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Abstract

We develop a numerical algorithm for computing the effective drift and dif-

fusivity of the steady-state behavior of an overdamped particle driven by a

periodic potential whose amplitude is modulated in time by multiplicative

noise and forced by additive Gaussian noise (the mathematical structure of

a flashing Brownian motor). The numerical algorithm is based on a spectral

decomposition of the solution to the Fokker-Planck equation with periodic
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boundary conditions and the cell problem which result from homogenization

theory. We also show that the numerical method of Wang, Peskin, Elston

(WPE, 2003) for computing said quantities is equivalent to that resulting

from homogenization theory. We show how to adapt the WPE numerical

method to this problem by means of discretizing the multiplicative noise via

a finite-volume method into a discrete-state Markov jump process which pre-

serves many important properties of the original continuous-state process,

such as its invariant distribution and detailed balance. Our numerical exper-

iments show the effectiveness of both methods, and that the spectral method

can have some efficiency advantages when treating multiplicative random

noise, particularly with strong volatility.

Keywords: flashing ratchet, homogenization, continued fraction method,

Hermite polynomials
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1. Introduction

We will develop and discuss numerical approaches to computing the long-

time effective dynamics of a particle undergoing overdamped dynamics in a

periodic potential, randomly modulated as a function of time, and driven

additionally by thermal fluctuations. After rescaling the spatial variable

with respect to the period L of the potential and temporal variable with

respect to the time which the particle takes to fall from a maximum near

to the minimum of the potential under the zero temperature dynamics, the

equation of motion for such a particle can be written in one dimension in the

2



form [1]:

dX(t) = −φ′(X(t))F (t)dt+
√
2θdW (t), (1)

where X(t) denotes the particle position as a function of time, θ = kBT/φ̄ is

the ratio of the thermal energy kBT to the amplitude of potential variations

φ̄, φ(x) is the periodic potential structure rescaled to have an order unity

scale of variation, W (t) is a standard Brownian motion with 〈dW (t)〉 = 0

and 〈dW (t)dW (t′)〉 = δ(t − t′)dtdt′, and F (t) describes the random tem-

poral modulations of the potential, which may be assumed without loss of

generality to have its amplitude (in mean and/or variance) normalized as

desired.

Equation (1) is an example of a Brownian motor [2], a class of stochastic

systems which are used to characterize and analyze the mechanisms behind

the functioning of biological molecular motors [3] as well as to design artificial

microscale and nanoscale machines [4, 5]. An overdamped dynamical descrip-

tion (without inertia) is appropriate because of the small length scales and

physical values of the other parameters. The periodic environment reflects

the ordered assembly of an extended microtubule, actin fiber, or artificial

substrate. Thermal fluctuations play an important but not entirely domi-

nant role (so that θ in practice tends to be somewhat but not much less than

1; again a property of the microscale), and temporal modulations in the po-

tential are induced by some external means (which typically does work on

the particle). In biological settings, the potential in question is the binding

potential between the molecular motor and the microtubule or actin fibers,

and is modulated by chemical processes such as the binding of ATP or re-

lease of phosphate, as well as physical processes such as an unbound “head”
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of the motor “searching” for and landing on a binding site [6]. These physical

and chemical processes proceed with effectively random delays because they

typically rely on some component fluctuating under thermal effects until it

manages to achieve a certain state so that the process goes forward. Con-

sequently, continuous-time Markov chains (or sometimes renewal processes

with more general waiting distributions [7]) are often used to describe the

modulations F (t) [8–11], with each state corresponding to a possible geomet-

ric conformation of the motor (except for its center of mass position, encoded

by X(t)). In synthetic motors, the modulation F (t) may often be periodic

by design [4, 5]. We will here particularly focus on the special case of a

continuous modulation by an Ornstein-Uhlenbeck process. Such continuous

stochastic modulations of the potential could, for example, represent inter-

ference of the motion of the molecular motor due to other organelles and

structures in the cellular environment.

A central practical question in the theory of Brownian motors is the

overall long-time behavior of the particle. The periodicity of the potential

and statistical homogeneity (or periodicity) of its modulations imply, through

a central limit theorem argument [12], that the statistics of X(t) at long time

are Gaussian and characterized completely by the mean drift

U ≡ lim
t→∞

〈X(t)〉
t

(2)

and diffusivity

D ≡ lim
t→∞

〈(X(t)−Ut)2〉
2t

, (3)

where 〈·〉 denotes a statistical average over all randomness. Of particular in-

terest is how these transport parameters, characterizing the large-scale, long-

time behavior of the motor, are related to the microscopic design parameters
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(such as θ and the structure of the potential φ and parameters characterizing

the fluctuation F (t)) in the detailed stochastic differential equation model

(1). Analytical approaches are generally only possible in asymptotic limits

(such as adiabatically slow or rapidly fluctuating modulations F (t)) [2, 13].

Some work has pursued such questions through direct Monte Carlo simula-

tions [10, 14] of the stochastic differential equation (1), but this approach

is rather expensive because the trajectories must be followed through many

spatial periods (and typically also several realizations) and the nature of the

Brownian motor (in particular θ . 1) is such that the particle takes a sub-

stantial amount of time to hop from one spatial period to another [15, 16].

Accurate computations are further hampered by the slow convergence of a

Monte Carlo simulation with respect to computational effort (square root ac-

curacy gains with respect to simulation time and/or number of realizations).

Deterministic numerical approaches can be alternatively developed based

on the equivalence of the stochastic differential equation (1) for trajectories

and the Fokker-Planck partial differential equation

∂tρ(x, f, t) = −∂x (−φ′(x)fρ(x, f, t)) + θ∂xxρ(x, f, t) + L∗
fρ(x, f, t), (4)

for the probability density ρ(x, f, t) of the particle position x at time t. In

Eq. (4), Lf is the infinitesmal generator operator associated to the Markov

process F (t), and L∗
f its adjoint. Kostur [15] developed finite element simula-

tions of this equation with adaptive time stepping to achieve and estimate the

long-time behavior for several canonical Brownian motor models, but notes

that the periodicity creates some challenges for the implementation due to

its spoiling of the band structure of the matrix formed by projecting the

evolution operator in Eq. (4) onto the finite element basis. Another tactic is
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to derive and numerically solve deterministic equations for the effective drift

(2) and diffusivity (3) of the Brownian motor. Wang et al. [17], Wang and

Elston [18] designed an effective approach, which we will refer to as the WPE

(Wang-Peskin-Elston) method and summarize in Section 2, for the case in

which the potential modulations F (t) are governed by finite-state Markov

chain dynamics. We in particular found this algorithm to be very efficient in

mapping out the dependence of a two-state flashing ratchet model with re-

spect to various underlying parameters [1]. Another means of deriving direct

deterministic equations for the effective drift and diffusivity is through ho-

mogenization theory [19, 20]. The resulting equations will be summarized in

Section 3. Some relative virtues of this approach is that it can be developed

in a continuum framework, without committing to any particular discretiza-

tion in advance, and follows a classical multiscale analysis. The equations

in [17, 18], on the other hand, are obtained after a particular numerically suit-

able spatial discretization which together with the finite-state Markov chain

structure of the modulations, induce a grand Markov chain structure to the

dynamics. The derivation of the drift and effective diffusivity are obtained

then by manipulations of the associated Kolmogorov equations featuring the

transition rate matrices obtained by these discretizations.

The formulas for the drift and the diffusion coefficient obtained using ho-

mogenization theory can be rigorously justified [21, 22]. A natural question

is whether other approaches that have been developed for the calculation

of the drift and diffusion coefficients lead to formulas that are equivalent,

at least in some appropriate asymptotic limit, to the ones obtained from

homogenization theory. As examples we mention the calculation of the dif-
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fusion coefficient for a Brownian particle in a tilted periodic potential using

the mean first passage time (MFPT) approach [23–25] and the calculation

of transport coefficients (not only the diffusion coefficient) using the Green-

Kubo theory [26]. The equivalence between the MFPT approach and the

Green-Kubo theory with homogenization theory were investigated in [19]

and [27], respectively. One of the goals of the present paper is to investigate

the equivalence between the drift and diffusion coefficient formulas for the

WPE algorithm and the (discretized) formulas derived from homogenization

theory. The homogenization formulas can in particular be discretized in the

same manner as WPE do at the beginning, with the result that the same

discretized equation for the drift is obtained but different equations result for

the effective diffusivity. After several numerical experiments verified that the

two approaches achieved the same answer, we found that the WPE equations

could in fact be derived by a variation of the homogenization argument by

simply passing at one point to working with the adjoint of an equation. A

unified framework capable of developing both the WPE and homogenization

equations will be presented in Section 4.

Beyond simply providing another, possibly more transparent, framework

for deriving the WPE equations, the homogenization approach affords some

flexibility in the numerical discretization. The spatial discretization pur-

sued by [17, 18] is carefully designed to maintain the important property of

detailed balance, and we do not seek to improve on this aspect. Rather,

we consider how the effective drift and diffusivity for the Brownian motor

equation (1) can be effectively computed when the temporal modulations of

the potential F (t) are Markovian and continuous in time. The prototypical
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example we shall examine is the Ornstein-Uhlenbeck process, which can be

described equivalently as a Gaussian stationary random process with mean

zero and correlation function

〈F (t′)F (t′ + t)〉 = σ2
F e

−t/τ (5a)

or as the solution of the stochastic differential equation

dF (t) = −1

τ
F (t)dt+

√

2σ2
F

τ
dWF (t) (5b)

with F (0) chosen as a mean zero Gaussian random variable with variance

σ2
F . In the above equations, WF (t) is another standard Brownian motion

independent of W (t) in (1), σ2
F = 〈F (t)2〉 is the variance of F (t), and τ is

the correlation time of F (t).

We will explore a spectral discretization of the state variable F which is

closely related to the continued fraction method applied to many stochastic

systems in Risken [28] and to a neural network model in Acebrón et al. [29],

but not, to our knowledge, to flashing ratchet equations (1). We compare

in Section 5 the relative efficiency of the WPE and spectrally discretized ho-

mogenization equations in computing the effective drift and diffusivity for the

flashing ratchet (1) with modulations governed by the Ornstein-Uhlenbeck

process (5b), using Monte Carlo simulations as a point of reference for accu-

racy. This model has been previously studied in the literature for the rapid

decorrelation limit τ ↓ 0 and adiabatic limit τ → ∞ (see [2] and references

therein) but, to our knowledge, the systematic computation of the effective

diffusivity D is new. We will in particular study how the transport properties

of a flashing ratchet with continuous Ornstein-Uhlenbeck modulations (5b)
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compares with that of two-state flashing ratchets with the same correlation

time and variance.

