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Summary. We report on a novel approach to the automatic identification of
metastable states from long term simulation of complex molecular systems. The
new approach is based on a hierarchical concept of metastability: metastable states
are understood as subsets of state or configuration space from which the dynam-
ics exits only very rarely; subsets with the smallest exit probabilities are of most
interest, their further decomposition then may reveal subsets from which exiting is
less but comparably difficult for the system under investigation. The article gives a
survey of the theoretical foundation of the approach and its algorithmic realization
that generalizes the well-known concept of Hidden Markov Models. The performance
of the resulting algorithm are illustrated by application to a 100 ns simulation of
penta-alanine with explicit water. We demonstrate the resulting metastable states
allow to reveal the conformation dynamics of the moelcule.
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1 Introduction

The macroscopic dynamics of typical biomolecular systems is mainly charac-
terized by the existence of biomolecular conformations which can be under-
stood as metastable geometrical large scale structures, i.e., geometries which
are persistent for long periods of time. On the longest time scales biomolecu-
lar dynamics is a kind of flipping process between these conformations, while
on closer inspection it exhibits a rich temporal multiscale structure. Recent
research seems to indicate that the conformations with the most pronounced
persistency can be understood as metastable or ”almost invariant” sets in state
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or configuration space [1, 2]. In other words, the effective or macroscopic dy-
namics is given by a Markov jump process that hops between the metastable
sets while the dynamics within these sets might be mixing on time scales that
are smaller than the typical waiting time between the hops. In many appli-
cations this Markovian picture is an appropriate description of the dynamics
since typical correlation times in the system are sufficiently smaller than the
waiting times between hops (and thus much smaller than the timescale the
effective description is intended to cover).

While the problem of computing the transition rates or the transition
pathways between two given conformations attracted a lot of attention re-
cently [3, 4, 5, 6, 7], the problem of efficient algorithmic identification of the
most persistent conformations of a given system still is a challenging open
problem. Recently there have been several set-oriented approaches to this
problem [1, 8, 9]. These approaches are based on the construction of a tran-
sition matrix that describes transition probabilities between sets in the state
space of the system. The identification of metastable sets then is based on
analysis of this transition matrix [2, 10]. For higher dimensional systems this
always requires coarse graining of the state space into sets (a partition of state
space in disjoint sets that avoids the curse of dimensionality) that has to be
designed carefully since the resulting metastable sets are unions of the sets
from the partition.

Even more recently, alternative approaches have been introduced that ap-
ply appropriate Hidden Markov models (HMMs) to the identification problem
[11, 12, 13].

We will herein first explain the background of these two types of approach
and comment on their relation. In the second part of this contribution we will
discuss the identification of the most persistent conformations of penta-alanine
as a numerical example. Other examples can be found in [13, 14].

2 Identification of Metastable States

2.1 Dynamics and Statistics

In classical molecular dynamics, a molecular system with a fixed number of
N atoms is given by a state vector (q, p) ∈ X =

� 3N ×
�3N , where q ∈

� 3N

denotes the position vector and p ∈
� 3N the momentum vector. The dynam-

ical behavior, given a specified potential energy function V , a mass matrix M
and initial conditions (q0, p0), is described by the Newtonian equations

q̇ = M−1p, q(0) = q0, (1)

ṗ = −∇qV (q), p(0) = p0. (2)

Eq. (1) models an energetically closed system, whose total energy, given by
the Hamiltonian
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H(q, p) =
1

2
pT M−1p + V (q), (3)

is preserved under the dynamics.
It is well known that for every smooth function F :

�
→
�

the probability
measure µ(dx) ∝ F(H)(x)dx is invariant wrt. the Markov process Xt given
by the solution of the Hamiltonian system (1). The most frequent choice is
the canonical density or canonical ensemble

f(x) ∝ exp(−βH(x)) (4)

for some constant β > 0 that can be interpreted as inverse temperature.
The associated measure µ(dx) ∝ f(x)dx is called the canonical measure.
The canonical ensemble is often used in modeling experiments on molecu-
lar systems that are performed under the conditions of constant volume and
temperature T = 1

kBβ
, where kB is Boltzmann’s constant. Obviously, a single

solution of the Hamiltonian system (1) can never be ergodic wrt. the canonical
measure, since it conserves the internal energy H , as defined in (3). There are
several approaches in the construction of (stochastic) dynamical systems that
allow sampling of the canonical ensemble by means of long-term simulation.
Most deterministic methods reduce to the construction of a Hamiltonian sys-
tem in some slightly extended state space X̂, whose projection onto the lower
dimensional state space X of positions and momenta generates a sampling
according to (4). One of the most prominent examples is the Nosé-Hoover
thermostat [15]. There are also non-deterministic methods. Amongst them,
for example, are the well-known Langevin dynamics models, as well as Hy-
brid Monte Carlo approaches, cf. [2].

