulsion and attraction of

particles.

4. Cellular geometry: Cells constitute reaction containers that

preserve certain conditions and properties inside and separate

them from the outside environment via a boundary. The same
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is true e.g. for cellular organelles or cellular vesicles. This leads

to multiple compartments, within which molecules may be

restricted to stay, or from which they are excluded by the

boundary. Such compartmentalization may also have other

structural reasons, e.g. membrane patches fenced in by the

cytoskeleton [21]. Furthermore, the special shape and

geometry of the boundaries may play a role, not only by

leading to a compartmentalization of molecules but also by the

formation of local density gradients [22]. For these reasons, a

detailed and encompassing modeling of the cellular geometry is

important.

5. Reactions: We use the term reaction to indicate a change of state

of a molecule, including changes in the chemistry, conforma-

tion, or aggregation state. Proteins transmit information by

changing conformations. Complex formation and dissociation

between macromolecules are ubiquitous ingredients of cellular

signal transduction. Enzymatic reactions are required for most

biochemical pathways. These facts suggest, that a computa-

tional model of cellular signaling should implement reactions

that allow the simulated particles to change their state, and

particles to be both created and annihilated.

Recent reviews [23,24] provide a detailed overview of reaction-

diffusion models and software. Here, we only give a rough

overview in order to position our software with respect to existing

projects. These can be roughly characterized by belonging to one

of two classes:

Reaction kinetics approaches. There are many approaches

towards solving generated subvolume-based approximations to the

spatiotemporal chemical master equation of reactive particles,

including GMP [25], GridCell [26], Lattice Microbes [27–29],

MesoRD [30], SmartCell [31], Spatiocyte [32] and Virtual Cell

[33]. Reaction-diffusion approaches that explicitly propagate

particle positions in continuous physical space include Cell++
[10], ChemCell [34], E-Cell [35], FLAME [36], GFRD [37],

Klann et al. [38], MCell [39], Rigdway et al. [13] and Smoldyn

[40] (see [41] for a review article). These approaches offer features

(1), (2), (4) and (5), and can simulate long, biologically relevant

timescales, but are usually lacking interaction potentials and thus

the ability to represent complex molecular structures and scaffolds.

Molecular- and Brownian dynamics approaches. Simu-

lation codes like DESMOND [42], DL_POLY [43], Gromacs

[44], Hoomd-Blue [45], LAMMPS [46], NAMD [47] and

OpenMM [48] were developed to simulate the molecular

equations of motion in detail (usually thermostatted Hamiltonian

dynamics or Langevin dynamics), but can also be used to simulate

Brownian dynamics of coarse-grained molecules. Brownian and

Langevin dynamics packages such as BD_BOX [49], Browndye

[50], Brownmove [51], UHBD [52] and Elcock et al. [53] are

designed to simulate molecular diffusion and molecular interac-

tions. Simulations of cytosol dynamics provide illustrative appli-

cation examples [12,14]. These approaches offer features (1), (2),

(3) and (4), but are usually limited to short simulation timescales

(below milliseconds) and lack reactions as the simulated particle

types and their number stay constant throughout the simulation.

In this paper we introduce ReaDDy (Reaction Diffusion

Dynamics). ReaDDy is a particle-based reaction-diffusion simu-

lation package that is suited for crowded cellular environments and

implements all features (1–5). It thus bridges the gap between

current reaction kinetics and molecular dynamics approaches by

combining a reaction engine with an explicit space and time

simulator for particles, diffusing in a potential landscape. ReaDDy

is based on an open architecture design that allows existing particle

simulation packages to be included as modules (Fig. 1), and is thus

meant as an expandable framework for simulations of cellular

signaling. Its level of capturing molecular detail ranges from

modeling molecules as single sphere particles to defining them as

groups of spheres, held together by potentials (Fig. 2).

Theory

The molecules or molecular domains represented in our

reaction-diffusion model will henceforth be called ‘‘particles’’.

Particles are objects that have a size, a type and a position. Values

of these attributes may change over time, especially due to

reactions between particles. Particles may represent proteins,

protein domains, ligands, lipids, ions or other biomolecules. When

appropriate for the modeled signaling process, a particle may even

correspond to a larger biological object, such as an entire vesicle or

an aggregate of proteins. The theoretical foundation, governing

the reaction-diffusion dynamics of and between these particles as it

is used in ReaDDy, is laid out subsequently.

Particle Diffusion
To obtain equations of motion of selected particles that

represent the biomolecules of interest for the signaling process

studied, one may invoke the Mori-Zwanzig formalism [54,55],

obtaining a generalized Langevin equation. Under the assump-

tions that (1) we reside in the over-damped limit [56], (2) memory

effects from non resolved particles have died out on our timescales,

(3) long-range density correlations (hydrodynamics [57]) average

out between resolved and non resolved parts of the system and that

(4) particles are treated as spheres, we arrive at the over-damped

memoryless Langevin equation with isotropic diffusion, also

known as isotropic Brownian dynamics (BD):

dx(t)

dt
~{

+V (x(t))

cm
z

ffiffiffiffiffiffiffiffiffiffiffiffi
2kBT

cm

s
dg(t)

dt
, ð1Þ

where x(t)[R3 is here a 3-dimensional vector indicating the

instantaneous position of a particle at time t. The change of the

position over time dx(t)=dt depends on the gradient (spatial

derivative) of the potential +V (x(t)), divided by the friction c times

the particle mass m. The resulting first term on the right hand side

of Eq. (1) is the deterministic force. The second term on the right

hand side is the stochastic force depending on the thermal energy

kBT , with Boltzmann constant kB and temperature T . g(t)[R3 is a

three-dimensional Wiener process, i.e. each component is an

independent random process with normally distributed increments

g(t2){g(t1)*N (0,t2{t1). The fluctuation-dissipation theorem

relates friction and temperature via the diffusion constant D:

D~
kBT

cm
ð2Þ

and allows Eq. (1) to be rewritten as:

dx(t)

dt
~{D

+V (x(t))

kBT
z

ffiffiffiffiffiffiffi
2D
p dg(t)

dt
: ð3Þ

The above equation may be solved numerically by employing an

Euler discretization with constant time step Dt, obtaining a

discrete sequence of configurations in time, xt, related by:

ReaDDy
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xtzDt~xt{DtD
+V (x(t))

kBT
z

ffiffiffiffiffiffiffiffiffiffiffi
2DDt
p

gt ð4Þ

where the noise is realized by independent normal variables

gt*½N (0,1),:::,N (0,1)�T . Dt needs to be chosen shorter than the

smallest timescale of the system, i.e. it depends on the stiffness of

the potential and on the diffusion constants. When Dt is sufficiently

Figure 2. Possible Applications of ReaDDy at Different Levels of Modeling Detail. A model of vesicle fusion in the synaptic vesicle cycle is
shown at two levels of detail. A: Snapshot of the simulation described in the ReaDDy tutorial. i: SNARE proteins syntaxin (blue), SNAP-25 (grey) and a
calcium channel (green, large sphere) are modeled on a disk membrane, synaptic vesicles (yellow) float in the cytosol. Reactions allow the modeling
of syntaxin’s conformational change (switch between light- and dark blue), the formation of SNARE complexes (red), vesicle tethering (yellow, orange
and red vesicles, depending on the number of SNARE complexes involved) and calcium ion release (small green particles in panel ii. iii: short range
attraction potentials induce clustering of SNARE proteins. B: Grouping of particles allows proteins to be modeled with complex shapes: syntaxins
here consist of a membrane anchor (blue), a flexible peptide domain (red) and the Habc domain (dark grey). Synaptobrevin (orange and yellow) and
synaptotagmin (dark green, grey, green) are also modeled as groups of particles, representing protein domains. Interaction potentials of plasma-
(dark grey) and vesicle membrane (light blue) with anchor particles ensure, that membrane proteins can not leave the membrane.
doi:10.1371/journal.pone.0074261.g002

Figure 1. Workflow in Simulation and ReaDDy Code Design. A: Typical workflow and interplay between file input, file output and modules of
ReaDDy. The left side of part A describes input and output functionalities of ReaDDy (sketched files) and how they interplay with code modules
(squares). Among these modules, white drawn squares have access to both the particle level but also to information how particles are formed to
groups. Grey squares are only based on particles to guarantee high computational efficiency. Modules communicate via interfaces, making them
exchangeable. Currently two ReaDDy Core implementations exist, a Brownian dynamics based BD Core and a Monte Carlo based MC Core. The design
is intended to encourage the incorporation of third party software to play the Core-role in the ReaDDy framework. B: Detailed view of the interplay
between Group/Reaction Module (Gr/Rk Module), the Core module and their submodules during the main iteration loop. Most of the simulation time is
spend on incrementing particle positions. As a result, the algorithm will circle between Particle Configuration, Neighbor List and Diffusion Engine
(thick black arrows) to propagate diffusing particles. If a possible reaction event between two particle arises, this information is passed to the Gr/Rk
Module module and is handled there before according changes of the Particle Configuration end that cycle (dashed arrows).
doi:10.1371/journal.pone.0074261.g001

ReaDDy
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small, the Brownian Dynamics will, in absence of reactions,

sample from the stationary distribution that is fully defined by the

potential, Eq. (8). This fact is exploited in order to test the

numerical correctness of the integration scheme (see section

Parametrization and Validation).

Reactions
Reactions are here understood as events which transform

particles into other particles (which may also include the addition

or deletion of particles upon a reaction). Reactions in the sense of

the present model do not only encompass chemical reactions, but

may also represent various physical processes, including confor-

mational changes, aggregation events, etc.

We limit ourselves to uni- or bimolecular reactions, i.e. the

types:

E ?
k

(1)
macro

P1,:::,Pm

and

E1zE2 ?
k

(2)
macro

P1,:::,Pm

where E, E1 and E2 are ‘‘educts’’, i.e. the particles that are

consumed by the reaction and Pi are the products, i.e. the particles

that are created by the reaction (0ƒmƒ2). Reactions involving

more than two educts can be modeled by splitting them up into

multiple bimolecular reaction steps. The reaction rate constants,

k(1)
macro and k(2)

macro, express the fraction of educts converted into

products.

For unimolecular reactions this leads to the following set of

ordinary differential equations [58]:

dcP1
(t)

dt
~:::~

dcPm (t)

dt
~k(1)

macro cE(t),

where cx is the time-dependent concentration of particle type x. In

unimolecular reactions, the reaction rate constant k(1)
macro repre-

sents a single-molecule event - it measures the inverse mean time

needed for the educt to decay into products. Thus these

experimentally determined values are identical to the microscopic

reaction rate constants used in our model description,

k(1)
macro~k

(1)
micro.

The situation is more difficult for bimolecular reactions. The

total rate, i.e. the total number of executions of the reaction per

time unit of a bimolecular reaction taking place in a homogeneous

reaction container is given by [58]:

dcP1
(t)

dt
~:::~

dcPm (t)

dt
~k(2)

macro cE1
(t)cE2

(t): ð5Þ

with cE1
(t) and cE2

(t) being the particle concentrations of educts

and k(2)
macro being the apparent rate constant. k(2)

macro conceals many

microscopic details. In particular, for a reaction event to occur,

both E1 and E2 must first come close, forming an encounter

complex. Subsequently, the chemical/physical reaction barrier

will be overcome with a certain rate k
(2)
micro, thus executing the

reaction. The first step, the encounter formation, happens via

particle diffusion, while the activation step is conceptually a first-

order reaction of the encounter complex E1zE2 that reacts to the

products:

E1,E2

separate molecules

?
diffusional encounter

E1zE2

encounter complex

?
activation

P1,:::,Pm

products

:

In a particle simulation, each particle’s location and diffusional

motion is explicit. Therefore, encounter and activation processes

have to be distinguished, as the motion leading to the encounter

complex is directly simulated, and the activation can then only be

conducted for those pairs of molecules that are close enough to

form an encounter complex.

For each particle, a reaction radius R12~ri,1zri,2 (see Table 1)

is defined. When the inter-particle distance d12 is smaller than R12,

we have an encounter complex. The reaction radii are chosen

based on physico-chemical intuition in order to represent a

distance at which reaction partners are close enough such that

their subsequent interaction is specific for this pair of molecules

and can no longer be treated by a diffusion model in which the

molecules may move independently. In other words, R12 may be

regarded as the distance at which the interaction between these

two molecules becomes significant. Since electrostatic interactions

are the most long-ranged, they are suitable to define ri. In cytosol,

electrostatic interactions are negligible after 1{2nm, along

membranes they can extend up to 4 nm. Changing ri would

change the encounter rate, and thus also change the activation

rate needed to yield a given total reaction rate k(2)
macro. Thus it is

clear that the separation of the total rate constant into encounter

and activation rate constants is to some degree arbitrary, hence we

use the convention that R12 is fixed first, and the activation rate

constant is determined subsequently.

What is the activation rate constant k
(2)
micro for a bimolecular

reaction in 3D that is needed in our model to reproduce a

measured total rate constant k(2)
macro when a reaction distance R12

has been defined? Consider a homogeneous mixture of particles of

types E1 and E2, which freely diffuse with diffusion constants DE1

and DE2
, and form an encounter at distance R12. The rate at

which encounter complexes at distance R12 are formed is given by

the Smoluchowski equation [59].

Table 1. Particle Parameters and Resulting Properties of the
Benchmark System.