We note finally that the methods developed here for the one-dimensional

Brownian ratchet equation (1) can be generalized in principle to multiple

dimensions, with a somewhat greater computational expense and more com-

plex indexing of tensor products of Hermite polynomials.

2. The Wang-Peskin-Elston Numerical Algorithm

We begin by describing how the ideas from theWang-Peskin-Elston (WPE)

method [17, 18] can be adapted in order to compute the effective drift and

diffusivity of the flashing Brownian ratchet (1) modulated by the contin-

uous Markov process F (t). First, F (t) is approximated by a finite state,

continuous-time Markov chain F ♯(t) with state space {fn}n∈S♯
F
and transi-

tion rate matrix K satisfying the property that all the row sums are zero
∑

n′∈S♯
F
Knn′ = 0 and all non-diagonal entries are nonnegative. In the orig-

inal formulation of the WPE method, F (t) is assumed to already be such

a discrete-state Markov chain. The additive inverse of the negative diago-

nal entries, −kn, defines the rate of leaving state n (inverse of the expected

occupancy time), and the non-negative off-diagonal entries Knn′ define the

proclivity of jumping from state n to state n′ in the sense that Knn′/kn de-

fines the probability of such a jump whenever the Markov chain leaves state

n [30]. This step of discretizing the continuous Markov process F (t) must

be performed carefully and in Subsection 5.1 we will elaborate on how we

do this. Of course, if F (t) is already a finite-state Markov chain, this step is

trivial. Next, the spatial variable x is discretized so that the Markov process
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(X(t), F (t)) defined in Section 1 is approximated by an extended Markov

chain (X♯(t), F ♯(t)) on a finite state space (the Cartesian product of the dis-

cretized state space of X and F ). A key element to the WPE framework,

particularly when employed for the purpose of trajectory simulation (not our

focus here) in non-smooth (i.e., sawtooth) potentials, is the definition of the

discretized Markov chain dynamics so that it preserves the detailed balance

properties of the original equation (1). To explain this, we begin with the

stochastic differential equation (1) with the Markov process F (t) replaced by

a suitable Markov chain approximation F ♯(t):

dX(t) = −φ′(X(t))F ♯(t)dt +
√
2θdW (t). (6)

We define ρn(x, t) as the probability density for the semidiscretized process

(X(t), F ♯(t)), n ∈ S♯
F , so that for any Borel set B ∈ R and n ∈ S♯

F ,

Prob {X(t) ∈ B,F ♯(t) = n} =

∫

B

ρn(x, t) dx.

The Fokker-Planck equation describing its evolution is given by

∂ρn(x, t)

∂t
= ∂x (φ

′(x)fnρn(x, t) + θ∂xρ
n(x, t))−knρn(x, t)+

∑

n′ 6=n

Kn′nρ
n′

(x, t).

Next X(t) is also approximated by a discrete-state, continuous time Markov

chain X♯(t) on a regular spatial grid xij ≡ j + i∆x, i = 1, . . . ,Mx, j ∈ Z,

where we are assuming a spatial period of 1 and ∆x = 1/Mx. In this represen-

tation of the grid, the parameter j indexes the real line by cells of length one

(the normalized period of the potential φ,) while i indexes the grid points

with separation distance 1/Mx within each cell. The spatially discretized

version of ρn(x, t) is indexed in a somewhat unorthodox way, convenient for
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the following developments. pni (j, t) is defined to be the probability that the

discretized joint process (X♯(t), F ♯(t)) takes values (xij , f
n) at time t, and

may also be interpreted as the probability that the semidiscretized process

(X(t), F ♯(t)) takes values in the set (xij − 1
2
∆x, xij +

1
2
∆x] × {n}, and is

therefore related to the probability density ρn(x, t) as:

pni (j, t) =

∫ xij+
1

2
∆x

xij−
1

2
∆x

ρn(x, t) dx (7)

This probability distribution is then represented in vectorial form pn(j, t) =

(pn1 (j, t), p
n
2 (j, t), . . . , p

n
Mx

(j, t)). The discretized equations then read

dpn(j, t)

dt
= Lnpn(j, t) + Ln+p

n(j − 1, t) + Ln−p
n(j + 1, t) (8)

+
∑

n′ 6=n

Kn′np
n′

(j, t),

where the matrices appearing in this equation are given by

[Ln]i,i = −
(

F n
i+1/2 +Bn

i−1/2 + kn
)

for i = 1, . . . ,Mx,

[Ln]i−1,i = Bn
i−1/2 for i = 1, . . . ,Mx,

[Ln]i+1,i = F n
i+1/2, for i = 1, . . . ,Mx,

[Ln]i,i′ = 0 for |i− i′| ≥ 2,

[

Ln+
]

1,Mx
= F n

Mx+1/2, zero else,

[

Ln−
]

Mx,1
= Bn

1/2, zero else.

(9)
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Intuitively, the matrix Ln is a discretization of the Fokker-Planck operator,

while the matrices Ln+ and Ln−, acting upon the probability vector pn, are a

discretization of the probability flux at the boundaries. The terms F n
i+1/2 and

Bn
i+1/2 represent the transition rates between adjacent cells, and are chosen

such that for any frozen choice of F ♯, the jump process X♯, with master

equation as given by Eq. (8) without the Kn′n term and the kn terms in

Ln, satisfies the detailed balance condition with respect to the Boltzmann

distribution e−φ(x)/θ . We refer the reader to Wang et al. [17] and Wang and

Elston [18] for further details of the numerical method.

From the vectors and matrices defined above, we define supervectors and

supermatrices with indices 1, . . . ,MW ≡ Mx×NF , where NF = |S♯
F |, so that

the equation (8) can be expressed in the following abstract form:

dp(j, t)

dt
= Lp(j, t) + L+p(j − 1, t) + L−p(j + 1, t),

More precisely, pn(j, t) = [p]nMx+j (t), where [v]i is used to denote the ith

component of a supervector v for later convenience. Other supermatrices

and supervectors are indexed similarly, with L a supermatrix representing

the first and fourth terms in Eq. (8) (that is, the dynamics acting within a

spatial period), while L+ and L− are supermatrices representing, respectively,

the second and third terms in Eq. (8). These last two supermatrices will have

a block diagonal form since they do not couple across different modulation

states.

Wang et al. [17], Wang and Elston [18] show that the effective drift and

12



diffusivity are obtained as the unique solutions to the following equations:

U =

MW
∑

i=1

[(L+ − L−)p
s]i , (10)

Mps = 0, M = L+ L− + L+, (11)

satisfying the normalization condition

MW
∑

i=1

[ps]i = 1, where MW is the total

number of discrete states. For the effective diffusivity, one must solve,

D =
1

2

MW
∑

i=1

[(L+ + L−)p
s + 2(L+ − L−)r]i , (12a)

Mr = Ups − (L+ − L−)p
s, (12b)

with the normalization condition

MW
∑

i=1

[r]i = 0. (13)

3. Homogenization equations for effective drift and diffusion

An application of the homogenization formalism from Pavliotis [19] yields

the following system of equations for the effective drift and diffusivity in the

continuously modulated flashing ratchet model (1). We will not repeat the

original derivation here since a unified derivation of the WPE and homoge-

nization equations will be provided in Section 4.

First we define the infinitesimal generator of the Markov process (X(t), F (t)),

to be understood as operating on functions defined on SX × SF where SX is

the spatial domain, here taken as the unit interval with periodic boundary

conditions, and SF is the state space of the potential modulations F (t). Pa-

rameterizing the domain SX by the variable x and SF by the variable f , the
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infinitesimal generator reads:

L = −φ′(x)f∂x + θ∂xx + Lf

where Lf is the infinitesimal generator associated with the Markov process

F (t). For the Ornstein-Uhlenbeck process (5b), the associated state space is

SF = R and the associated infinitesimal generator is:

Lf =
1

τ

(

−f∂f + σ2
F∂ff

)

. (14)

To compute the effective drift and diffusivity, we first solve the stationary

Fokker-Planck equation

L∗ρ(x, f) = 0, ρ(x+ 1, f) = ρ(x, f), (15)

where

L∗ = ∂x (φ
′(x)f ·) + θ∂xx +

1

τ

(

∂f (f ·) + σ2
F∂ff

)

is the Fokker-Planck operator, defined as the adjoint of the infinitesimal

generator. The stationary solution ρ(x, f) is to have periodic boundary con-

ditions in x ∈ [0, 1] and to satisfy the normalization condition:

∫ 1

0

∫ ∞

−∞

ρ(x, f) df dx = 1. (16)

ρ(x, f) is here actually a reduced probability density [2, Sec. 2.4] associated

with the Markov process (X(t), F (t)) in that only the relative position of

X(t) with respect to the periodic potential is described; the information

concerning the nearest integer to X(t) is contracted out. This contraction is

necessary for a nontrivial stationary probability distribution to be defined.
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Once ρ is computed, the effective drift is obtained rather simply as the

drift coefficient in (1) averaged over spatial position with respect to the sta-

tionary probability distribution:

U = 〈−φ′(x)f〉ρ (17)

where:

〈g〉ρ ≡
∫ 1

0

∫ ∞

−∞

g(x, f)ρ(x, f) df dx. (18)

Next the following cell problem, which has the form of a Poisson equation,

must be solved

−Lχ(x, f) = −φ′(x)f −U, χ(x+ 1, f) = χ(x, f). (19)

χ must satisfy also the condition that it grows sufficiently slowly with respect

to f so that:

〈|χ(x, f)|2〉ρ < ∞.