2.2 Metastability and the Transfer operator Approach

Each of the optional dynamical models mentioned above involves a homoge-
neous Markov process Xt = {Xt}t∈T in either continuous or discrete time
on some state space X. The motion of Xt is given in terms of the stochastic
transition function

p(t, x, A) = � [Xt+s ∈ A |Xs = x], (5)

for every t, s ∈ T , x ∈ X and A ⊂ X. We write X0 ∼ µ, if the Markov
process Xt is initially distributed according to the probability measure µ and
denote the corresponding probability function of the process by �µ. A Markov
process Xt admits an invariant probability measure µ, or µ is invariant wrt.
Xt, if

∫

X
p(t, x, A)µ(dx) = µ(A). In the following we always assume that the

invariant measure of the process under investigation exists and is unique. A
Markov process is called reversible wrt. an invariant probability measure µ if
∫

A
p(t, x, B)µ(dx) =

∫

B
p(t, x, A)µ(dx) for every t ∈ T and A, B ⊂ X.

Metastability of some subset of the state space is characterized by the
property that the Markov process is likely to remain within the subset for a
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long period of time, until it exits and a transition to some other region of the
state space occurs. There are in fact several related but different definitions
of metastability in literature (see, e.g., [16, 17, 18, 19, 20]); we will focus on
the so-called ensemble concept introduced in (6), for a comparison with, e.g.,
the exit time concept, see [2].

The transition probability p(t, B, C) from a subset B ⊂ X to another
subset C ⊂ X within the time span t is defined as the conditional probability

p(t, B, C) = �µ[Xt ∈ C |X0 ∈ B] =
�µ[Xt ∈ C and X0 ∈ B]

�µ[X0 ∈ B]
. (6)

This may be rewritten as

p(t, B, C) =
1

µ(B)

∫

B

p(t, x, C)µ(dx). (7)

In other words, the transition probability quantifies the dynamical fluctuations
within the stationary ensemble µ. A subset B ⊂ X is called metastable on the
time scale τ > 0 if

p(τ, B, Bc) ≈ 0, or equivalently, p(τ, B, B) ≈ 1,

where Bc = X \ B denotes the complement of B.
The objective of the transfer operator approach is an identification of

a decomposition of the state space into metastable subsets and the corre-
sponding “flipping dynamics” between these sub-states. By a decomposition
d = {D1, . . . , Dm} of the state space X we mean a collection of subsets
Dk ⊂ X with the following properties: (1) positivity µ(Dk) > 0 for every
k, (2) disjointness up to null sets, and (3) the covering property ∪m

k=1Dk = X.
The metastability of a decomposition d is defined as the sum of the metasta-

bilities of its subsets, supposed that the time scale τ of interest is fixed. Then,
for each arbitrary decomposition dm = {D1, . . . , Dm} of the state space X

into m sets we define its metastability measure by

meta(dm) =
m

∑

j=1

p(τ, Dj , Dj)/m.

For given m the optimal metastable decomposition into m sets can then be
defined as that decomposition into m sets which maximizes the functional
meta. This means in particular that the appropriate number m of metastable
subsets must be identified. Both the determination of m and the identification
of the metastable subsets can be achieved via spectral analysis of the so-called
transfer operator.

Transfer Operator.

The semigroup of propagators or forward transfer operators P τ : Lr(µ) →
Lr(µ) with t ∈ T and 1 ≤ r < ∞ as follows:
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∫

A

P τv(y) µ(dy) =

∫

X

v(x)p(τ, x, A)µ(dx) (8)

for A ⊂ X. As a consequence of the invariance of µ, the characteristic function
1X of the entire state space is an invariant density of P τ , i.e., P τ1X = 1X.
Furthermore, P τ is a Markov operator, i.e., P τ conserves both norm ‖P τv‖1 =
‖v‖1 and positivity P τv ≥ 0 if v ≥ 0, which is a simple consequence of the
definition. Due to (8), the semigroup of propagators mathematically models
the evolution of sub–ensembles in time.

The key idea of the transfer operator approach wrt. the identification of
metastable decompositions can be described as follows:

Metastable subsets can be detected via eigenvalues of the propaga-
tor P τ close to its maximal eigenvalue λ = 1; moreover they can be
identified by exploiting the corresponding eigenfunctions. In doing so,
the number of metastable subsets in the metastable decomposition is
equal to the number of eigenvalues close to 1, including λ = 1 and
counting multiplicity.

This strategy was first proposed by Dellnitz and Junge [9] for discrete dy-
namical systems with weak random perturbations, and has been successfully
applied to molecular dynamics in different contexts [21, 1, 22, 2]. The key
idea requires the following two conditions on the propagator P τ : (C1) The
essential spectral radius of P τ is less than one, i.e., ress(P

τ ) < 1. (C2) The
eigenvalue λ = 1 of P is simple and dominant, i.e., η ∈ σ(P τ ) with |η| = 1
implies η = 1.

In our algorithmic strategy we furthermore exploit self-adjointness of the
propagator which is inherited from reversiblity of the underlying dynamic
and results in a real-valued spectrum. Consider for example: (1) high-friction
Langevin processes, and (2) (Nose-Hoover) constant temperature molecular
dynamics. For both cases the dynamics is reversible and the transfer operator
is self-adjoint. For type (1) examples, conditions (C1) and (C2) are known
to be satisfied under rather weak condition on the potential [2]. For type (2)
examples, it is unknown whether or not the conditions are satisfied; however, it
is normally assumed in molecular dynamics that they are valid for realistically
complex systems in solution.