Type A Type B Type C

rc½nm� 1.5 3 3.12

rapp
c ½nm� 1.275 2.725 2.808

ri ½nm� 1.5 3 3.12

k
pair
pot ½

kJ

mol nm2
� 10 10 10

Dmicro½
mm2

s
�

143.1 71.6 68.82

Parameters for particle types A, B and C. rc : collision radius defining the onset
of particle-particle repulsion. rapp

c : apparent collision radius that arises from

both the collision radius rc and the chosen inter-particle repulsion force

constant k
pair
pot . ri : interaction radius for particle-particle reactions. Dmicro :

microscopic diffusion constant.
doi:10.1371/journal.pone.0074261.t001

ReaDDy
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kenc~4p(DE1
zDE2

)R12: ð6Þ

Now taking into account that educts, when having diffused into

a distance of R12, are not absorbed there entirely as in (6) but react

to products with constant rate k
(2)
micro, leads to the following

equation (see [60] for derivation):

k(2)
macro~4p(DE1

zDE2
)

R12{

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DE1zDE2

k
(2)
micro

s
tanh R12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k

(2)
micro

DE1
zDE2

s0
@

1
A

0
@

1
A: ð7Þ

Please note that Eq. 7 only holds in 3D and that the derivation

of the same relationship in 1D and 2D becomes more involved.

See [61] for a thorough discussion of this subject, which goes

beyond the scope of the present paper.

In the particle simulation, time is discretized into segments of

Dt. The reaction rate must therefore be converted into a

probability that the reaction will take place in a given time step.

When making the assumption that a single particle cannot

undergo multiple reactions in one time step (which is only true if

the time step is sufficiently small, compared to the reaction rates

involved), the reaction probability is then obtained from the

Poisson probability of finding at least one reaction event with rate

kmicro in a time window Dt [62]:

p(Dt)~1{e{kmicroDt:

Interaction Potentials and Stationary Distributions
Inter-particle potentials are useful for modeling space exclusion

(e.g. crowding effects, cellular walls), for keeping particles in

certain regions (e.g. diffusion on a membrane), for modeling

particle aggregation, and for modeling the correlation of particle

motions due to electrostatic interactions. The potential V (x(t))
assigns a potential energy to a particle configuration x(t), which

has henceforth dimension of the joint space of all particle positions.

Note, that both, the terms active in V and the length of the

position vector x, will change over time, because of particle

reactions that change the particle composition of the system.

However, in between two reaction events, V is unique and during

this time, the potential has an associated stationary density given

by

m(x)~Z{1 exp {
V (x)

kBT

� �
ð8Þ

where Z~
Ð

x
exp { V (x)

kBT

� �
is the partition function. In many real

simulations, m(x) will not be sampled from because of the reactions

taking place that drive the system out of equilibrium. However,

m(x) is useful to parametrize the particle interactions to the

expected behavior in a stationary or quasi-stationary state. Since

m(x) is a stationary property of V (x), we can furthermore use it as

a reference to evaluate the numerical correctness of the particle

dynamics in the absence of reactions. m(x) is useful to calculate all

kinds of stationary properties, for example the radial distribution

function (RDF) between particles of set I with those of set J,

defined by the ensemble average:

g(r)~
1

NI NJ

ð
x

dx m(x)
X
i[I

X
j[J

d(jxi{xj j{r), ð9Þ

where xi and xj are the subvectors of x describing the locations of

particles i and j. This density is in practice approximated with a

histogram with bin size Dr, obtained from a set of configurations at

time-steps

T :

g(rk)&

f(i,j,t) j rk{
Dr
2

ƒjxi(t){xj(t)jvrkz
Dr
2

� �
, i[I , j[J ,t[Tg

		 		
NT NI NJ

:
ð10Þ

where :k k denotes the size of the set and NT , NI , and NJ denote

the number of time steps used and the sizes of sets I and J,

respectively. If the RDF is calculated for a system that is bounded

by a box, a scaling factor [63] has to be applied in order to correct

for boundary effects.

For our purposes we consider two types of potentials. With

potentials of order one, we refer to potentials that depend on the

coordinates of only one particle to determine the respective

potential energy or displacement vector associated with it. These

potentials are usually used as simulation geometry defining

potentials, e.g. cellular walls. With potentials of order two, we refer

to potentials that depend on the coordinates of two particles to

determine the potential effects. These potentials are usually used

for particle interaction potentials, e.g. softcore particle repulsion.

ReaDDy Software

The implementation design of ReaDDy is sketched in the

subsequent sections.

Simulation Algorithm
Given an initial particle configuration x0, the simulation model

propagates the positions and states of the particles involved in

discrete time steps. In each time step, it performs two actions (1) a

BD step of all particles in the potential V (x) and (2) a reaction step

that may change particle types and numbers. Finally, all changes

accumulated during step (1) and (2) are executed, the pairwise

distances between particles are updated and the current simulation

time t is incremented by Dt before a new cycle is started. The

simulation algorithm can be summarized as given in Algorithm 1.

Algorithm 1. Pseudocode of the ReaDDy particle simulation

algorithm:

1. Start with time t~0, an initial particle configuration xt~0

2. Repeat for N steps (total simulation time NDt):

(a) Advance the Brownian dynamics by one step of length Dt,

based on potential V (x) and the particle type dependent

diffusion constants Dmicro

(b) Create a list of reactions that can occur. For each particle

that can react, choose a reaction with probability depending

on its rate constant and execute the reaction with probability

p~1{ exp ({kmicroDt).

ReaDDy
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t : ~tzDt ðcÞ

The implementation of the algorithm is described subsequently.

Software Architecture
The ReaDDy framework has been designed using the following

principles:

1. Modularity: ReaDDy is intended to bridge the gap between BD

and MD packages (including potentials, lacking reactions) on

one hand and particle-based reaction-diffusion simulations

(lacking potentials, including reactions) on the other. Some of

these available packages are highly optimized and perform

their tasks very efficiently. For this reason ReaDDy is designed

to consist of exchangeable modules that could be replaced by

efficient existing codes.

2. Expandability: ReaDDy follows an object oriented and interface

based design. An interface abstraction exists for the entire

simulator which renders all parts of ReaDDy to be easily

interchangeable and expandable. ReaDDy is Open Source

(BSD 3-Clause). Developers are invited to contribute additional

module implementations. The available implementation is

intended as a default that guarantees functionality without such

additional modules.

3. Platform independence: The ReaDDy framework and the default

module realizations are implemented in the Java programming

language which guarantees that ReaDDy is fully functional on

all computer architectures that support a Java runtime

environment. This choice was made as Java code can be

quickly developed and debugged compared to C or C++, while

having similar performance [64,65]. Note that additional

module implementations may be in other programming

languages such as C or C++, and would thus require

platform-specific compilation. Such native module implemen-

tations may be included into the ReaDDy framework via the

Java Native Interface (JNI).