Moreover, the operator L has a one dimensional kernel of constants; the

equation (19) does satisfy the solvability condition, and we impose an extra

condition to fix a unique solution:

〈χ〉ρ = 0. (20)

From here, the effective diffusivity D is computed as [31]

D = θ + 〈(−φ′(x)f − U)χ〉ρ + 2θ〈∂xχ〉ρ. (21)

Note that the choice (20) does not affect the value of this formula for D, as

it is invariant under the addition of constants to χ.
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3.1. Comparison with Wang-Peskin-Elston framework

We observe first of all some direct similarities between the homogeniza-

tion equations just derived and those characterizing the Wang-Peskin-Elston

framework summarized in Section 2. First of all, the equation Mps = 0, to-

gether with its normalization can be readily understood as a finite volume

discretization of the stationary Fokker-Planck equation (15) with normaliza-

tion (16), and ps describes exactly the reduced stationary probability distri-

bution of the discretized system (X♯(t), F ♯(t)). The formula for the effective

drift (10) is also a simple discretization of equation (17). On the other hand,

the formula (12a) for the effective diffusivity in the WPE approach does not

appear to be a discretized approximation of the equation (21) for the effec-

tive diffusivity in the homogenization framework. In particular, the matrix

M in (11) and (12b) is a discretization of the Fokker-Planck operator, while

in order to find D from (21) one must solve a problem involving the adjoint

of this operator, as in (19). In Section 4, however, we will present a unified

derivation of both the homogenization and WPE equations which explains

the consistency of the results obtained with either method (up to numerical

errors incurred by choice of discretization).

For now, we proceed by noting that the homogenization equations have

been derived without any prior discretization, so we may solve the equations

for the effective drift and diffusivity using any method we please. We will

next describe a spectral approach similar in spirit to the continued-fraction

method of [28] developed in other contexts.
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3.2. Spectral decomposition

We now develop a numerical algorithm to solve equations (15) and (19)

through a spectral decomposition in terms of Hermite polynomials (in f) and

Fourier series (in x) of their respective solutions ρ(x, f) and χ(x, f). This

method is analogous to that presented in [28] for computing the effective

drift of a particle on a tilted periodic potential, including its extension to

computing effective diffusivity [31], and which was employed in Latorre et al.

[32] for numerical comparison against theoretical expansions of the trans-

port coefficients with respect to the strength of the tilt and corresponding

corrections to the Einstein relation. We commence by writing equation (15)

as:

∂x (φ
′(x)fρ(x, f)) + θ∂xxρ(x, f) +

1

τ
L∗

fρ(x, f) = 0,

where L∗
f is the adjoint operator of Lf given in Eq. (14). The invariant

probability density of the F (t) dynamics is given by the solution of

L∗
fρF (f) = 0,

which is readily seen to be ρF (f) = (2πσ2
F )

−1/2e−f2/(2σ2

F ). We write the

reduced stationary distribution for the dynamics (X(t), F (t)) by factoring

out this expression

ρ(x, f) = ρF (f)π(x, f),

where π(x, f) is just the conditional (reduced probability) density of X(t)

given F (t) = f . After substituting this ansatz in equation (15) we are left

with

∂x (φ
′(x)fπ(x, f) + θ∂xπ(x, f)) +

1

τ
Lfπ(x, f) = 0. (22)
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A convenient basis which diagonalizes the Lf operator (for Ornstein-Uhlenbeck

dynamics (5b)) and is orthonormal with respect to ρF is given by the Hermite

polynomials {Hn(f)}∞n=0, which can be defined through

Hn(f) =
1√
n!
hn(f/σF ),

hn(f) = (−1)nef
2/2 dn

dfn

(

e−f2/2
)

,

and have the properties:

LFHn(f) = −nHn(f), n = 0, 1, 2, . . .

〈Hn(f)Hm(f)〉ρf =

∫ ∞

−∞

Hn(f)Hm(f)ρF (f) df = δnm.

We now expand the solution π(x, y) to the equation (22) with respect to

these Hermite polynomials:

π(x, f) =
∞
∑

n=0

πn(x)Hn(f).

This representation of π(x, f) decomposes equation (22) into an infinite sys-

tem of coupled ordinary differential equations,

σF∂x (φ
′(x)π1(x)) + θ∂xxπ0(x) = 0, (23a)

L−
nπn+1(x) + Lnπn(x) + L+

nπn−1(x) = 0, n = 1, 2, . . . , (23b)

with

L−
nπn+1(x) =

√

(n + 1)σF∂x (φ
′(x)πn+1(x)) ,

L+
nπn−1(x) =

√
nσF∂x (φ

′(x)πn−1(x)) ,

Lnπn(x) =
(

θ∂xx − nτ−1
)

πn(x).

(24)
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Since πn(x, f) must be periodic functions, an obvious choice for solving the

above infinite system of equations is to express πn(x) in terms of Fourier

modes,

πn(x) =

∞
∑

j=−∞

πj
ne

iωjx, ωj = 2πj. (25)

This representation leads to an algebraic system which is solved by truncating

the series,

π(x, f) ≈
Ns
∑

n=0

Ms
∑

j=−Ms

πj
ne

iωjxHn(f).

We refer the reader to Appendix A for the details of the algorithm and how

the system is solved. In the end, U is computed from Equation (17) as

U = σF Imπ1
1,

D is computed in a similar way [31]; we expand the solution χ(x, f) with

respect to the Hermite polynomials in f and Fourier series in x, and truncate:

χ(x, f) ≈
Ns
∑

n=0

Ms
∑

j=−Ms

χj
ne

iωjxHn(f).

After solving for these expansion coefficients through a projection of the

governing equations (15) and (19), we evaluate the effective diffusivity as

D = θ + i
σF

2

N
∑

n=0

√
n+ 1

[

Ms
∑

j=−Ms

χj
n+1π

j+1
n − χj

n+1π
j−1
n + χj

nπ
j+1
n+1 − χj

nπ
j−1
n+1

]

+4πθi
N
∑

n=0

M
∑

j=−M

jχj
nπ

j
n. (26)

Details of the derivation can be found in Appendix A.
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4. Equivalence between the WPE Numerical Algorithm and Ho-

mogenization Theory

We show in this section how the WPE algorithm described in Section 2

and the homogenization theory in Section 3 can be obtained through a unified

multiscale derivation, in which one simply chooses at one point between

working with an equation or its adjoint, and then of course a specific choice

of discretization.

We begin by considering the flashing ratchet model (1) with arbitrary

Markov process F (t) modulating the potential, and do not yet impose any

discretization. The derivation of the homogenized expressions (17) and (21)

for the effective transport coefficients in Pavliotis [19] pursued a multiple

scale analysis of the backward-Kolmogorov equation,

∂u(x, f, t)

∂t
= Lu(x, f, t).

In order to establish the equivalence between the WPE numerical algorithm

and the homogenization theory approach, we find it more convenient to in-

stead apply the multiscale technique to the forward-Kolmogorov or Fokker-

Planck equation associated with (1), namely

∂tρ(x, f, t) = L∗ρ(x, f, t) = ∂x (φ
′(x)fρ(·)) + θ∂xxρ(x, f, t) + L∗

fρ(x, f, t),

(27)

where L∗
f is the adjoint of the infinitesimal generator of F with state space

Sf .
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4.1. Equivalence of Drift Formulas

We begin by seeking a coarse-grained description on advectively-rescaled

large space and time scales

ρ̃A(x, f, t) = ǫ−1ρ (x/ǫ, f, t/ǫ) (28)

and seek a two-space scale solution of the form

ρ̃A(x, f, t) = ρ̃
(ǫ)
MS,A(x, ξ, f, t)

∣

∣

∣

ξ=x/ǫ
(29)

with small parameter 0 < ǫ ≪ 1 denoting the separation of scales between

the coarse-grained observation scale and the period, ξ the small-scale space

variable. We don’t include a small-scale time variable because the structure

of the dynamics is such that the statistical distribution should approach a

quasi-steady state on the small-scales [2, Sec. 2.4], and we are not inter-

ested in resolving the transient evolution of the small-scales from the initial

data. We seek solutions ρ̃
(ǫ)
MS,A which have periodicity ρ̃

(ǫ)
MS,A(x, ξ + 1, f, t) =

ρ̃
(ǫ)
MS,A(x, ξ, f, t) in the small-scale variable ξ corresponding to the periodicity

of the potential. With the chain rule, we find that a solution of

∂tρ̃
(ǫ)
MS,A = ǫ−1

[

∂ξ

(

φ′(ξ)f ρ̃
(ǫ)
MS,A

)

+ θ∂ξξρ̃
(ǫ)
MS,A + L∗

f ρ̃
(ǫ)
MS,A

]

+
[

φ′(ξ)f∂xρ̃
(ǫ)
MS,A + 2θ∂ξxρ̃

(ǫ)
MS,A

]

+ ǫθ∂xxρ̃
(ǫ)
MS,A

(30)

yields, through Eqs. (28) and (29), a solution to Eq. (27). Substituting next

a perturbation expansion

ρ̃
(ǫ)
MS,A(x, ξ, f, t) = ρ̃A0(x, ξ, f, t) + ǫρ̃A1(x, ξ, f, t) + . . .
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into Eq. (30), we obtain the asymptotic hierarchy

O(ǫ−1) : 0 = L∗
0ρ̃A0, (31a)

O(1) : ∂tρ̃A0 = L∗
0ρ̃A1 + φ′(ξ)f∂xρ̃A0 + 2θ∂ξxρ̃A1, (31b)

...
..., (31c)

where we have defined the fundamental operator on small-scale variables:

L∗
0g ≡ ∂ξ (φ

′(ξ)fg) + θ∂ξξg + L∗
fg.

In solving these equations, we use the following solvability condition [33]:

The equation

L∗
0g(ξ, f) = h(ξ, f), (32)

has a periodic solution g(ξ, f) = g(ξ+1, f) only when the solvability condition
∫ 1

0

∫

Sf

h(ξ, f) df dξ = 0

is satisfied. When this condition holds, Eq. (32) has a one-parameter family

of solutions g(ξ, f) = gp(ξ, f)+cπ0(ξ, f) where c is an arbitrary real constant,

and π0(ξ, f) is defined as the unique real, periodic solution π0(ξ, f) = π0(ξ+

1, f) of the homogenous equation

L∗
0π0 = 0 (33a)

with the normalization
∫ 1

0

∫

Sf

π0(ξ, f) df dξ = 1. (33b)

In the case in which F has discrete state space Sf , the integral over Sf

should be replaced by a sum over states. This solvability condition is de-

rived from the fact that the operator L∗
0 is elliptic, with one-dimensional
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null space spanned by π0 and one-dimensional adjoint null space spanned by

constants [33].

Applying this solvability condition to the O(ǫ−1) equation in Eq. (31)

yields the result that ρ̃A0(x, ξ, f, t) = π0(ξ, f)c(x, t) for some function of

large-scale variables, c(x, t), to be determined. Substituting this expression

for ρ̃A0 into the O(1) equation in Eq. (31), and then imposing the solvability

condition produces the result that

∂c(x, t)

∂t
= ∇ · (Uc(x, t))

which is of course a simple advection equation with drift velocity

U =

∫ 1

0

∫

SF

−φ′(ξ)fπ0(ξ, f)df dξ.