The next result [2, 23] justifies the above key idea:

Theorem 1. Let P τ : L2(µ) → L2(µ) denote a reversible propagator satisfying
(C1) and (C2). Then P τ is self–adjoint with spectrum of the form

σ(P τ ) ⊂ [a, b] ∪ {λm} ∪ . . . ∪ {λ2} ∪ {1}

with −1 < a ≤ b < λm ≤ . . . ≤ λ1 = 1 and λi isolated, eigenvalues that
are counted according to their finite multiplicities. Denote by vm, . . . , v1 the
corresponding eigenfunctions, normalized to ‖vk‖2 = 1. Let Q be the orthog-
onal projection of L2(µ) onto span{1A1 , . . . ,1Am

}. Then the metastability of
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an arbitrary decomposition dm = {A1, . . . , Am} of the state space X can be
bounded from above by

p(τ, A1, A1) + . . . + p(τ, Am, Am) ≤ 1 + λ2 + . . . + λm,

while it is bounded from below according to

1 + κ2λ2 + . . . + κmλm + c ≤ p(τ, A1, A1) + . . . + p(τ, Am, Am),

where κj = ‖Qvj‖
2
L2(µ) and c = a ((1 − κ2) + . . . + (1 − κn)).

Theorem 1 highlights the strong relation between a decomposition of the state
space into metastable subsets and a Perron cluster of dominant eigenvalues
close to 1. It states that the metastability of an arbitrary decomposition dm

cannot be larger than 1+λ2+. . .+λm, while it is at least 1+κ2λ2+. . .+κmλm+
c, which is close to the upper bound whenever the dominant eigenfunctions
v2, . . . , vm are almost constant on the metastable subsets A1, . . . , Am implying
κj ≈ 1 and c ≈ 0. The term c can be interpreted as a correction that is small
whenever a ≈ 0 or κj ≈ 1. It is demonstrated in [23] that the lower and upper
bounds are sharp and asymptotically exact.

There is an important message contained in the last theorem: metasta-
bility analysis has to be hierarchical. Whenever we approximate the optimal
metastable decomposition d2 of state space into, say, two sets, we should al-
ways be aware that there could be a decomposition d3 into three sets for which
meta(d3) is almost as large as meta(d2). For example, one or both of the two
subsets in d2 could decompose into two or several metastable subsets from
which exit is comparably difficult for the system under investigation.

However, whenever there is a gap in the spectrum of the transfer operator
after m dominant eigenvalues, then the results of, e.g., [21, 16] tell us that any
decomposition into more than m sets will be associated with a significantly
larger drop in metastability as measured by the function meta.

Example.

The easiest nontrivial example is a time-discrete Markov chain on a discrete
state space. For example, take the chain with state space S = {1, 2, 3, 4} and
one-step transition probabilities as illustrated in Fig. 1.

This chain has a unique invariant measure, µ = (0.25, 0.25, 0.25, 0.25), and
is reversible. Its transition matrix is given by the following stochastic matrix:

T =









1 − α α 0 0
α 1 − α − ε ε 0
0 ε 1 − β − ε β
0 0 β 1− β









.

In this specific case T is the transfer operator of the process.
Let us consider two cases defined in Table 1 below: In case 1, we ob-

viously have a metastable decomposition into the subsets {1, 2} and {3, 4}
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Fig. 1. Markov chain with states 1,2,3,4. The numbers on the arrows linking the
states are the one-step transition probabilities. Any transitions that is not repre-
sented by an arrow is not allowed.

with metastability measure 0.995 while any further decomposition signifi-
cantly lowers the metastability measure. Table 2 shows that the spectrum
of the transfer operator exhibits a corresponding gap after the first two eigen-
values, and that the upper bound from our theorem, (λ1 + λ2)/2 = 0.995,
is a very good approximation of meta({1, 2}, {3, 4}). The second eigenvec-
tor v2 = (0.51, 0.49,−0.49,−0.50) clearly exhibits almost constant levels on
the two sets {1, 2} and {3, 4} of the metastable decomposition. In case 2,
the decreased value of α introduces an additional, milder metastability that
separates state 1 from state 2. We can also see this in the spectrum, see
Table 2. Still, {1, 2} and {3, 4} is the metastable decomposition into two
sets with metastability measure 0.995, and associated second eigenvector
v2 = (0.55, 0.45,−0.49,−0.50). But this time, this is the top level of the
hierarchy of metastable decompositions only: we can further decompose the
set {1, 2} and the resulting decomposition {1}, {2} and {3, 4} into three sets
also has a significantly high metastability measure of 0.962. For both decom-
positions, the upper bounds on the metastability measure computed from the
eigenvalues are very close to the true values.

case α β ε meta({1, 2}, {3, 4}) meta({1}, {2}, {3, 4})