ReaDDy consists of three main modules: The simulation engine,

the input and the output module (see also Figure 1).

The ReaDDy simulation engine essentially consists of two

submodules, the Core Module and a Group/Reaction Module (short Gr/

Rk Module). In most cases, reaction events occur rarely compared

to the advancement of every particle position in every time step. In

order to facilitate platform-specific high-performance implemen-

tations of the most time-consuming computations, the Core Module

has been split from the Gr/Rk Module.

The Core Module propagates point particles and recognizes

reaction rules that may fire (i.e. when pairs of educts reside within

the reaction radius). Reaction rule recognitions are reported to the

Group/Reaction level to be handled there. The Core itself does not

execute reactions, nor does it know of superstructures, such as

particle groups. This design allows the Core to be replaced by other

implementations, e.g. Langevin dynamics, dynamics including

hydrodynamic coupling between particles, or high-performance

CPU or GPU implementations based on existing codes such as

OpenMM [66]. See section Efficient Neighbor Calculation in the

Supporting Information (Text S1) for the current optimization

status of the the Core. Currently, two Core implementations exist:

1. Brownian dynamics core (default): Implements the Euler-

discretized Brownian dynamics.

2. Monte Carlo core: Implements the Markov chain Monte Carlo

(MCMC) method for particle moves described in the

Supporting Information.

The Group/Reaction Module handles logical groups of

particles and executes reactions. Particle groups facilitate the

efficient modeling of complex processes e.g. polymerization

reactions. The resulting logical structures are eventually mapped

to particles that are handled by the Core. See Figure 1B for the

interplay between Core and Gr/Rk Module.

ReaDDy uses five different input types: global, particles,

potentials, groups and reactions that are orchestrated by the

input module. It splits input information into an only particle

related part for the Core and a general part for the Gr/Rk Module.

All input files are defined in the XML format (Please see

Supporting Information (Text S1, Input File Organization) for further

information).

The output module of ReaDDy is based on a runtime

analyzer scheme. The user can choose between different runtime

analyzers for multiple purposes e.g. trajectory output, output of

reaction events, output of the MSD or the output of the RDF

which are available in different output formats (e.g. xml, xyz, csv).

There is a special output format that allows trajectories to be

displayed in VMD [67]. The ReaDDy standard output format is

readable as input, allowing to run new simulations from trajectory

frames.

Performance
The MD packages discussed above [42–46,66,68] as well as

many BD [69] and reaction-diffusion packages [28,29,70–72]

provide parallel computation. The ReaDDy implementation

presented in this work is a single-core CPU version, intended to

be a reference implementation of our design. It already anticipates

parallelization by separating the costly BD and potential-evalua-

tion steps, the Core Module, from the Group/Reaction Module. Because

of this and the interface abstraction layer, the Core Module default

implementation may be replaced by an already parallelized third

party BD particle integrator.

Please note that the choice of Java as implementation language

does not impair the performance of the code. Although early Java

versions performed poorly, current Java codes perform similarly to

C or C++ in numerical applications [64,65]. High-performance

ReaDDy cores that rely on C or C++ based libraries such as

CUDA or OpenCL can be implemented either via JNI or via the

Java bindings for both libraries, JCuda and JOCL.

Because ReaDDy is to our knowledge the first program that

combines molecular-dynamics type particle simulations with

reactions, a benchmark test across different tools is currently not

meaningful. It can be stated however, that the performance of

ReaDDy is more comparable to MD and BD packages, that

integrate the dynamics of interacting particles using short time

steps, rather than to reaction-diffusion packages,that do not

involve particle interaction potentials, like e.g. Smoldyn [40]. Such

reaction-diffusion packages may be orders of magnitude faster for

dilute systems, as the particle interaction potentials in ReaDDy are

the computationally most demanding part. In our benchmark

systems (see below), the evaluation of reactions only takes about

5% of the algorithm’s runtime. Therefore, if a user intends to

simulate dilute systems that do not require interaction potentials, it

is currently recommended to use reaction-diffusion packages

specialized for that task.

ReaDDy
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Runtime of the Algorithm
ReaDDy was benchmarked on the setups described in section

Parametrization and Validation (see Figure 3) on an Intel Core i7

processors with 2.6 GHz. To illustrate the performance of the

algorithm, we also included simulations on a two-dimensional

membrane (particle coordinates had three dimensions but were

held on the membrane by a potential). In a first test, the occupied

volume fraction of the systems was fixed to 10%, and the

simulation volume was adapted to the number of particles

simulated. Fig. 4A reports the CPU time required to run

100,000 steps for these setups. It is seen that the runtime scales

linearly with the number of particles. Integrating the dynamics of a

1000 particle system for one step takes~7.7 ms in 3D and~2.5 ms in

2D.

In a second benchmark (Fig. 4B), we kept the simulation

volumes fixed to a 100 nm|100 nm|100 nm box in a 3D

simulation, and a disk of radius 297.363 nm in a 2D simulation.

Different particle numbers thus correspond to different particle

densities. The runtime now scales quadraticaly with the number of

particles, as a result of the increasing number of pairwise particle

interactions per particle that have to be integrated when the

system density increases. Note, that this increase of runtime is

limited by the maximum occupied volume fraction that can be

achieved with sphere packing, which is about 70% for equal sized

spheres in 3D.

Table 2 gives an overview of the CPU times required to

simulate 1000 particles for 1 ms (107 steps) in different simulation

setups.

Parametrization and Validation

Benchmark System
To illustrate and validate the simulation methodology, we

consider a benchmark system of two particle species A and B that

diffuse and react in a quadratic container of edge length 100 nm at

a temperature of 20uC. To illustrate finite-size effects, the reaction

container was equipped with repulsive walls rather than periodic

boundaries. Our system includes the following second-order

association and first-order dissociation reaction:

AzBLJ
kb

ka
C, ð11Þ

with forward and backward reaction rates ka and kb. In order to

model conditions similar to those found in cytoplasm, the collision

and interaction radii (rc,ri) are chosen to be equal, and were set to

1:5 nm for particle type A and 3:0 nm for particle type B,

representing typical sizes of the most abundant macromolecules in

cells. Radii rc and ri for particle type C were set to 3:12 nm,

yielding the volume of C to be equal to the sum of the volumes of

A and B particles.

The microscopic diffusion constants Dmicro were calculated via

the Stokes-Einstein-Equation

Dmicro~
kBT

6pg0 rc

,

with kB representing Boltzmann’s constant, T = 20uC the temper-

ature and g0~1cP the viscosity of water. Here we used the water

viscosity rather than the cytoplasmic viscosity because crowding

effects are studied explicitly, i.e. all crowding particles are

considered to be part of the benchmark system. As a result, we

obtain the following microscopic diffusion constants for particle

types A, B and C: Dmicro~143:1
mm2

s
, Dmicro~71:6

mm2

s
and

Dmicro~68:8
mm2

s
. See Table 1 for an overview of all particle

parameters.