This recovers the homogenization formula (17) for the effective drift of

the motor. We show now how upon an appropriate discretization of physical

and state space, the WPE formulas (11) and (10) can be recovered. First

of all, the equation (11) is formally just a discretization of the equation (15)

for the stationary distribution of the position of the motor. To make more

precise contact with the choice of supermatrices L, L+, and L− used in Wang

et al. [17], Wang and Elston [18], we observe that equation (33a) can be

written as,

θ∂ξ

[

e−fφ(ξ)/θ∂ξ
(

efφ(ξ)/θπ0(ξ, f)
)

]

+ L∗
fπ0(ξ, f) = 0, (34)

A direct finite-volume numerical discretization leads to a numerical scheme

of the type developed in [34], and a further consistent approximation of the

coefficients in the resulting algebraic equations leads to the equation (11)

with the forward and backward rates in (9) equal to those in Wang et al.
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[17], Wang and Elston [18]. To derive the WPE formula (10) for the effective

drift, we integrate Eq. (34) over the noise variable f , noting the integral over

the L∗
f term vanishes due to integration of a derivative of a function with

decaying values as |f | → ∞, to obtain the following relation:

d

dξ

∫

SF

θe−fφ(ξ)/θ∂ξ
(

efφ(ξ)/θπ0(ξ, f)
)

df = 0, (35)

This implies that the integral, which is nothing but the averaged net spatial

flux induced by the stationary distribution at a position ξ, is constant on

the cell [0, 1], a statement which can alternatively be derived by physical

considerations [2]. We next observe that he expression (17) for U can be

written as

U =

∫ 1

0

∫

SF

θefφ(ξ)/θ∂ξ
(

e−fφ(ξ)/θ
)

π0(ξ, f)dfdξ,

which, upon integration by parts and the observation that all factors in the

integrand are periodic, leads to

U = −
∫ 1

0

∫

SF

θe−fφ(ξ)/θ∂ξ
(

efφ(ξ)/θπ0(ξ, f)
)

dfdξ.

But by Eq. (35), the integrand of the ξ integral in this expression is indepen-

dent of ξ, and therefore everywhere equal to its value at the period boundary

ξ = 1, so we may equivalently write

U = −
[
∫

SF

θe−fφ(ξ)/θ∂ξ
(

efφ(ξ)/θπ0(ξ, f)
)

df

]

∣

∣

∣

ξ=1
. (36)

In continuous variables, this is precisely the flux of probability through the

period boundary at ξ = 1, which again has a clear physical interpreta-

tion [2]. The equation (10) can be similarly understood, through the general
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expression of the supermatrices L+ and L− in terms of forward and backward

transition rates, as the discretized form of the net probability flux through

the period boundary at ξ = 1. More precisely, we approximate the deriva-

tive in Eq. 36 through a standard centered finite-difference at the points

ξ = 1 + ∆x/2 and ξ = 1 − ∆x/2, and discretize the state space SF as

described at the beginning of Section 2 to obtain an expression of the form

U ≈
∑

n∈S♯
F

[

AMx
n+ (p

s)nMx
− A1

n−(p
s)n1
]

(37)

for suitable coefficients AMx
n+ and A1

n−. We have used the periodicity of the

stationary distribution to identify π0(1 + ∆x/2, ·) = π0(∆x/2, ·), which is

then approximated in standard fashion (Eq. (7)) in terms of ps (temporarily

relaxing supervector indexing for clarity). As before, a further consistent

approximation of the coefficients AMx
n+ and A1

n− leads to theWPE formula (10)

for U, with the supermatrix coefficients defined precisely as in Wang et al.

[17], Wang and Elston [18].

4.2. Equivalence of Diffusivity Formulas

We turn next to the derivation of the effective diffusivity D for homog-

enization theory (12) and the WPE equivalent (12), which unlike the drift,

appears not to be a simple discretization of the homogenization formula. To

this end, we rescale diffusively to large time and space scales, centered about

the net drifting motion:

ρ̃D(x, f, t) = ǫ−1ρ((x+Ut)/ǫ, f, t/ǫ2)

We seek a solution of the form

ρ̃D(x, f, t) = ρ̃
(ǫ)
MS,D(x, ξ, f, t)

∣

∣

∣

ξ=(x+Ut)/ǫ
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periodic with respect to the small space variable ξ. Note we have defined

the small scale variable ξ to undo the Galilean transformation to avoid the

need to add a fast time scale arising from trivial advection of the stationary

small-scale structure. By the chain rule, we can generate suitable solutions

of Eq. (27) through periodic solutions to the multiscale transformed Fokker-

Planck equation:

∂tρ̃
(ǫ)
MS,D = ǫ−2

[

∂ξ

(

(φ′(ξ)f ρ̃
(ǫ)
MS,D

)

+ θ∂ξξρ̃
(ǫ)
MS,D

]

+ ǫ−1
[

(φ′(ξ)f +U)∂xρ̃
(ǫ)
MS,D + 2θ∂ξxρ̃

(ǫ)
MS,D

]

+ θ∂xxρ̃
(ǫ)
MS,D.

(38)

Upon substituting the perturbation expansion

ρ̃
(ǫ)
MS,D(x, ξ, f, t) = ρ̃D0(x, ξ, f, t) + ǫρ̃D1(x, ξ, f, t) + ǫ2ρ̃D2(x, ξ, f, t) + . . . (39)

into Eq. (38), we find by equating equal powers of ǫ,

O(ǫ−2) : 0 = L∗
0ρ̃D0, (40)

O(ǫ−1) : 0 = L∗
0ρ̃D1 + L∗

1ρ̃D1, (41)

O(1) : ∂tρ̃D0 = L∗
0ρ̃D2 + L∗

1ρ̃D1 + θ∂xxρ̃D0, (42)

where,

L∗
0 = ∂ξ (φ

′(ξ)f ·) + θ∂ξξ + L∗
f ,

L∗
1 = ∂x ((φ

′(ξ)f +U) ·) + 2θ∂ξx.

Using the same solvability condition as above, the O(ǫ−2) equation implies

that

ρ̃D0(x, ξ, f, t) = c(x, t)π0(ξ, f), (43)

where c(·) is a function to be determined, and π0 is defined as in Eq. (33).

Equation (41) reads,

−L∗
0ρ̃D1 = L∗

1ρ̃D0 = [(φ′(ξ)f +U)π0 + 2θ∂ξπ0] ∂xc, (44)
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which is automatically solvable since the right hand side satisfies

∫ 1

0

∫

Sf

L∗
1ρ0 df dξ = ∂xc

(

∫

Sf

[
∫ 1

0

(φ′(ξ)f +U) π0(ξ, f) dξ + 2θπ0(ξ, f)
∣

∣

∣

1

ξ=0

]

df

)

= 0,

because of the periodicity of π0(ξ, f) and the definition (17) of U. As the

variables x and t enter as parameters in (44), we can express the solution in

the form

ρ̃D1(x, ξ, f, t) = Φ(ξ, f)∂xc(x, t) + π0(ξ, f)c1(x, t), (45)

where c1(x, t) is for now an arbitrary function and Φ(z, f) is the unique

solution of the equation

−L∗
0Φ(ξ, f) = (φ′(ξ)f +U) π0(ξ, f) + 2θ∂ξπ0(ξ, f) (46)

which is periodic, satisfies 〈|Φ|2〉ρ < ∞, and with integral chosen to be:

∫ 1

0

∫

Sf

Φ(ξ, f) df dξ = −
∫ 1

0

∫

Sf

ξπ0(ξ, f) df dξ. (47)

We note that any constant could have been chosen on the right hand side,

without affecting the subsequent derivation of the formula (48) for the effec-

tive diffusivity, but our particular choice will facilitate connection with the

WPE formula (12).

This is an adjoint equivalent of the cell problem (19) that arises from

the homogenization analysis of the backward-Kolmogorov equation. Upon

substituting the results (43) and (45) into Eq. (42), we obtain

π0(ξ, f)∂tc(x, t) =
(

θπ0(ξ, f) + (φ′(ξ)f +U)Φ(ξ, f) + 2θ∂ξΦ(ξ, f)
)

∂2
xxc(x, t)

+
(

(φ′(ξ)f +U) π0(ξ, f) + 2θ∂ξπ0(ξ, f)
)

∂xc1(x, t) + L∗
0ρ̃D2(·).
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The solvability condition for this equation then implies that c(x, t) satisfies

the diffusion equation

∂tc(x, t) = D ∂2
xxc(x, t),

where D is given by

D =

∫ 1

0

∫

Sf

(

θπ0(ξ, f) + (φ′(ξ)f +U)Φ(ξ, f) + 2θ∂ξΦ(ξ, f)
)

df dξ

= θ +

∫ 1

0

∫

Sf

(φ′(ξ)f +U)Φ(ξ, f) df dξ, (48)

where we have used the normalization (33b) of π0 and the periodicity of

Φ in the last equality. This is a somewhat different expression for D as

was obtained in Eq. (21) from the same multiscale technique applied to the

backward Kolmogorov equation [19]. A rigorous justification of the above

formal multiple scales analysis, together with a proof of the fact that the

diffusion coefficient is finite, can be obtained using tools from stochastic

analysis, such as the martingale central limit theorem, together with a careful

study of the cell problem [35].

Before showing how the expression (48) for the diffusivity is related to

the WPE algorithm, we prove directly the equivalence with the equation (21)

that arise from the original homogenization theory from Pavliotis [19]. The

latter are expressed in terms of an auxiliary field χ(ξ, f), which satisfies the

cell problem

−L0χ(ξ, f) = φ′(ξ)f∂ξχ− θ∂ξξχ−Lfχ = −φ′(z)f − U,

with periodicity in ξ and integrability 〈|χ|2〉ρ < ∞.
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From equation (48) we have,

D = θ +

∫ 1

0

∫

Sf

(φ′(ξ)f +U)Φ(ξ, f) df dξ,

= θ +

∫ 1

0

∫

Sf

Φ(ξ, f)L0χ(ξ, f) df dξ,

= θ +

∫ 1

0

∫

Sf

χ(ξ, f)L∗
0Φ(ξ, f) df dξ,

from (46) = θ +

∫ 1

0

∫

Sf

−χ(ξ, f)
(

(φ′(ξ)f +U)π0(ξ, f) + 2θ∂ξπ0(ξ, f)
)

df dξ,

= θ +

∫ 1

0

∫

Sf

(

(−φ′(ξ)f − U)χ(ξ, f)π0(ξ, f)
)

− 2θχ(ξ, f)∂ξπ0(ξ, f) df dξ,

= θ +

∫ 1

0

∫

Sf

(

(−φ′(ξ)f − U)χ(ξ, f)π0(ξ, f)
)

+ 2θπ0(ξ, f)∂ξχ(ξ, f) df dξ,

= θ + 〈(−φ′(ξ)f − U)χ〉π0
+ 2θ〈∂ξχ〉π0

.