1 0.25 0.4 0.01 0.995 0.828
2 0.05 0.4 0.01 0.995 0.962

Table 1. Different parameter sets for the Markov chain considered herein, and
metastability measures of the two different decompositions discussed in the text.

case α β ε λ1 λ2 λ3 λ4

1 0.25 0.4 0.01 1.000 0.990 0.495 0.195
2 0.05 0.4 0.01 1.000 0.991 0.895 0.195

Table 2. Different parameter sets for the Markov chain considered herein, and
spectrum of the associated transfer operators.
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2.3 Discretization and PCCA

In the typical case the dynamical process under investigation lives on a con-
tinuous state space such that the transfer operator does not have the form
of a nice stochastic matrix. Therefore, discretization of the transfer operator
is needed to yield a stochastic matrix with which one can proceed as in the
example above.

Let χ = {χ1, . . . , χn} ⊂ L2(µ) denote a set of non–negative functions
that are a partition of unity, i.e.,

∑n
k=1 χk = 1X. The Galerkin projection

Πn : L2(µ) → Sn onto the associated finite dimensional ansatz space Sn =
span{χ1, . . . , χn} is defined by

Πnv =

n
∑

k=1

〈v, χk〉µ
〈χk, χk〉µ

χk.

Application of the Galerkin projection to P τv = λv yields an eigenvalue prob-
lem for the discretized propagator ΠnP τΠn acting on the finite-dimensional
space Sn. The matrix representation of this finite dimensional operator is
given by the n × n stochastic transition matrix T = (Tkl), whose entries are
given by

Tkl =
〈P τχk, χl〉µ
〈χk, χk〉µ

. (9)

The transition matrix inherits the main properties of the transfer operator: it
is a stochastic matrix with invariant measure given by the invariant measure
µ of P τ , it is reversible if P τ is self-adjoint, and (if the discretization is fine
enough) it also exhibits a Perron cluster of eigenvalues that approximates the
corresponding Perron cluster of P τ , and with eigenvectors that approximate
the dominant eigenvectors of P τ [2]. It thus allows to compute the metastable
sets of interest by computation of the dominant eigenvectors of T and by
realization of the identification strategy of page 5 based on these (discrete)
eigenvectors. This has led to the construction of an aggregation technique
called “Perron Cluster Cluster Analysis” (PCCA) [8, 10, 24].

If x0, . . . , xN denote a time series obtained from a realization of the Markov
process with time stepping τ , then the entries of T can be approximated from
the relative transition rates computed by means of this time series:

Tkl ≈ T
(N)

kl =

∑N
j=1 χk(xj) · χl(xj+1)

∑N
j=1 χk(xj)

. (10)

Although it looks extremely simple, using equation (10) algorithmically
may become problematic. There are two main reasons for potential difficulties.

Trapping problem.

The rate of convergence of T
(N)

kl → Tkl depends on the smoothness of the
partition functions χk as well as on the mixing properties of the Markov
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process [25]. The latter property is crucial here: The convergence is geometric
with a rate constant λ1 − λ2 = 1 − λ2 where λ2 denotes the second largest
eigenvalue (in modulus). In the case of metastability with λ2 being very close
to λ1 = 1, we will have dramatically slow convergence. However we will not
go into the depth of the discussion on overcoming the trapping problem, but
instead assume in all of the following that we have already generated or can
directly generate a time series that is “long enough” in the sense that it
contains statistically significant information about more than one –if not all–
interesting metastable states of the system under consideration. The interested
reader may refer to the vast literature [26, 27, 28].

Curse of Dimension.

Any discretization of the transfer operator will suffer from the curse of di-
mension whenever it is based on a uniform partition of all of the hundreds
or thousands of degrees of freedom in a typical biomolecular system. Fortu-
nately, chemical observations reveal that—even for larger biomolecules—the
curse of dimensionality can be circumvented by exploiting the hierarchical
structure of the dynamical and statistical properties of biomolecular systems:
only relatively few essential degrees of freedom may be needed to describe the
conformational transitions; furthermore, the canonical density has a rich spa-
tial multiscale structure induced by the rich structure of the potential energy
landscape, which again underlines the necessity of a hierarchical approach.

2.4 Relaxations, Transitions, and Effective Dynamics

Assume that we successfully identified a metastable decomposition into the
sets D1, . . . , Dm for given lag time τ . Due to our above results the dynamics is
jumping from sets Dk to set Dj with probability p(τ, Dk, Dj) during time τ .
Then, it is an intriguing idea to describe the effective dynamics of the system
by means of the Markov chain with discrete states D1, . . . , Dm and transi-
tion matrix P = (Pkj) with Pkj = p(τ, Dk, Dj). This ”effective dynamics” is
Markovian and thus cannot take into account that there may be memory in
the system that is much longer than the time span τ used to compute the
metastable decomposition.

In order to categorize thimetastable states, molecular conformation, rare
transitions, transition probabilities, transfer operator, Hidden Markov Model,
penta-alanine, molecular dynamicss more precisely, let us denote the typical
(mean) exit time from Dj to Dk by Tjk, and the typical relaxation timescale
within Dj by τj (that is, when the system enters Dj at t = 0 it has lost almost
all its memory at t = τj).