There are two potentials governing the dynamics of the system:

First, a harmonic potential of order one, acting on every component

xi of the single particle positions x, of the form

Vwall(xi)~

1

2
kwall

pot (xi{xori,i)
2 if xi vxori,i

1

2
kwall

pot (xi{xext,i)
2 if xi wxext,i

0 else(xori,i ƒxi ƒxext,i )

0
BBBB@ ,

with the potential force constant kwall
pot and the vectors xori and xext

representing the lower left (origin) and the upper right corner

(extension) of the container cuboid. The potential is designed such

that particles within the container feel no potential but an escape

over a boundary is penalized with a quadratic term. Second, a

harmonic potential of similar form but of order two, acting on all

pairs of particles i and j, represents the particle-particle repulsion

potential:

Vpair(xi,xj)~

1

2
k

pair
pot (dij{Rc)2 if dijvRc

0 else

0
@

with the potential force constant k
pair
pot , corresponding pairwise

distances dij~jxi{xj j between particles i and j and the sum of the

collision distances of the respective particles Rc~rc,izrc,j . See the

next section for information about the parametrization of these

potentials.

Figure 3. 3D-Benchmark System Setups used in this Study. The occupied volume fraction ranges from 1% to 50% within a cube of 100 nm
edge length. The 30% occupied volume fraction best resembles cytoplasm conditions.
doi:10.1371/journal.pone.0074261.g003
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Similar to [13], to investigate the influence of crowding, six

setups of different particle density were used: 1%, 10%, 20%,

30%, 40% and 50%. For comparison: The experimentally

determined value for cytosol of E. coli is known to be in the

range 30%-34% [73]. See Table 3 for the number of particles and

the molar concentration of the systems associated with the

respective covered volume fractions and Figure 3 for an illustration

of the density of the resulting systems.

All simulations started from an equilibrated uniformly distrib-

uted initial configuration. Due to the space extension of the

particles, pure uniformly distributed random configurations are

likely to contain unfavorable overlaps between particles. Within

the first few timesteps of a simulation based on such a

configuration, these overlaps result in large repulsion forces

between the involved particles. These forces cause particles to

make large steps, which in turn is likely to produce other overlaps

in the next timestep, causing the simulation to become unstable.

To avoid this behavior, the particle configuration has to be relaxed

first towards a low-energy state. We did this by applying the Monte

Carlo (MC) algorithm described in Supporting Information (Text

S1 and algorithm SA 1) for 3000 steps, prior to the BD simulation.

Potential Parametrization and Validation of the Brownian
Dynamics

The Brownian motion of particles depends on the particle

interaction potentials and the diffusion constants. Besides the wall

potential Vwall(xi), ensuring all particles to stay inside the

simulation box, the co-localization of particles is here governed

by the repulsive pair potential Vpair(xi,xj) that prevents particles

from penetrating each other and is thus the cause for crowding

effects in the simulation.

In order to provide a guideline how inter-particle repulsion

force constants should be chosen when using ReaDDy, we

computed the radial distribution functions (RDF) for different

force constants k
pair
pot (Eqs. (9) and (10)). Fig. 5 reports these RDFs

for a simulation setup with 50% occupied volume fraction,

comprising of 3930 A particles and 3930 B particles (see Table 3,

setup 6). Since RDFs are purely stationary quantities, no explicit

time-integration of the equations of motion is needed to calculate

them. In order to avoid errors from time discretization, we have

instead used the Monte Carlo algorithm described in Text S1. To

measure the quality of the applied potentials in terms of resulting

particle-particle overlaps, an apparent collision radius rapp
c can be

defined as follows:

rapp
c ~fr j

ð r

r~0

RDF (r)~0:5

ð rmax

r~0

RDF (r)g,

with rmax~argmax(RDF (r)). 50% of the area under the RDF

from 0 to its first maximum lies left of rapp
c and 50% to its right.

The difference between rc and rapp
c measures the overlap. Smaller

potential force constants lead to larger overlaps. In a similar way, a

0.5% to 97.5% interval can be defined in which the 97.5% interval

encloses the whole overlap region of the particles in the RDF. See

Figure 5B for a depiction of this interval, rc, rapp
c and their

behavior for different force constants. The results suggest, that a

force constant of k
pair
pot ~10 kJmol{1nm{2 is a reasonable choice

that both guarantees some spatial exclusion, while permitting some

overlap in which reactions between particles A and B can occur.

Hence, k
pair
pot ~10 kJmol{1nm{2 was used for all repulsion

potential terms (including kwall
pot ).

Figure 4. ReaDDy Runtime Benchmark. A: CPU time required (using single standard CPU cores) to run 100,000 simulation steps of benchmark
particle systems at 10% occupied volume fraction with increasing system size and number of particles. Linear runtime can be observed. The blue
curve represents a 3D container setup, the red line represents a 2D disk setup. B: Runtime performance for a fixed-volume simulation at different
particle densities. Simulation volumes are a box of 100 nm|100 nm|100 nm in 3D (blue, see Fig. 3 for illustration) and a disk of radius 297.4 nm in
2D (red). On average the density increase leads to a higher number of neighbors per particle and thus to a super-linear increase in runtime.
doi:10.1371/journal.pone.0074261.g004

Table 2. CPU Runtimes to Simulate 1 ms of Small Sample
Systems.

p = 10% p = 30%

3D 21.43 h 44.34 h

2D 7.51 h 15.19 h

2D* 0.75 h 1.52 h

CPU runtimes in hours to simulate 1000 particles at densities of 10% and 30%
occupied volume fraction in 3D box- or 2D disk geometry with Dt~0:1ns for
10,000,000 steps.
*2D systems will likely represent membrane models of higher viscosity, usually
resulting in one order of magnitude smaller diffusion constants. This enables
the system to be integrated with a one order of magnitude larger timestep.
doi:10.1371/journal.pone.0074261.t002
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Brownian Dynamics Timestep Selection
For a given potential, the Brownian dynamics simulation time

step Dt must be adjusted so as to limit the time-stepping

discretization errors. This is because the time discretization (Eq.

(4)) is a local linearization of the nonlinear potential, which is only

a good approximation when the time step is small enough

compared to the curvature of the potential. Thus, stiffer potentials

require shorter time steps. Here, we adjusted the time step such

that the Brownian dynamics simulation yielded radial distribution

functions that matched those computed by the Monte Carlo

algorithm (See Text S1). Fig. 6 shows a comparison of the B–B
radial distribution functions g(r) (see Eq. (9) and (10)) calculated

with the Monte Carlo algorithm, and the Brownian dynamics

discretization using different time step lengths between Dt~1 ns
and Dt~0:01 ns. It is visible that smaller time steps result in a

better approximation quality, finally reaching a plateau where

discretization errors are small and the total error is dominated by

statistical errors only (See part B of Fig. 6). We chose the largest

timestep of that plateau, Dt~0:1 ns, which was used henceforth.