The above expression is precisely equation (21) for D found via the original

homogenization theory in [19].

The equivalence of the expression (48) for the effective diffusivity with

that of the WPE numerical method can be established as follows. From

equation (46),

−L∗
0Φ(ξ, f) = (φ′(ξ)f +U)π0(ξ, f) + 2θ∂ξπ0(ξ, f).

Now define

R(ξ, f) = − (Φ(ξ, f) + ξπ0(ξ, f)) . (49)

It is easy to verify that R satisfies the boundary condition

R(ξ + 1, f) = R(ξ, f)− π0(ξ, f) (50)
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and the equation,

L∗
0R(ξ, f) = Uπ0, (51)

and moreover from Eqs. (47) and (16), that

∫ 1

0

∫

SF

R(ξ, f)dfdξ = 0. (52)

The same argument based on finite-volume discretizations used to connect

the continuous equation (33a) with the discretized WPE equation (10), show

that (12b) is simply a discretization of Eq. (51). The matrixM is a discretiza-

tion of the operator L∗
0 corresponding to periodic boundary conditions, and

r = (R1, R2, . . . , RMW
)T , ps = (π1, π2, . . . , πMW

)T are the corresponding dis-

cretized approximations of R(ξ, f) and π0(ξ, f). The term −(L+ − L−)p
s is

a correction term arising from the fact that R(ξ, f) does not satisfy periodic

boundary conditions, but rather Eq. (50). Thus, the discretized terms corre-

sponding to “fluxes of R” from outside the period domain [0, 1] must involve

this shift of ±π0 relative to the case in which R is periodic and fluxes in from

the left/right are equated to fluxes out of the right/left boundary. Also, the

normalization condition (13) is clearly a direct discretization of the integral

condition (52).

Finally, we show how (48) leads to the WPE formula (12a) for the effective

diffusivity. First, we note that by periodicity of Φ(ξ, f) and the integration

over a complete spatial period in Φ, as well as Eq. (49) and the normaliza-
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tions (16) and (13), we can rewrite Eq. (48) as:

D = θ +

∫ 1

0

∫

SF

(φ′(ξ)f + θ∂ξ +U)Φ(ξ, f)dfdξ

= θ −
∫ 1

0

∫

SF

(φ′(ξ)f + θ∂ξ +U) (R(ξ, f) + ξπ0(ξ, f)) dfdξ

= θ −
∫ 1

0

∫

SF

(φ′(ξ)f + θ∂ξ)R(ξ, f)dfdξ −
∫ 1

0

∫

SF

ξ(φ′(ξ)f + θ∂ξ)π0(ξ, f)dfdξ

−
∫ 1

0

∫

SF

θπ0(ξ, f)dfdξ − U

[
∫ 1

0

∫

SF

R(ξ, f)dfdξ +

∫ 1

0

∫

SF

ξπ0(ξ, f)dfdξ

]

= −
∫ 1

0

∫

SF

θ
[

e−fφ/θ∂ξ
(

efφ/θR(ξ, f)
)]

dfdξ

−
∫ 1

0

ξ

∫

SF

θ
[

e−fφ/θ∂ξ
(

efφ/θπ0(ξ, f)
)]

dfdξ

−U

∫ 1

0

∫

SF

ξπ0(ξ, f)dfdξ. (53)

Next we integrate by parts in the first integral, noting the periodicity of all

factors in the integrand except R, which satisfies Eq. (50), to obtain:

−
∫ 1

0

∫

SF

θ
[

e−fφ/θ∂ξ
(

efφ/θR
)]

dfdξ =

[

−ξ

∫

SF

θe−fφ/θ∂ξ
(

efφ/θR
)

df

]

∣

∣

∣

1

0
(54)

+

∫ 1

0

∫

SF

ξ∂ξ
(

θe−fφ/θ∂ξ
(

efφ/θR
))

dfdξ

from (51) =

[

−
∫

SF

θe−fφ/θ∂ξ
(

efφ/θR
)

df

]

∣

∣

∣

ξ=1

+

∫ 1

0

∫

SF

ξUπ0dfdξ.

Noting from our argument from Eq. (35), the integral over SF in the second

term in the last expression of Eq. (53) is in fact constant with respect to ξ,

we can trivially integrate over ξ to obtain:

−
∫ 1

0

ξ

∫

SF

θ
[

e−fφ/θ∂ξ
(

efφ/θπ0(ξ, f)
)]

dfdξ = −1

2

[
∫

SF

θe−fφ/θ∂ξ
(

efφ/θπ0

)

df

]

∣

∣

∣

ξ=1
.

(55)
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Combining then Eqs. (53), (54), and (55), we obtain the following expression

for the effective diffusivity in terms of continuum variables which, analogously

to the formula Eq. (36) for the effective drift, only involves evaluations of

“fluxes” at the period boundary rather than integration with respect to the

spatial variable ξ:

D = −
{
∫

SF

θe−fφ/θ∂ξ

[

efφ/θ
(

R(ξ, f) +
1

2
π0

)]

df

}

∣

∣

∣

ξ=1
. (56)

Were
(

R + 1
2
π0

)

a periodic function, then by the same argument as above

which interpreted the operator in Eq. (36) as a net spatial flux, and the

matrices L+ − L− as a corresponding discretization, we would say that the

right hand side of Eq. (56) is just
∑MW

i=1

[

(L+ − L−)(r+
1

2
ps)

]

i

. But R is

not periodic, and this argument is flawed because while L+r does serve as an

appropriate discretization of the “rightward spatial flux” of R across ξ = 1,

L−r describes the “leftward spatial flux” of R across ξ = 0, which is not the

same as the “leftward flux” of R across ξ = 1 due to the lack of periodicity

of R. Rather, since by Eq. (50), R(1 + ξ, f) = R(ξ, f)− π0(ξ, f), we should

discretize the “leftward spatial flux” of R across ξ = 1 as L−(r− ps). Then

taking the net spatial flux at ξ = 1 as the “rightward spatial flux” minus

the “leftward spatial flux,”’ integrated over the noise variable f , we would

discretize Eq. (56) as:

D ≈
MW
∑

i=1

[

L+r− L−(r− ps) + (L+ − L−)
1

2
ps

]

i

=
1

2

MW
∑

i=1

[2(L+ − L−)r+ (L+ + L−)p
s]i ,

in agreement with the WPE expression (12a).

32



We can make this argument somewhat more concrete, as we did for U

around the discussion of Eq. (37), by approximating the last expression in

Eq. (56) by a centered finite-difference using the points ξ = 1+∆x/2 and ξ =

1−∆x/2, but now we must notice that R(1+∆x/2) = R(∆x/2)−π0(∆x/2)

(while π0(1 + ∆x/2) = π0(∆x/2)), to obtain:

D ≈ −
∑

n∈S♯
F

[

A1
n−(r

n
1 − (ps)n1 +

1

2
(ps)n1 )− AMx

n+ (r
n
Mx

+
1

2
(ps)nMx

)

]

=
1

2

∑

n∈S♯
F

2
(

AMx
n+r

n
Mx

− A1
n−r

n
1

)

+
(

AMx
n+ (p

s)nMx
+ A1

n−(p
s)n1
)

,

where we temporarily suspend supervector indexing of r and ps. The same

consistent approximation of the coefficients AMx
n+ and A1

n− as in our discussion

of the effective drift gives precisely the WPE formula (12a) for the effective

diffusivity, with supermatrix coefficients defined precisely as in Wang et al.

[17], Wang and Elston [18].

5. Numerical Results

In this section we will explore the efficacy of the WPE and homogeniza-

tion approaches in simulating a flashing ratchet (6) where the potential is

modulated by an Ornstein-Uhlenbeck process (5b). Though we have shown

that the formulas for the effective drift and diffusivity are formally equiva-

lent for the two methods, their implementations differ in their discretization.

In particular, the homogenization algorithm will discretize both space and

the random potential modulation through a spectral expansion, as discussed

in Section 3. On the other hand, the WPE algorithm will discretize both

space and the random potential modulation through regularly spaced grids,
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in such a way that the stochastic differential system (6) is approximated by a

finite-state Markov chain which preserves detailed balance (Subsection 5.1).

We also examine the theoretical question of how the transport properties of

the motor compare under continuous-state or discrete-state potential modu-

lations with equivalent low order statistics (Subsection 5.2). The numerical

studies for both the comparison of the algorithms and the discrete-state and

continuous-state modulations are presented together in Subsection 5.3.

5.1. Discrete-state approximation of the Ornstein-Uhlenbeck process.

The equation of motion of the flashing ratchet is given by,

dX(t) = −φ′(X(t))F (t)dt+
√
2θdW (t),

where F (t) is the external modulation, which we now fix as the Ornstein-

Uhlenbeck (OU) process

dF (t) = −1

τ
F (t)dt +

√

2σ2
F

τ
dWF (t).

The means for computing the effective drift and diffusivity for this system us-

ing homogenization theory, including their discrete, computable approxima-

tion, was presented in Section 3. The WPE numerical method for computing

the transport coefficients, on the other hand, is formulated in Wang et al.