The simplest case is that we have τ being comparable to the largest τj

and τj � mink Tjk for all j = 1, . . . , m. Then the above construction is a
good model of the effective dynamics, and the system on average samples its
restricted invariant density µ|Dj

in Dj before exiting from Dj .
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The more complicated case is that still τ � mink Tjk but no longer τj �
mink Tjk for all j. Then the above construction constitutes a misleading model
for the effective dynamics.

Comparable problems appear for other types of coarse graining. In the
above, the coarse graining is given by the metastable decomposition. But we
could also try to realize the transfer operator approach, by means of discretiz-
ing only a subspace instead of the full state space. For example the subspace
spanned by the essential degrees of freedom, or the torsion angles space. Then,
what is assumed to be a Markov process in state space not longer might be
Markovian on the chosen subspace.

2.5 The Hidden Markov Model Approach

We are now going to consider the case of a given timeseries (Ot)t=t1,...,tN
, with

constant sampling time τ = tj+1 − tj . Here, the Ot do not necessarily denote
the state of the molecule at time t but rather some low-dimensional observable,
for example, some or all torsion angles or the set of essential degrees of freedom
(if this should be available). We assume that there is an unknown metastable
decomposition, say, into m sets D1, . . . , Dm. Using the notation introduced
above, we furthermore assume τ � mink Tjk but do not specify the relation
between τ and the τj . We then can premise that, at any time t, the system
is in one of the metastable states Djt

to which we simply refer by jt in the
following. However, the time series (jt) is hidden, i.e., not known in advance,
while the series (Ot) is called the output series or the observed sequence.

This design can be represented by a Hidden Markov Model (HMM). A
HMM abstractly consists of two related stochastic processes: a hidden process
j, that fulfills the Markov property and an observed process Ot that depends
on the state of the hidden process jt at time t. A HMM is fully specified by
the initial distribution π, the rate matrix R of the hidden Markov process j, as
well as by the law that governs the observable Ot depending on the respective
hidden state jt.

In the standard versions of HMMs the observables are i.i.d. random vari-
ables with stationary distributions that depend on the respective hidden states
[13]. Within the scope of molecular dynamics this means, that one considers
the simple case where τ is comparable to the τj and τj � mink Tjk, i.e.,
the process samples the restricted invariant density before exiting from a
metastable state, and the sampling time of the time series is long enough to
assume statistical independence between steps. Nevertheless, if this is not the
case, only a slight modification of the model structure is required to repre-
sent the relaxation behavior: Instead of i.i.d. random variables one can use an
Ornstein-Uhlenbeck (OU) process as a model for the output behavior in each
hidden state. The HMM then gets the form [11]:

Ẏt = −DV (q)(Yt) + σ(jt)Ẇt, (11)

jt : R1 → {1, 2, ..., m}, (12)
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where jt are the realizations of the hidden Markov process with discrete state
space, Wt is standard ”white noise”, and {V (j), σ(j)} is a set of the state-
specific model parameters with harmonic potentials V (j) of the form

V (j)(Y ) =
1

2
(Y − µ(j))T D(j)(Y − µ(j)) + V

(j)
0 , (13)

where µ(j) and D(j) are equilibrium position and Hesse-matrix of the OU pro-
cess within conformation j. This process is therefore given by the parameters
Θ(j) = (µ(j), D(j), σ(j)). Since the output process is specified by a stochastic
differential equation we will refer to this model modification as HmmSde . Its
entire parameter set will be denoted Θ = (Θ(1), . . . , Θ(m), R) in the following,
where R denotes the rate matrix of the Markov chain in (12).

Assume for a moment that the hidden state is fixed, i.e. jt = j. Then, the
evolution of probability density ρ(t, Y |j) under the dynamics given by (11)
can be obtained as solution of the corresponding Fokker Planck equation:

∂tρ = 4Y V (j)(Y )ρ+∇Y V (j)(x)·∇Y ρ+∇Y ·B(j)∇Y ρ, ρ(t = 0, Y |j) = ρ0(Y |j)
(14)

where B(j) = (σ(j))2 ∈ R1 denotes the variance of the white noise (for Rd it
is a positive definite selfadjoint matrix). In the subsequent we will denote the
partial differential operator on the RHS of (14) by LΘ(j) . Then, the solution
of (14) can be written as ρ(t, Y |j) = (exp(tLΘ(j))ρ0)(Y ).

We have the following aim: For a given observed sequence O = (Ot) deter-
mine those parameters in the dynamical model (11&12) for which the proba-
bility that O is an output of these parameters is maximal. To this end, one has
to know the probability p(O, j|Θ) of the observed sequence O and a specific
hidden sequence j for given parameters Θ. First assume that the dynamics
(11) yields output Y1 = Otk+1

at time t = tk + τ = tk+1 after starting at
Y0 = Otk

while remaining in j = jtk
during the evolution form tk to tk+1.