Significantly larger time steps resulted not only in differences of the

radial distribution function, but also in undesirable dynamical

behavior and a destabilization of the simulation.

Diffusion and Crowding
Using the potential parameters and time step described above,

the benchmark system was first simulated without reactions.

Fig. 7A and 7B show the mean square displacement (MSD) of A

particles. On short timescales t, the particles in the simulation

setup had a MSD of 6Dmicrot, i.e. they exhibit normal diffusion

governed by the equation _xx(t)~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Dmicro

p
_gg(t) with diffusion

constant Dmicro and noise vector _gg(t) (Fig. 7 B). On long timescales

of several ms, the MSD became sub-linear and converged to the

same constant for all system setups (Fig. 7 A). This is a finite-size

effect, i.e. the MSD is limited by the size of the container. While a

control simulation without repulsive particle-particle interactions

(Fig. 7, black lines) only showed these two phases, all setups, where

particles had repulsive interactions, exhibited a third phase at

intermediate timescales (Fig. 7B). In this intermediate phase, the

MSD showed a linear behavior corresponding to a smaller

diffusion constant DmacroƒDmicro. The larger the occupied

volume fraction by particles in the setup, and thus the denser

the system, the smaller Dmacro did become (see Fig. 7). This

decrease of the effective diffusion constant Dmicro to Dmacro can be

explained by crowding: in the first few simulation timesteps, most

particles can move along a free path, thus giving rise to the

intrinsic diffusion constant Dmicro. After the time required to move

the mean free path length however, particles start to collide with

each other. On average, this crowding slows down the diffusion,

giving rise to the effective diffusion constant Dmacro. Note that the

effective diffusion constant Dmacro is the quantity that is accessible

by experiments such as FRAP.

Figure 7C shows the effective diffusion constants Dmacro

obtained for both particle types, A and B, using different system

densities. In the ‘‘black’’ scenario (no repulsion), Dmacro equals

Table 3. Particle Numbers and Particle Concentrations in Benchmark Systems.

Occupied volume fraction[%] Total number of particles Total molar concentration [mM]

1 158 0.095

10 1572 0.947

20 3144 1.893

30* 4716 2.840

40 6288 3.787

50 7860 4.733

Particle numbers and their concentrations for the different benchmark system setups in the box of 100 nm edge length.
*conditions similar to cytoplasm (compare Figure 3 for a visual illustration).
doi:10.1371/journal.pone.0074261.t003

Figure 5. Apparent Particle Radii and Radial Distribution Functions (RDFs), Depending on Collision Radius and Potential Force
Constant. Shown RDFs are based on particle-pairs of particle type A in the 50% occupied volume fraction benchmark system. A: smaller force
constants kpot lead to larger overlap regions (grey area) and to larger differences between rc (red) and rapp

c (black). The inset depicts the potential
shape for different kpot. B: individual RDFs are depicted for different kpot (i–vi). Same color code as in A.
doi:10.1371/journal.pone.0074261.g005
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Dmicro. Thus comparing the sizes of colored to the black bars

allows to estimate the ‘‘slow down’’ effect of crowding on diffusion.

In the most dense situation (50% occupied volume fraction), the

diffusion constant of the small particles A decreased to 66% of its

original value (from 130:41 mm2s{1 to 86:21 mm2s{1). For the

larger particle type B, the diffusion constant decreased to 40% of

its original value (from 68:96 mm2s{1 to 27:92 mm2s{1). Note

that the particles, in the setup without inter particle repulsion

potentials, were still exposed to the confining container

potential. This potential already slowed down the diffusion

constant from the free diffusion case from Dfree
micro~

143:1 mm2s{1 to Dbox
micro~130:41 mm2s{1 for particle type A

and from Dfree
micro~71:6 mm2s{1 to Dbox

micro~68:96 mm2s{1 for

particle type B.

Reaction Kinetics and Crowding
To validate the ReaDDy implementation of reaction kinetics

and investigate the effect of crowding on reactions, we compared

the kinetics of the bimolecular reaction (Eq. (5)) in the binary

particle mixture with 30% occupied volume fraction in the

following three cases: An ODE solution, a ReaDDy simulation

without particle repulsion potentials, and a ReaDDy simulation

including repulsion potentials.

In order to compare the ReaDDy simulation to the ODE

simulation, the ReaDDy microscopic reaction rates need to be set

such, that they give rise to the macroscopic reaction rates used in

the ODE. The diffusion constants and reaction radii given in

Table 1 give rise to a diffusional encounter rate of

kenc~2:02|107 mM{1s{1 (Eq. (6)). Using Eq. (7), these

quantities were used together with the macroscopic reaction rate

to calculate the corresponding microscopic reaction rate.

The results of the ReaDDy simulation and the ODE kinetics are

first compared in a situation where the ODE assumptions are

valid. An ODE scheme assumes the reaction container to be well-

stirred at each point in time. Thus the reaction rates of the

reaction were chosen small enough, compared to diffusion times,

such that the system had enough time in between reaction events

to equilibrate again: kon,macro~6:11|105 mM{1s{1 (leading to

kon,micro~106 s{1 for the ReaDDy simulation) and koff~5|104.

The comparison between the ODE solution and the ReaDDy

simulation results show excellent agreement (compare the dark

Figure 6. Determination of the Brownian Dynamics Time Step Length Dt. A: Dependency of the computed radial distribution function g(r)
for different time step lengths Dt. The black line shows the exact g(r) of B-particles computed by Monte Carlo. The interaction potential was chosen

to be a softcore repulsion potential (kpot~10 kJmol{1nm{2) when their distance is closer than the sum of their collision radii rc~3 nm. The colored
lines show g(r)’s computed from time discretized Brownian dynamics simulations with different timesteps. B: Root mean square error of the
difference between Monte Carlo derived g(r) and the discretized diffusion simulation (displayed in same color code as A).
doi:10.1371/journal.pone.0074261.g006

Figure 7. Mean Square Displacement (MSD) and Diffusion Constants for Particle Type A in the Benchmark System. In finite-sized
systems, the MSD over time (thick colored lines, lighter color for denser system density) showed a triphasic behavior. A: On long timescales, the MSD
can only reach a bound set by the finite system size (dashed black line). B: On short timescales it is visible that all curves share the same microscopic
diffusion constant Dmicro (dashed red line). In a setup where repulsion potentials between particles were switched off (thick black line), particles were
only subjected to boundary repulsions and therefore remained diffusing closely to Dmicro. On intermediate timescales, particles in denser simulations
including repulsion potentials, diffused according to a smaller apparent diffusion constant Dmacro (dashed black fits). The higher the occupied volume
fraction and the stronger the crowding, the smaller Dmacro. C: Dmacro values for particle types A and B, obtained from linear fit of the second linear
phase of the curves in B.
doi:10.1371/journal.pone.0074261.g007
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blue and brown lines (ReaDDy) and the dashed black line (ODE)

in part A and A9 of Figure 8). It demonstrates that the ReaDDy

reaction kinetics implementation is valid.