[17], Wang and Elston [18] for flashing ratchets where F (t) is a continuous-

time Markov chain with a finite state space. Consequently, to implement

this approach on the continuously modulated model (6), we must somehow

approximate the continuous dynamics of the OU-process by a finite-state,

continuous-time Markov chain. This is usually done by approximating ei-

ther the backward-Kolmogorov or forward-Kolmogorov equation with some
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finite-difference method. This approach, however, may give rise to some in-

consistencies in the approximation. For instance, if the grid size is not small

enough the jump rates may not be positive, and some important properties

of the original continuous process, such as those concerning its invariant dis-

tribution, may be lost. Recently, in [34], a numerical method was developed

in order to consistently approximate a continuous-state stochastic process

with a Markov jump process by using a finite-volume method. 1 Here, we

will present this approach for the simple one-dimensional process F (t). We

begin by writing the backward-Kolmogorov equation for F (t),

∂u(f, t)

∂t
=

1

τ

(

−f
∂u

∂f
+ σ2

F

∂2u

∂f 2

)

,

Defining β = σ−2
F and V (f) = f 2/2, the backward-Kolmogorov equation can

be rewritten as

∂u(f, t)

∂t
=

σ2
F

τ
eβV (f) ∂

∂f

(

e−βV (f) ∂

∂f
u(f, t)

)

. (57)

Once written in this form, a finite-volume method can be used to discretize

the equation. In one dimension and for a uniform grid, a simple finite-

difference scheme can be used to obtain the same approximation. This is

presented in detail in Appendix B. In the end, the approximation of the

backward-Kolmogorov equation can be expressed as,

d

dt
u(t) = Lu(t),

1In fact, the WPE numerical method can also be derived using this approach.

35



where the entries of the matrix L are given as,

[L]n,n′ =































−(Kn,n+1 +Kn,n−1) if n = n′,

Kn,n+1 if n′ = n+ 1,

Kn,n−1 if n′ = n− 1,

0 otherwise.

where theKn,n′ are nonnegative constants with expressions given in Eq. (B.1),

and u(t) = (u1(t), u2(t), . . . , uNF
(t)) are the pointwise approximation of the

solution u(f, t). The spatial discretization for the WPE method then follows

the standard procedure described in Wang et al. [17], Wang and Elston [18],

building upon this finite-state Markov chain approximation for F (t), which

we denote F ♯(t). We will refer to the resulting numerical method, extending

the WPE ideas with the finite-volume discretization procedure of Latorre

et al. [34] to handle the discretization of the stochastic process F (t), will be

referred to as the “WPE-based” method in the following discussion.

5.2. Comparison between discrete-state and continuous-state flashing ratchet.

We next turn to the question of how much of a difference a continuous-

state modulation of the flashing ratchet (5b) has on the transport properties

relative to a discrete-state dynamics with the same low-order statistics. Of

course we expect that with sufficiently many discrete states, the transport

properties should be relatively insensitive to the discretization, so we set the

comparison most starkly by comparing the Ornstein-Uhlenbeck modulation

with a dichotomous Markov-chain modulation FD(t) taking values {f1, f2}
with transition rates between the two states given by k12 and k21. We choose

these parameters to mimic the Ornstein-Uhlenbeck process as closely as pos-

sible. First, because the OU-process is symmetric about the origin, we set
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f1 = −f2 = f̄ and k12 = k21 = k. This makes the dichotomous process

have mean zero, as does the OU-process. We next ask that both the discrete

and continuous process have the same correlation function, assuming both

are initialized with respect to their stationary distributions. The OU-process

has correlation function [36]:

〈F (t′)F (t′ + t)〉 = σ2
F e

−t/τ

whereas the dichotomous Markov chain has correlation function

〈FD(t
′)FD(t

′ + t)〉 = f̄ 2e−2kt.

We set then,

f̄ = σF , k =
1

2τ
.

These restrictions completely determine the Markov chain FD.

5.3. Comparison of WPE-based and Homogenization Algorithms for Contin-

uous Potential Modulations

We explore the performance of the homogenization algorithm and the

WPE-based method for a rather simple example in which the potential is

sinusoidal φ(x) = − φ̄
2π

cos 2πx (for which the effective drift U = 0). In

Figures 1a and 1b we present the results of the computations for the effective

diffusivity as a function of the variance σ2
F of the modulations F (t) for two

different values of the correlation time τ . For τ = 0.01 (Figure 1a) we observe

an enhancement of diffusivity (i.e., D > θ) while for τ = 10 (Figure 1b) we

observe a suppression of diffusivity (i.e., D < θ). In these figures, we have

used Ms = 20 (41 Fourier coefficients) and Ns = 30 Hermite polynomials for

the spectral method, while using Mx = 500 grid points in the x-direction and
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NF = 21 grid points in the f -direction for the WPE-based method (resulting

in a Markov jump process with 21 states; see Appendix B for how ∆f is

chosen.)

The Monte Carlo simulations were performed by an Euler-Maruyama

discretization of the SDE (6), with a time step ∆t = 0.001 and an ensemble

average over 1000 independent simulations after a large number of time steps,

which varies depending on the parameters of the simulation (see the figure

captions for the actual number). The diffusivity D for the flashing ratchet

with dichotomous noise was also computed via the WPE-based method, using

the same number of grid points.

We can observe from these figures how the actual number of states for

the multiplicative noise plays a fundamental role as the fluctuations of F

become larger, especially for larger values of τ . In Figures 1c and 1d we

present computations of the effective diffusivity D for intermediate values of

τ , where this phenomenon is also observed. The parameters for the algorithm

in the numerical simulations are the same as before.

We can observe from the figures that each of the methods are computing

the effective diffusivity consistently for the parameter ranges explored, and

that the behavior of the motor particle is sensitive to whether the flashing

ratchet is discrete or continuous precisely when the correlation time is large

and the amplitude of the potential modulations is not small (in our rescaled

units).

For another perspective on the results, we study next the behavior of

the effective diffusivity as a function of the parameters τ , D̄, and θ, where

D̄ ≡ σ2
F τ . This latter parameter characterizes the strength of the noise some-
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what differently than the simple amplitude by taking into account also the

correlation time. D̄ can be thought of as a crude scaling estimate, from ki-

netic theory principles, of the enhancement of the diffusivity of the motor

particle due to the flashing ratchet, and should be accurate (up to constant

prefactor) for the case of low Kubo number [37] in which the decorrelation

in the motion of the motor particle is determined essentially by the temporal

decorrelation of the amplitude modulation F (t) rather than spatial decorre-

lation through motion across the potential landscape φ(x).

In Figure 2 we present our findings when we fix D̄ = 1. The param-

eters for the algorithm are the same as before. We see first of all that

the homogenization algorithm remains in good agreement with the Monte

Carlo simulations throughout the range of correlation times presented, and

that the effective diffusivity so computed agrees with the intuition described

above that D ∼ CD̄ for small correlation time τ (with some order unity

constant C ). On the other hand, the WPE-based algorithm with NF = 21

fails to follow the Monte Carlo simulations when the correlation time τ of the

Gaussian noise is very small (and consequently the noise amplitude σF is very

large). In this scenario one must increase the number of states in the Markov

chain approximation of the OU-process to obtain accurate results with the

WPE-based algorithm. We note also the related observation that for small

correlation times τ and fixed D̄ = σ2
F τ , the behavior of the motor particle

becomes very sensitive to whether the potential modulations are continuous

or discrete. This regime corresponds to a limit in which F (t) approaches

white noise with correlations 〈F (t′)F (t + t′)〉 = D̄δ(t). Combining the ob-

servations from Figures 1 and 2, we see that the dichotomous Markov chain
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approximation to the continuous Ornstein-Uhlenback process for the random

potential modulations creates similar behavior for the motor particle, except

when the amplitude σF of the fluctuations is larger than some critical value

which decreases with the correlation time τ .

5.4. Cost Comparison between the Spectral and WPE-based numerical Meth-

ods

We present now a comparison of how the solution of the numerical meth-

ods presented above converge with respect to the number of elements taken

in the approximation. As we saw in the previous section, the number of

states NF in the discrete approximation of the OU process plays an im-

portant role in the accuracy of the WPE-based method, especially for large

values of σ2
F . This should come as no surprise, for the approximation is based

on a finite-volume approximation of the backward-Kolmogorov equation of

the OU process. Then the factor 1/NF is proportional to the grid size ∆f .

We present then convergence comparisons between the two methods for re-

finements along both the spatial and noise variable directions. To represent

the spatial discretization, we use the number of grid elements, Mx, taken in

the WPE approximation for the X(t) process and the number of Fourier el-

ements, Ms, taken in the truncation in the spectral algorithm. For the noise

variable discretization, we represent the computational effort with the num-

ber of grid points, NF , taken in the finite-volume approximation of the OU

process and the number of Hermite polynomials, Ns, taken in the spectral

algorithm. In Figure 3 we present how the error in the numerical solution

of the spectral algorithm is reduced as we increase the number of Fourier

elements in the truncation while keeping the number of Hermite polynomials
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constant. The error is computed as usual as

error(Ms) = |DMmax
− D(Ms)|,

where DMmax
is the solution using a large number of Fourier elementsMmax (in

this case it is double the number of the last simulation point), and D(Ms) is

the solution computed using Ms Fourier terms (analogously, Mw grid points

in the x coordinate for the WPE-based method). In Figure 4 we present

the same experiment for the WPE-based method. In this case, we compute

the error in the solution as we increase the number of grid points Mx in

the X direction, while keeping fixed the number of grid points NF in the

F -direction.

In Figures 5 we perform a similar experiment but now increasing the

number of Hermite polynomials Ns in the solution of the spectral method

while keeping the number of Fourier elements fixed. Analogously, in Figure

6 we increase the number of grid elements NF (equivalently to decreasing the

grid size ∆f) while keeping the grid size ∆x constant.

We can clearly see the ∆x2-convergence in the WPE-based method (as

well as ∆f 2-convergence), which is characteristic of 2nd-order finite-volume

approximations. On the other hand, it is clear how the spectral method con-

verges faster as the number of spectral elements are increased.

A natural question now is how the error in both methods converges as

the cost of the numerical method is increased. Although a careful analysis of

the numerical cost (as given by the number of flops, for instance) is beyond

the scope of this paper, we can provide a rough estimation for both methods.

The WPE-based algorithm involves the solution of two MN x MN system
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of equations (M for the grid size in X , N for the grid size in F ). This

is performed usually in O((MN)3)-flops2, but further examination of the

matrices involved in the method reveals that the system is sparse and banded,

reducing the cost of the solutions to O((MN)2)-flops. The spectral numerical

method involves the solution of two sets of recursive systems (one for ρ and

one for χ) of N + 1 equations of the form (see Appendix A),

−
(

Qn + Q−
nSn+1

)−1
Q+

n .