Due to the above this probability obviously is

ρ(Otk+1
|j, Otk

) =
(

exp(τLΘ(j) )δOtk

)

(Otk+1
), (15)

where δO denotes the Dirac measure supported at state O. With this the total
probability that the observed sequence O and a given hidden sequence j is an
output of (11), parametrized by Θ, is

p(O, j|Θ) = π(jt0 )ν(Ot0 |jt0)

N−1
∏

k=1

T (jtk
, jtk+1

)ρ(Otk+1
|jtk

, Otk
), (16)

where T = exp(τR) denotes the transition matrix of the Markov jump process,
specified in (12), in time τ and π and ν are initial distributions that have to
chosen in addition.

In putting everything together, we have to face these algorithmic prob-
lems: (1) determine the optimal parameters Θ by maximizing the probability
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p(O, j|Θ) —this is a nonlinear global optimization problem—, (2) determine
the optimal sequence of hidden metastable states j = (jt) for given optimal
parameters, and (3) determine the number of important metastable states;
which we, up to now, simply assumed to be identical with the number of
hidden states.

The above formulation of the two first problems seems to contain a con-
siderable contradiction: How can we determine optimal parameters without
knowing the optimal hidden sequence? Fortunately the solution is already
available from the standard HMM framework: The parameter optimization is
carried out by the Expectation Maximization (EM) algorithm that iteratively
determines the optimal parameters Θ∗ via maximizing the expectation

Q(Θ; Θk) = �
(

log p(O, j|Θ) |O, Θk

)

(17)

of the complete probability p(O, q|λ) wrt. the hidden sequence j given the
observation sequence and the current parameter estimate Θk. It is a classical
result [29] (Chap. 4.2) that this can be rewritten as a sum over all hidden
sequences:

Q(Θ; Θk) =
∑

j=(jt)

p(O, j|Θk) log (p(O, j|Θ)) . (18)

The expectation-step of the EM algorithm evaluates the expectation value Q
based on the given parameter estimate Θk, while the maximization-step deter-
mines the refined parameter set Θk+1 = argmaxΘ Q(Θ; Θk). The expectation
step is standard but the maximization step can also be realized algorithmi-
cally, see [11] or [12] for different realizations.

For the identification of the optimal sequence of hidden metastable states
we can use the well-known Viterbi algorithm [30], which exploits dynamic
programming techniques to resolve in a recursive manner the optimization
problem

j∗ = argmaxp(O, j|Θ∗).

The obtained optimal sequence j∗ is called ”Viterbi path”. For technical de-
tails see [11].

The parameter fitting step requires the specification of the number of
hidden states, which, whenever the hidden states should be metastable states,
is in general not apriori known. One policy to overcome this problem is to
assume a sufficient large number of hidden states, perform the parameter
fitting and conduct a further aggregation of the resulting transition matrix.
This can be done by Perron cluster cluster analysis (PCCA), e.g., by the
spectral properties of the resulting transition matrix T as proposed in the
transfer operator approach (we will illustrate this procedure on an example
in the next section), see [11] for details.

As the numerical effort of the used algorithmic process scales wrt. to the
dimension of the observable d as O(d3) the three steps above provide a tool for
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metastability analysis only on low-dimensional observables. But this obstacle
can be circumvented by first applying the algorithm separately to several
low-dimensional projections. We end up with an aggregated Viterbi path j∗
for each projection (for example, when the observed sequence contains all
peptide angles along a polypeptide chain, we could apply HmmSde to the
peptide angle of all single nucleotides of the sequence first). Then, simple
combinatorics allows to combine these Viterbi paths into a ”combined” Viterbi
path, that contains every occurred state combination. A transition matrix for
the full-dimensional system can be obtained by counting relative frequencies
in the combined Viterbi path and another aggregation via PCCA finally allows
for the identification of metastable sets.

We want to underline two important points on this algorithmic scheme:
(1) The philosophy of HMM models gives a justification to work on low-
dimensional projections of an observable, because the observable is not meant
to specify the occupied metastable state at a certain time, but to reflect dif-
ferent states by different dynamical behavior which seems quite reasonable.
(2) We not only obtain an optimal sequence of hidden metastable states,
but also optimal parameters for a simple, but physically motivated, reduced
model (11&12) of the dynamics. We think that the extraction of such models
is quite important to gain more insight in the mechanisms behind metastable
behavior.

3 Numerical Example: Penta-Alanine

As illustration we demonstrate the performance of the proposed algorithmic
procedure in application to the analysis of a peptide molecule. The global
(secondary) structure of a peptide is determined by the so-called peptide an-
gles. For each alanine amino acid we have to consider two of these backbone
torsion angles. These peptide angles pairs can not take arbitrary values due
to steric interaction, but will adopt values in definite regions, belonging to
various secondary structures. In Fig. 2 the backbone torsion angles of penta-
alanine are shown. As usual the pair of angles belonging to the same amino
acid residue is labelled by Φ and Ψ . Illustration of quantities as functions of
Φ and Ψ are called Ramachandran plots. The Ramachandran plot in Fig. 2
exhibits the values that a pair of peptide angles typically takes in certain
secondary structures.