When reactions are fast compared to diffusion times, the system

does not have enough time to equilibrate particle positions before

the next event happens. In this situation, the ODE scheme is no

longer valid and differences between the ODE solution and the

explicit ReaDDy solution are expected. To simulate this scenario,

we have increased the reaction rates by one and two orders of

magnitude. The results, shown in parts B and C of Fig. 8,

demonstrate that the ODE and ReaDDy solutions indeed differ.

This difference increases when rates become faster, thus deviating

stronger from the well-mixed assumption of the ODE. The

ReaDDy solutions reached the equilibrium state slower than the

ODE solution because the time to form an encounter complex by

diffusion becomes relevant in this scenario.

At high reaction rates, ODE and ReaDDy solutions differ not

only in the time-course of the reaction, but also in their stationary

concentrations. While the off-rate in scenario B was sufficiently

slow, compared to diffusion, to allow a quasi well-mixed state after

some equilibration time, this is no longer possible in C. As

diffusion becomes limiting in the formation of AzB encounter

complexes, the effective association rate decreases, resulting in a

decreased equilibrium concentration of the product C.

In order to study the effect of crowding on the reaction kinetics,

the particle repulsion potentials for the different setups were

switched on (see Fig. 8, light blue and orange lines). Since the

reaction radii were not changed, this resulted in an effective

decrease of overlap volume in which reactions can occur. The

resulting reduction in the reaction rate is visible in all three setups,

A, B and C. The relaxation of the concentration to the steady

states is now slower. The equilibrium concentration is altered as

well because of three effects: 1) The decreased reaction volume of

AzB particles leading to a decrease in the effective association

rate. 2) The (crowding induced) decreased macroscopic diffusivity

of A and B causes both 2a) a reduced encounter rate of AzB on

larger scales and 2b) an increased encounter rate of AzB on

smaller scales. In 2a), it takes the slower diffusing particles longer

to find each other, leading to a decreased production of C. In 2b),

A and B particles, that just emerged from a dissociated C particle,

can no longer diffuse away from each other that quickly. This

results in a higher probability to react back to C again, in effect

stabilizing C. Overall, the effects reducing the effective AzB?C

association rate dominate in the present setup, leading to an

overall higher educt and lower product concentration in the

equilibrium. Please note that the current implementation of

ReaDDy does not strictly fulfill detailed balance for reversible

reactions. The detailed balance constraint, which is planned for

future implementations, will also affect the equilibrium in the

present example.

Using ReaDDy

In order to use ReaDDy, it is sufficient to download the binary

from https://simtk.org/home/readdy. It is published Open

Source under the BSD 3-Clause License.

Since ReaDDy is Java based, there is no need to compile the

source code. The recommended java version is Java SE 6 or

newer. To facilitate the start for new users, we developed a tutorial

for ReaDDy which can be found on the same website. It contains

the ReaDDy binary, together with a tutorial script and predefined

input files. During the tutorial, the user is lead through the features

of ReaDDy in a step by step fashion on the example of the vesicle

fusion process in synapses [6] (Figure 2A shows a snapshot from

the final tutorial level).

Figure 8. Comparison of ODE Reaction Kinetics with ReaDDy Simulations at Different Reaction Rates. Time-dependent concentrations
of A, B, C species are reported for reaction AzB'C in the 30% benchmark system. ODE solutions (dotted lines) are compared to ReaDDy
simulations (colored lines), simulated once with (light blue, orange) and without (dark blue, brown) particle repulsion. The reaction is simulated at
different rates: A: kon,macro~6:11|105 mM{1s{1 , B: kon,macro~4:61|106 mM{1s{1 and C: kon,macro~1:32|107 mM{1s{1 (see figure for values of
the microscopic rates). A’, B’ and C’ depict magnifications of the gray areas in A, B and C. At condition A, reactions are slow enough to allow particles
to mix well between reactions. If particle-particle repulsion potentials are switched off, the ODE solution agrees with the ReaDDy solution. If particles
do have repulsion potentials, the corresponding minimal distance between reacting particles reduces the volume of space in which a reaction can
take place. This effectively lowers the reaction probability and thus slows down the reaction. At conditions B and C the reaction rate is so fast that the
well-mixed assumption of the system breaks down. Hence the ODE solution can no longer accurately predict the evolution of the reaction.
doi:10.1371/journal.pone.0074261.g008
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Possible Biological Applications
ReaDDy can be applied to model a large spectrum of biological

reaction-diffusion systems. Examples include the rod cell photo-

transduction module [74] and the synaptic vesicle fusion module

[75].

The classical model of rod cell phototransduction assumes the

rhodopsin (R) photoreceptor molecules to be arranged as freely

diffusing, uniformly distributed monomers. Recent results howev-

er, have reported R-dimers, racks of R-dimers arranged in

‘paracrystaline’ structures [76], centered R-patches [77] and

immobile R-fractions [78]. The diffusional motion of R and of

the second messenger molecules, the G-proteins (G), is quite

different in some of these scenarios [79]. This may have a non-

negligible influence on the output of the photo-activation cascade

in which the reaction of R and G is the initial step. With ReaDDy,

pairing interaction potentials with reactions in a diffusion

simulation, the signal response behavior can now be investigated

in these different scenarios.

Vesicle exocytosis relies on the aggregation of enough SNARE

proteins to trigger vesicle fusion with the membrane. These

proteins have been found to form clusters [17,19,80]. With

ReaDDy, using attractive interactions between them, the forma-

tion and dynamic evolution of clusters can be studied. In

subsequent steps, reactions can be included, leading to a model

for vesicle fusion and neurotransmitter release. Modeling these

processes at microscopic detail is relevant because of the highly

scaffolded environment at and around active zones, e.g. through

Bruchpilot [81].

Modeling in ReaDDy
Vesicle exocytosis is used as an example to demonstrate the

modeling of biological systems in ReaDDy. Modeling can be done

at various levels of detail. Snapshots of the final models are

depicted in Figure 2 A and B. The first of the two models is part of

the ReaDDy tutorial, providing a step by step introduction for new

users.