Although numerically the inverse matrix is never explicitly computed, the

above operation is numerically equivalent to solving 2M+1 systems of (2M+

1)×(2M+1) equations, which since all the matrices involved in this equation

are also sparse and banded, can be done in O(M3)-flops, so that the total cost

of the spectral numerical method is O(NM3)-flops. The comparison between

the cost of the numerical methods is done in the following way. By keeping

the number of N -elements (either Hermite polynomials or grid points in the

F -direction) we start with a small number of M-elements (both Fourier and

X-grid points.) The number of M-elements is then increased such that the

cost in both numerical methods is increased by (approximately) the same

factor, i.e., while we double the number of Fourier elements (increasing the

cost in the spectral algorithm by a factor of eight) we triple the number of grid

points (increasing the cost in the WPE-based algorithm by a factor of nine).

In the same manner, while keeping the number of M-elements fixed, while

we double the number of N -elements for the WPE-based method (increasing

the cost by a factor of four) we take 4 N elements for the spectral algorithm

2Using a Gauss-Seidel method, for instance.
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(increasing the cost also by a factor of four). In Figure 7 and Figure 8 we

show the results for two different values of τ . As we can observe from these

results, the convergence of the spectral method is much faster than that of

the WPE method relative to the numerical cost involved in both methods.

6. Summary and Discussion.

We have presented a novel numerical algorithm for computing the effective

transport properties of the flashing ratchet with continuous Gaussian modu-

lations (Ornstein-Uhlenbeck process). This numerical algorithm is based on

a spectral decomposition of the solution to the stationary Fokker-Planck and

Poisson equations that arise in homogenization theory. The method is shown

to produce results in agreement with Monte Carlo simulations, with much less

computational expense. We have also compared this spectral homogenization

algorithm with a finite volume variation of another computational approach

due to WPE [17, 18], which can be applied once the continuous modulations

are discretized into a continuous-time Markov chain. Both algorithms have

been shown to be theoretically equivalent, and capable of accurately repro-

ducing the results of Monte Carlo simulations, with the error of our spectral

method converging to zero more rapidly with increasing computational effort.

We have also examined to what extent the continuity or discreteness of the

potential modulations affects the transport properties of the motor particle.

In one direction, the WPE computational approach is based from the start

on a discretization of the state space of the random modulations, and we

have found that with 21 states, the WPE method successfully computes the

effective drift and diffusivity of the flashing ratchet model over a wide range
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of parameters, except in the white noise limit when the correlation time of

the modulations is taken small while their amplitude is taken large. Pre-

sumably a larger number of states are needed for accurate representation by

the WPE method in this regime. From another perspective, we considered

how a relatively crude approximation of the continuous Ornstein-Uhlenbeck

process for the potential modulations in terms of a 2-state (dichotomous)

Markov chain with the same mean and correlation function affects the trans-

port properties of the flashing ratchet. We found that the dichotomous and

continuous models produced similar behavior for the motor particle over a

broad range of parameters, except when either the correlation time or the

amplitude of the noise is sufficiently large.

This paper can be extended in several directions, to be explored in future

work. First, more general types of modulations, not necessarily described by

Ornstein-Uhlenbeck processes, can be considered. The extension is straight-

forward for modulations described by reversible diffusions, for which an ap-

propriate orthonormal basis can be constructed using the eigenfunctions of

the generator of the process (e.g. the Hermite polynomials for the Ornstein-

Uhlenbeck process). Second, we believe that our algorithm can be extended

to higher dimensional problems and to systems of coupled SDEs/Fokker-

Planck equations with forcing terms modulated by a stochastic process. This

would require the use of appropriate tensor products of Hermite polynomi-

als and Fourier basis functions, together with appropriate preconditioning to

reduce the computational cost. Third, the rigorous numerical analysis of our

algorithm, establishing convergence and analyzing its stability properties, is

a natural next step.
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Appendix A. The Spectral Numerical Method

For simplicity in the presentation we choose φ(x) to be φ(x) = − φ̄
ω1

cosω1x,

with ω1 = 2π, although more complex potentials may be considered. The

spectral representation of φ′(x) is then simply,

φ′(x) =
1

2i

(

eiω1x − eiω−1x
)

.

This leads to the following spectral representation of (23) in terms of the

Fourier coefficients {πj
n} from Eq. (25), with j = −∞, . . . ,∞,

σF
1

2
ωj

(

πj−1
1 − πj+1

1

)

− θω2
jπ

j
0 = 0 (A.1a)

L−nπn+1 + Lnπn + L+nπn−1 = 0, n = 1, 2, . . . (A.1b)

where πn is an infinite column vector of Fourier coefficients of πn(x), and the

matrix-vector products above are shorthand for the following operations on

Fourier coefficients:

[

L−nπn+1

]j
=

√

(n+ 1)σF
1

2
ωj

(

πj−1
n+1 − πj+1

n+1

)

,

[

L+nπn−1

]j
=

√
nσF

1

2
ωj

(

πj−1
n−1 − πj+1

n−1

)

,

[Lnπn]
j =

(

−θω2
j − nτ−1

)

πj
n.

(A.2)
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The normalization of the solution, ρ(x, f) implies furthermore,

∫ 1

0

∫ ∞

−∞

ρ(x, f)dfdx =

∫ 1

0

∫ ∞

−∞

ρF (f)

∞
∑

n=0

πn(x)Hn(f)dfdx

=

∫ 1

0

∞
∑

n=0

πn(x)δn,0dx

=

∫ 1

0

∑

j

πj
0e

iωjxdx

= π0
0 = 1.

It can also be noticed from the j = 0 component of equations (A.1b) that

π0
n = 0, n = 1, 2, . . .. We now approximate π(x) by applying a Galerkin

truncation to the infinite series at suitable finite values Ns and Ms,

π(x) ≈
Ns
∑

n=0

Ms
∑

j=−Ms

πj
ne

iωjxHn(f).

By taking the values of π0
n as given above, the system of equations (23)

becomes then a finite system of (2Ms)× (Ns+1) linear equations, which can

be written as,

Q−
0 π1 + Q0π0 = 0, (A.3a)

Q−
1 π2 + Q1π1 + Q+

1 π0 = B0,

...
...

QNsπNs + Q+
Ns
πNs−1 = 0.

The matrices Q = {Ql+Ms+1,j+Ms+1}, j, l = −Ms, . . . ,−1, 1, . . . ,Ms then
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take the form,

[

Q−
0

]

l+Ms+1,j+Ms+1
=































−σF
1

2
ωl if j = l + 1, l = −Ms, . . . ,−2, 1, . . . ,Ms − 1,

σF
1

2
ωl if j = l − 1, l = −Ms + 1, . . . ,−1, 2, . . . ,Ms

0 otherwise.

(A.4a)

[Q0]l+Ms+1,j+Ms+1 =











−θω2
l if j = l, l = −Ms, . . . ,−1, 1, . . . ,Ms,

0 otherwise.

(A.4b)

[B0]l+Ms+1 = σF
1

2
ω−1δl,−1 − σF

1

2
ω1δl,1,

and for n = 1, 2, . . . , Ns,

[

Q−
n

]

l+Ms+1,j+Ms+1
=































−σF

√
n+ 1

1

2
ωl if j = l + 1, l = −Ms, . . . ,−2, 1, . . . ,Ms − 1,

σF

√
n + 1

1

2
ωl if j = l − 1, l = −Ms + 1, . . . ,−1, 2, . . . ,Ms

0 otherwise.

(A.4c)

[

Q+
n

]

l+Ms+1,j+Ms+1
=































−σF

√
n
1

2
ωl if j = l + 1, l = −Ms, . . . ,−2, 1, . . . ,Ms − 1,

σF

√
n
1

2
ωl if j = l − 1, l = −Ms + 1, . . . ,−1, 2, . . . ,Ms

0 otherwise.

(A.4d)
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[Qn]l+Ms+1,j+Ms+1 =











−θω2
l − nτ−1 if j = l, l = −Ms, . . . ,−1, 1, . . . ,Ms,

0 otherwise.

(A.4e)

This system is then solved recursively for πNs−1, . . . ,π2 in the form

πn = Snπn−1, n = Ns, . . . , 1, (A.5a)

with

SNs = Q−1
Ns
Q+

Ns
, (A.5b)

Sn = −(Qn + Q−
nSn+1)

−1Q+
n , n = Ns − 1, . . . , 2. (A.5c)

This leaves us with the following set of equations:

Q−
0 π1 + Q0π0 = 0,

(

Q−
1 S2 + Q1

)

π1 + Q+
1 π0 = B0.

which can be solved for π0 and π1. Then πn, n = 2, 3, . . . can then be
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recovered using Eq. (A.5). U is then computed as follows. From (17),

U = −
∫ 1

0

∫ ∞

−∞

φ′(x)fρ(x, f) df dx

= −
∫ 1

0

∫ ∞

−∞

φ′(x)f ρf (f)

∞
∑

n=0

πn(x)Hn(f) df dx

= −
∞
∑

n=0

∫ 1

0

φ′(x)πn(x)

∫ ∞

−∞

ρf (f)fHn(f) df dx

= −
∞
∑

n=0

∫ 1

0

φ′(x)πn(x)σF δ1,ndx

= −σF

∫ 1

0

φ′(x)π1(x)dx

= −σF

∫ 1

0

1

2i

(

eiω1x − eiω−1x
)

∑

j

πj
1e

iωjx

= −σF

2i

(

π−1
1 − π1

1

)

= σF Imπ1
1 ,

(A.6)

since π−j
n = πj

n, where A is the complex conjugate of A ∈ C.

The solution to the cell problem (19) to compute D is done similarly. We

express χ(x, f) in its Hermite polynomial decomposition,

χ(x, f) =

∞
∑

n=0

χn(x)Hn(f).