Our analysis is based upon a time series of the 10 backbone torsion angles
of penta-alanine, extracted from the long time simulation that has already
been discussed in [31] (courtesy of G. Stock, Frankfurt). The simulation was
done in explicit water using a thermostat of 300K over an interval of 100ns,
while the coordinates were written out every 0.1ps, resulting in 1000000 data
points. Fig. 10 below shows a histogram Ramachandran plot of the entire time
series for each Φ\Ψ pair. It reveals that the fifth angle pair has a substantial
different behavior than the other pairs. This will not be our concern here since
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we just take the timeseries for demonstration of the algorithmic procedure of
extracting information about metastable states from a given time series.

As penta-alanine is a short peptide it will not have a stable β-sheet confor-
mation, but as we will see in our analysis it exhibits a stable α-helix confor-
mation and several other conformations which can be characterized by certain
flexibility patterns.

Fig. 2. Left: The Penta-alanine peptide in ball-and-stick representation.
The ten peptide angles determining the secondary structure are marked by
Φ1, Ψ2, . . . , Φ9, Ψ10. Right: Ramachandran plot, showing the energetically preferred
regions of a Φ\Ψ pair with the associated secondary structures (simplefied plot due
to [32]).

The first step of our analysis consists in analyzing each of the peptide
angles separately by using the HMMSDE techniques to determine the Viterbi
path for each of the angles. Beforehand an initial guess must specify the
number of hidden states, which we set to 4. As result each peptide angle is
represented by a discrete time series with 4 states, the Viterbi path of this
angle, assigning each instance in the time series to a state of a hidden Markov
process. Fig. 3 provides an example. Note the fundamental difference to a di-
rect transfer operator approach, where we have to specify a box discretization
of the ten dimensional state space.

This way we obtain 10 Viterbi paths. In the next step these are now
combined to pairwise Viterbi paths by simple superposition of the Viterbi
paths which belong to a Φ\Ψ combination. This produces five pairwise Viterbi
paths, each with 16 states. Each of these Viterbi paths now is understood as
the output time series of a Markov process with discrete state space. For
each pair the corresponding stochastic transition matrix can be computed
by counting the transitions between different states. Following the transfer
operator approach the spectra of these transition matrices contain information
about metastability in the dynamics of each peptide angle pair. For example
the eigenvalues of the transition matrix T4, extracted from the fourth pairwise
Viterbi path (time lag τ = 0.1ps), are
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Fig. 3. Results of HMMSDE for the Ψ2 time series. Top: Illustration of the first 10ns
of the Ψ2 time series. Middle: The same picture colored according to the association
with the assumed 4 hidden states. Bottom: The Viterbi path displayed as a discrete
time series which specifies only the hidden states.

λ1(T4) λ2(T4) λ3(T4) λ4(T4) λ5(T4) λ6(T4) λ7(T4) λ8(T4)
1 0.998 0.994 0.991 0.979 0.975 0.959 0.947

λ9(T4) λ10(T4) λ11(T4) λ12(T4) λ13(T4) λ14(T4) λ15(T4) λ16(T4)
0.9337 0.898 0.8798 0.839 0.176 0.154 0.139 -0.001

,

which suggests four metastable subsets for this pairwise Viterbi path. Obvi-
ously other interpretations of the spectrum are also reasonable, as one could
argue that the clearest gap occurs after the twelfth eigenvalue. This is more
or less a decision of how much detail one wants to or can afford to preserve at
this stage of analysis, but it turns out that if we turn to the global analysis
these details are filtered out anyway.

The next step is to cluster all pairwise Viterbi paths according to the
structure of the eigenvectors belonging to the dominant eigenvalues of the
associated transition matrix. This yields five clustered pairwise Viterbi paths
with 4 or 5 states each, allocating each instance in the corresponding Φ\Ψ
pair time series to a metastable hidden set. Plotting this information in the
form of a Ramachandran plot reveals a similar, although not equal, structure
for each Φ\Ψ pair, see Fig. 4. Note again that the different metastable sets
are not disjoint sets in the Φ\Ψ plane, as the HMMSDE analysis assumes the
given data to be a projection of some hidden full process.

By another superposition of the five clustered pairwise Viterbi paths a
global Viterbi path is obtained. This path contains 1114 different states, due
to the fact that the states of the clustered pairwise Viterbi paths can be
combined in any way giving a theoretical maximum of 5 · 4 · 5 · 4 · 4 = 1600
possible global states (of which only 1114 actually occur). Setting up the
transition matrix again yields a sparse stochastic matrix in which more than
99% of the entries are equal to zero.
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Fig. 4. Ramachandran plots of the five Φ\Ψ pairs colored according to the associated
metastable sets. The numbers of metastable sets differs for the different Φ\Ψ pairs
(it is from left to right 5,4,5,4,4).