Fig. 2A shows a setup for the vesicle fusion module [75] in the

synaptic vesicle cycle [6]. Vesicle fusion was modeled on a coarse

level, including SNARE proteins, vesicles, calcium channels and

calcium ions. All vesicles and biomolecules are modeled as single

spherical particles with specific properties e.g. radius and diffusion

constant. Potentials from the predefined ReaDDy potential

library, define the simulation geometry: A disk shaped membrane

potential constrains the membrane-bound SNARE proteins, and

the calcium channel to a 2D disk shaped surface. A cylindrical

potential on top of the disk prevents the cytosolic particles (vesicles

and calcium ions) from escaping. Other predefined potentials are

used and parameterized for particle interactions in space:

Excluded volume of particles is realized by harmonic repulsion

potentials that prevent particle-particle penetrations. Clustering of

SNARE proteins is modeled by appropriate attractive potentials

[19,80] that on one hand prevent particle penetration but exert

attractive forces to nearby particles of the right type on the other.

Finally, reactions govern the dynamics of the model (See Text S1,

Table S2 and Table S3): type conversion reactions govern the switch

between the open and closed form of syntaxin, fusion reactions

make SNAP-25 and syntaxin form a SNARE complexes with a

certain probability upon collision. Other fusion reactions between

SNARE complexes and synaptic vesicles model the binding of

SNARE complexes to vesicles. Vesicles change their type upon

fusion with SNARE complexes and become membrane bound.

When three SNARE complexes have bound a vesicle, the fourth

one leads to a fusion ready vesicle. To model the vesicle fusion

with the membrane, which sets the SNARE complexes free again,

a fission reaction is used: It replaces the vesicle particle by two

SNARE-complex dimers that themselves react in a fission reaction

immediately, eventually handing four individual SNARE com-

plexes. In this way, higher order reactions (w2) can be modeled.

Finally, type change reactions govern the switch between open and

closed form of the calcium channel, that may create calcium

particles in birth reactions in its open form. This qualitative model

is part of the ReaDDy tutorial that familiarizes the user with

ReaDDy’s functionalities by constructing and simulating this

model step by step.

Fig. 2B demonstrates the possibilities to describe complex

geometries of biomolecules with ReaDDy: a synaptic vesicle’s

diffusional approach to the membrane and its membrane

association is taken as an example. The system includes the same

molecules as the coarse system above. The modeling of the

molecules is different however. SNARE proteins now consist of

multiple particles, linked together via harmonic potentials to

mimic their chain-like form. In ReaDDy, groups of particles can

be defined that contain template coordinates for the particles and

potentials between them. This facilitates modeling multiple copies

of detailed proteins. To model the membrane bound parts of the

proteins, special anchor particles are used. For syntaxin, anchors

are subjected to a 2D membrane potential, forcing anchors to stay

within the plane but repelling the other protein particles. Anchors

of vesicle bound proteins (synaptobrevin and synaptotagmin) are

subjected to a spherical vesicle membrane potential that constrains

their diffusional motion to its surface. The spherical membrane

potential itself represents the synaptic vesicle. To model its

diffusion, the center of the spherical potential diffuses, causing the

potential to move, dragging the molecules with it by their anchors.

Conclusions and Outlook

In this work the software package ReaDDy was introduced.

ReaDDy allows a microscopic, particle-based reaction-diffusion

simulation to be combined with particle interaction potentials.

Starting from theoretical concepts, the derivation of the

algorithm behind ReaDDy was presented. Details about its

implementation, the software architecture and ReaDDy’s perfor-

mance were given. Sections about parametrization of ReaDDy-

simulations and their validation against an ODE model showed,

that the ReaDDy implementation is correct. These sections may

also provide a guide for ReaDDy-users to parametrize and

validate their own simulations. To facilitate the start of simulating

and developing in ReaDDy, the software is Open Source (BSD 3-

Clause), freely available online (https://simtk.org/home/readdy)

and is equipped with a step by step tutorial.

ReaDDy can be seen as a classical reaction-diffusion simulation

including potential based particle-particle and particle-geometry

interactions. These are crucial to simulate crowding effects on a

microscopic level. It has been demonstrated before, both in silico

and in experiments, that crowding influences molecular diffusion

[13,14,27,82–85]. It has also been shown, that crowding thereby

greatly affects the kinetics of molecular reactions [86–89].

ReaDDy offers the opportunity to study both effects at the same

time. It was observed that crowding changes particle diffusion, in

turn changing the association rate of encounter complexes, the

prerequisite of a reaction. Note that in concrete biological

applications, the effective interaction potentials between biomol-

ecules are not a priori known. A way to go beyond a rough guess of

the interaction potential is to employ detailed MD simulations of

individual biomolecular complexes. Using enhanced sampling

methods such as umbrella sampling [90] or metadynamics [91] the

potential of mean force of the interactions between individual

ReaDDy
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biomolecules can be computed [92]. These results can be used to

design interaction potentials in ReaDDy, making efficient

simulations of large-scale mixtures of these biomolecules available,

which would not be feasible in MD.

We further observed that the inclusion of particle-particle

interaction potentials in a microscopic reaction-diffusion system

extends beyond the current theory. The derivation of a

microscopic reaction rate kmicro from an experimentally derived

macroscopic reaction rate kmacro and diffusion parameters is based

on the assumption, that the total volume of both interacting

particles is available as reaction volume [60]. Particle repulsion

potentials reduce this reaction volume by preventing particle

penetration, thereby effectively reducing the reaction rate. An

extension of the current theory is necessary, that allows the

excluded volume effects from particle-particle interactions on the

magnitude of kmacro to be taken into account. Development of

such a theory can be guided by ReaDDy, which can generate

reference solutions. Even without a theory available, the desired

value of kmicro can now be pragmatically obtained by sampling

different parameter values and then choosing that which yields the

correct macroscopic rate.

ReaDDy has been designed to be expandable and to encourage

the implementation of new modules. Separating the BD-Core

Module from the Group/Reaction Module, already anticipates the

intended parallelization of the Core. For example, high-perfor-

mance parallel codes that are able to simulate particle diffusion

without reactions may be employed here.

We are confident that ReaDDy will prove to be a valuable tool

to simulate cellular processes that rely on reaction-diffusion

dimensions and require a high degree of realism. This is especially

true for processes that are affected by crowding and involve species

with small copy numbers. Processes of this type include the

synaptic vesicle cycle [6], the Rod cell photo activation cascade

[74] and many others. Essentially, as Zimmermann and Trach

showed experimentally [73], Goodsell showed with his illustra-

tions[93–95] and Elcock and Skolnick with their simulations

[12,14]: the cell is a very crowded, compartmentalized and

heterogeneous environment with complex interactions between

molecules. ReaDDy appears to provide the appropriate level of

model and simulation to accompany the insights into this

complexity that are revealed by modern experiments.

Supporting Information

Text S1 This text provides details about probing
stationary distributions with a Monte Carlo (MC)
scheme and further implementation details of ReaDDy.
These include efficient neighbor calculation, input file organiza-

tion and implemented reaction-types.

(PDF)
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