Upon substitution of the above expression in (19) and using the orthogonality

of Hn, we obtain the following set of equations,

φ′(x)σF∂xχ1 − θ∂xxχ0 = U, (A.7a)
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φ′(x)
√
2σF∂xχ2 − θ∂xxχ1 + τ−1χ1 + φ′(x)σF∂xχ0 = −σFφ

′, (A.7b)

−(L−)†nχn+1 −L†
nχn − (L+)†nχn−1 = 0, n = 2, 3, . . . (A.7c)

where the operators L−,L, and L+ are defined in Eq. (24), and † denotes the
adjoint. By decomposing χn(x) in terms of its Fourier series,

χn(x) =
∞
∑

j=−∞

χj
ne

iωjx,

the set of equations (A.7) becomes the linear system, for j = −∞, . . . ,∞,

σF
1

2

(

ωj−1χ
j−1
1 − ωj+1χ

j+1
1

)

+ θω2
jχ

j
0 = −Uδj,0,

[

(L−)†1χ2 + L
†
1χ1 + (L+)†1χ0

]j

= σF
1

2i
δj,−1 − σF

1

2i
δj,1,

(L−)†nχn+1 + L†nχn + (L+)†nχn−1 = 0, n = 2, 3, . . .

where χn denotes the sequence of Fourier coefficients of χn(x), and L−,L, and

L+ are defined in Eq. (A.2). In order to solve this infinite set of equations,

we apply a Galerkin truncation to the spectral decomposition of χ(x, f) at

some appropriate values Ms and Ns:

χ(x, f) ≈
Ns
∑

n=0

Ms
∑

j=−Ms

χj
ne

iωjxHn(f),

so we get the finite (2Ms + 1)(Ns + 1) set of algebraic equations,

(Q−
0 )

†χ1 + Q
†
0χ0 = B0, (A.8a)

(Q−
1 )

†χ2 + Q
†
1χ1 + (Q+)†1χ0 = B1, (A.8b)

(Q−
n )

†χn+1 + Q†
nχn + (Q+

n )
†χn−1 = 0, n = 2, 3, . . . , Ns, (A.8c)

where the matrices Q−
n , Qn, and Q+

n were defined in (A.4), and

[B0]l+Ms+1 = −Uδl,0,
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[B1]l+Ms+1 = σF
1

2i
δl,−1 − σF

1

2i
δl,1.

The supermatrix implicitly defined by the left hand side of this system does

have a zero eigenvalue, with right eigenvector (δ0, 0, . . . , 0)
† and left eigen-

vector (π0,π1, . . . ,πNs), all inherited from discretization of the operator L.
Solvability of (A.8) follows from verifying that the supervector composed of

the right hand sides is indeed orthogonal to the null left eigenvector of the

supermatrix, i.e.,

π0 ·B0 + π1 ·B1 = 0

as follows from the definitions of these vectors and the formula (A.6) for the

effective velocity U. A unique solution is obtained by imposing χ0
0 = 0, the

analogue of the constraint (20) for the continuous formulation.

The system of equations is then solved similarly as we did for πn(x),

beginning with writing:

χn = Znχn−1, n = Ns, Ns − 1, . . . , 2, (A.9a)

ZNs = −(Q+
Ns
Q−1

Ns
)†, (A.9b)

Zn = −
[

Q+
n (Z

†
n+1Q

−
n + Qn)

−1
]†

, n = Ns − 1, . . . , 2. (A.9c)

From the equation for n = 1, we can write,

χ1 = B̃1 + Z1χ0, (A.10)

where Z1 is defined by the same formula as for n ≥ 2 in Eq. (A.9c), and

B̃1 =
(

P−
1 Z2 + P1

)−1
B1,

Substituting this expression in the equation for n = 0 yields

Z0χ0 = B̃0, (A.11)
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with

Z0 = P−
0 Z1 + P0,

and

B̃0 = B0 − P−
0 B̃1.

We handle the degeneracy of the matrix Z0 by imposing χ0
0 = 0 and solving

for the remaining components of χ0. The solution is completed by computing

{χn}Ns

n=1 through Eqs. (A.10) and (A.9a).

From Eq. (21), a similar calculation to that in Eq. (A.6) yields

D = θ + i
σF

2

Ns
∑

n=0

√
n+ 1

[

Ms
∑

j=−Ms

χj
n+1π

j+1
n − χj

n+1π
j−1
n + χj

nπ
j+1
n+1 − χj

nπ
j−1
n+1

]

+4πθi

Ns
∑

n=0

Ms
∑

j=−Ms

jχj
nπ

j
n. (A.12)

Appendix B. Discrete-State Approximation of the Ornstein-Uhlenbeck

Process

In our numerical experiments, we discretize the state space for the noise

variable with NF = 2nF +1 states, equally spaced with interval ∆f , and cen-

tered about 0: S♯
F = {−nF∆f,−(nF − 1)∆f, . . . , 0, . . . , (nF − 1)∆f, nF∆f}.

Equivalently, S♯
F = {fn}NF

n=1 with fn = (n−nF −1)∆f . We will approximate

(57) at the grid points fn by first approximating the derivative by a centered

finite difference at the points f = fn +∆f/2 and f = fn −∆f/2,

dun(t)

dt
≈ σ2

F

τ
eβV (fn)

[

e−βV (f)∂fu(f, t)
]
∣

∣

f=fn+∆f/2
−
[

e−βV (f)∂fu(f, t)
]
∣

∣

f=fn−∆f/2

∆f
,

where,

un(t) = u(fn, t)
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is just the point evaluation of the function u(f, t) at the grid point f = fn.

Next, we approximate the derivative at f = fn ± ∆f/2 once again by a

centered difference this time around the grid points f = fn±∆f and f = fn.

The final approximation can be written as,

dun(t)

dt
≈ Kn,n+1un+1(t)− (Kn,n+1 +Kn,n−1)un(t) +Kn,n−1un−1(t),

with,

Kn,n+1 =
σ2
F

τ∆f 2
e−β(V (fn+∆f/2)−V (fn)), (B.1)

Kn,n−1 =
σ2
F

τ∆f 2
e−β(V (fn−∆f/2)−V (fn)).

The approximation of the backward-Kolmogorov equation can be expressed

as,
d

dt
u(t) = Lu(t),

where the entries of the matrix L are given as

[L]n,n′ =























































Kn,n+1 if n′ = n+ 1, 1 ≤ n, n′ ≤ NF − 1

Kn,n−1 if n′ = n− 1, 2 ≤ n, n′ ≤ NF

−Kn,n+1 −Kn,n−1 if n′ = n, 2 ≤ n ≤ NF − 1

−K1,2 if n′ = n = 1

−KNF ,NF−1 if n′ = n = NF

0 otherwise.

which, for any choice of ∆f > 0, defines a Markov jump process with space

state defined by the grid points {fn}NF

n=1 and jump rates between fn and fn±1

given by Kn,n±1. Moreover, it can be easily checked that the vector,

[π]n = e−βV (fn),
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solves the equation,

L∗π = 0,

where L∗ is the adjoint matrix of L. This means that π is an invariant dis-

tribution of the Markov jump process and is consistent with the invariant

distribution of the continuous process F (t). Moreover, it can also be shown

that the Markov jump process satisfies the detailed balance condition with

respect to this invariant measure, also consistently with the continuous pro-

cess.

We must next truncate the infinite state space, and impose boundary condi-

tions. Since the OU-process has a stationary Gaussian distribution ρ(f) ∼
e−βf2/2, we choose the last grid point fnF

to be such that,

e−βf2
nF

/2 = δ,

where δ is a small number. In practice we choose δ = 10−14. The discrete-

state, Markov jump approximation of the process F ♯(t) has state space S♯
F =

{−nF∆f,−(nF − 1)∆f, . . . , 0, . . . , (nF − 1)∆f, nF∆f} and transition rates

given by (B.1).
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Figure 1: Effective diffusivity D as a function of multiplicative noise variance

σ2
F (θ = 0.1), computed for the OU-flashing ratchet (6) with the spectral

homogenization algorithm (solid line), the finite-volume adaptation of the

WPE-based numerical algorithm (NF = 21, dotted line.) The dash-dot line

indicates the effective diffusivity for a flashing ratchet with dichotomous noise

with same mean and correlation function as the OU-flashing ratchet. Monte

Carlo simulations after (1a) 3 × 105, ((1b)-(1d)) 105 time steps (solid line

with one standard deviation error bars).
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Figure 2: D as a function of τ , with D̄ = σ2
F τ = 1, θ = 0.1, computed

for the OU-flashing ratchet (6) with the spectral homogenization algorithm

(solid line), the WPE-based numerical algorithm (NF = 21, dotted line), and

Monte Carlo simulations after 2×105 time steps (solid line with one standard

deviation error bars). The dash-dot line indicates the effective diffusivity for

a flashing ratchet with dichotomous noise with the same mean and correlation

function as the OU-flashing ratchet.
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Figure 3: Error in the numerical solution of D using the spectral method as

a function of the number of Fourier elements for three different choices of τ .

In the simulation the number of Hermite polynomials Ns was kept constant

at Ns = 30.
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Figure 4: Error in the numerical solution of D using the WPE method as

a function of the grid size ∆x = 1/Mx for three different choices of τ . In

the simulation the number of grid points NF in the F direction was kept

constant at NF = 30.
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Figure 5: Error in the numerical solution of D using the spectral method as

a function of the number of Hermite polynomials for three different choices

of τ . In the simulation the number of Fourier terms Ms was kept constant

at Ms = 10.
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Figure 6: Error in the numerical solution of D using the WPE method as

a function of the grid size ∆f ∼ 1/NF for three different choices of τ . In

the simulation the number of grid points Mx in the X direction was kept

constant at Mx = 25.
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Figure 7: Cost comparison between the spectral and the WPE-based (finite-

volume) numerical algorithms for τ = 0.1, σ2
F = 10, and θ = 0.1 (case

of enhanced diffusion). Upper panel: The numerical cost of the spectral

algorithm is estimated as M3, while the numerical cost for the WPE-based

algorithm is estimated as M2. The number of N -elements is kept fixed at

Ns = 20 for the spectral method and NF = 40 for the WPE-based method.

Bottom panel: The numerical cost of the spectral algorithm is estimated as

Ns, while the numerical cost for the WPE-based algorithm is estimated as

N2
F . The number of M-elements is kept fixed at Ms = 10 for the spectral

method and Mx = 50 for the WPE-based method.

65



10
0

10
1

10
2

10
3

10
410

−20

10
−10

10
0

Computational Cost Increment in M

E
rr

or

 

 

10
0

10
1

10
2

10
310

−20

10
−10

10
0

Computational Cost Increment in N

E
rr

or

 

 

Spectral Method
Finite Volume Method

Spectral Method
Finite Volume Method

Figure 8: Cost comparison between the spectral and the WPE-based (finite-

volume) numerical algorithms for τ = 10, σ2
F = 10, and θ = 0.1(case of

suppressed diffusion). Upper panel: The numerical cost of the spectral al-

gorithm is estimated as M3, while the numerical cost for the WPE-based

algorithm is estimated as M2. The number of N -elements is kept fixed at

Ns = 20 for the spectral method and NF = 40 for the WPE-based method.

Bottom panel: The numerical cost of the spectral algorithm is estimated as

Ns, while the numerical cost for the WPE-based algorithm is estimated as

N2
F . The number of M-elements is kept fixed at Ms = 10 for the spectral

method and Mx = 50 for the WPE-based method.
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