It is instructive to compare the eigenvalues of transition matrices obtained
for different lag times τ . That is, we do not count transitions on a timescale of
0.1ps which means to observe transitions from one instance of the time series
to the next, but count transitions on a timescale of, say, 1ps which is between
every tenth step in the global Viterbi path. For all time lags, Fig. 5 clearly
indicates two dominant eigenvalues after which we find a gap, followed by
other gaps after 4, 9, or 16 eigenvalues. This yields 2, respectively 4, 9, or 16
metastable sets. To avoid confusion we call these metastable sets (molecular)
conformations.
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Fig. 5. Illustration of the 50 largest eigenvalues of the transition matrix obtained
from the global Viterbi path vs. lag time τ . (A time step of 10ps means that tran-
sition are considered that occur from time x to time x + 10ps). On clearly observes
that the structure of the spectrum does not depend on τ .

To gain more insight into the metastability analysis we will now compare
the results of the procedure based on the first two eigenvectors with the results
based on the first four ones. The outcome will identify 2, resp. 4, conformations
in the discrete global Viterbi path. This allows to associate each data point
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of the ten dimensional peptide angle time series with one of the 2, resp. 4,
conformations.

In Fig. 6 the results based on the first two eigenvectors are displayed (M =
2). Each of the two resulting conformations is represented by five histogram
plots that belong to the five Φ\Ψ pairs. These histograms are based on the
assignment of data points to the conformation. Comparing the positions of
the histogram peaks in the first conformation with the classifications given in
Fig. 2 shows that this conformation corresponds to an α-helix structure. In
contrast, the other conformation allows no assignment to a specific secondary
structure, as every angle pair is very flexible and adopts regions of the α-helix
structure and the β-strand structure.

Fig. 6. Histogram plots for the two conformations (as resulting from the M =
2 analysis) displayed in the Ramachandran plane of each of the five Φ\Ψ pairs.
Top row: This conformation constitutes a clear helix structure. Bottom row: This
conformation corresponds to no clear secondary structure.

Redoing the analysis with the M = 4 leading eigenvectors yields that the
α-helix structure is still identified as a conformation, while the other conforma-
tion of the previous analysis splits-up into three conformations. Each of these
three conformations can be uniquely described by the dynamical behavior of
the peptide angle pairs, some of them are fixed to α-helix, resp. β-strand re-
gions, while others remaining flexible in the sense that they alternate between
these regions, see Fig. 7.

Taking more leading eigenvectors into account would resolve more flexible
angle pairs by separating α-helix and β-strand parts, but it is important to
note that this means resolving metastability on a faster timescale, cf. Fig. 5. As
illustration we show representatives of each conformation C1, . . . , C4 resulting
from the M = 4 analysis in Fig. 8, This figure also includes the conditional
transition probabilities p(τ, Cj , Ck) of the Markov switching process for lag
time τ = 0.1ps. Note that in accordance with our definition of metastability
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Fig. 7. Conformations as resulting from M = 4 analysis represented as histogram
plots displayed in the Ramachandran plane of each of the five Φ\Ψ pairs. Top:

The helix structure of the first conformation is unchanged compared to the M = 2
analysis. Below: The other conformations exhibit mixed structures, with some angle
pairs fixed to α-helix or β-strand regions while others are flexible.

the conditional probability to stay within one conformation is nearly 1 for
each conformation.

Finally we want to try to verify the results of the HmmSde based procedure
by comparison with a direct transfer operator based analysis. We will do this
by reducing the dimensionality of the system considerable by noting that
the relevant dynamical information is contained in the first four Ψ angles.
Therefore we can reduce the ten-dimensional to a four-dimensional peptide
angle space by skipping the other dimensions. The four-dimensional space
can be partitioned directly by discretizing each dimension in 10 equidistant
boxes. This yields 104 = 10000 discretization boxes from which 6551 have
been visited by the time series under consideration. Computing the associated
transition matrix and evaluating the dominant spectrum is easily feasible,
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Fig. 8. Representatives of the four conformations obtained in the M = 4 analysis
and the conditional transition probabilities between them (lag time τ = 0.1ps). Fat
numbers indicating the statistical weight of each conformation, numbers in brackets
the conditional probability to stay within a conformation. Flexibility in peptide an-
gles is marked with arrows, cf. Fig. 7. Top left: For the helix conformation the back-
bone is colored blue for illustrative purpose. It should be obvious from Fig. 5 that for
significantly larger lag time τ only two eigenvalues will correspond to metastability
such that only the helical conformation and a mixed flexible and partially unfolded
one remain with significantly high conditional probability to stay within.

particular as it is a sparse matrix. The results are obtained by analyzing this
transition matrix, based upon a direct partition of the state space, are similar
to the results we obtained with HmmSde . Without giving details, we indicate
this by showing the eigenvalues plotted against different lag times τ in Fig. 9,
which reveals a very similar spectral structure as Fig. 5.
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Fig. 9. The 50 largest eigenvalues of the transition matrix obtained from a direct
discretization of the Ψ2, Ψ4, Ψ6, Ψ8-subspace versus the lag time τ .

Fig. 10. Pairwise Ramachandran plots of the histogram of the entire time series.
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