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A B S T R A C T

Markov state models (MSM) of molecular kinetics, used to approxi-
mate the long-time statistical dynamics of a molecule by a Markov
chain on a discrete partition of configuration space, have seen wide-
spread use in recent years. This thesis deals with the improved gen-
eration, validation, the application and the extension to experimental
observations of these MSM. The four major parts each address differ-
ent aspects: (1) a summary of the current state of the art in genera-
tion and validation of MSMs serving as an introduction along with
some important insights into optimal discretization, (2) an investiga-
tion of efficient computation and error estimation of the committor,
a widely used reaction coordinate, (3) the theory and application on
how to generate markov models from multi-ensemble simulations
such as parallel tempering using dynamical reweighting, and (4) the
extension of MSM theory to non-markovian observations from low-
dimensional observed correlations. All parts contain the necessary
theory and methods and are applied to artificial and real systems
along with an investigation into robustness and error. Thus, this work
extends the quality of the computation of key properties and the gen-
eral construction of markov models for molecular kinetics and allows
to alleviate the gap in connecting estimations from simulation and
experiment. This is an important step forward toward the long term
goal to have the necessary robustness and accuracy for upcoming
adaptive MD simulation strategies.
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Z U S A M M E N FA S S U N G

In den letzten Jahren haben sich Markov Modelle als effektives und
vielseitiges Werkzeug herausgestellt um molekulare Prozesse durch
Markov Ketten auf einem diskreten Zustandsraum zu beschreiben
und zu analysieren. Die vorliegende Doktorarbeit beschäftigt sich
sowohl mit dem Generieren, Validieren, als auch mit den Anwen-
dungen und der Erweiterung auf experimentelle Beobachtungen von
Markov Modellen. Dabei werden im Wesentlichen vier Aspekte ange-
sprochen: (1) eine umfassende Zusammenfassung des aktuellen For-
schungsstands im Generieren und Validieren von Markov State Mo-
dellen, die sowohl als Einleitung dient als auch einige wichtige neue
Erkenntnisse zum Problem der Diskretisierung vorstellt, (2) eine effi-
ziente und robuste Berechnung und Fehleranalyse des Kommitors,
einer wichtigen Reaktionskoordinate, (3) die Theorie und Anwen-
dung, um mittels Dynamical Reweighting verbesserte Markov Model-
le aus einem Satz von Simulationen zu erzeugen, die unter verschie-
denen globalen Parametern (z.B. Temperatur) generiert wurden, und
(4) die Erweiterung der Markov Modell Theorie auf nicht-markovsche
Beobachtungen von experimentellen Trajektorien. Jeder Teil enthält
die notwendigen Theorien und Methoden, sowie Anwendungen auf
künstliche oder reelle Systeme zusammen mit einer Fehleranalyse.
Damit erweitert die vorliegende Arbeit das Feld der Markov Model
Theorie um wichtige neue Erkenntnisse mit dem Ziel adaptive mo-
lekulardynamische (MD) Simulationen zu ermöglichen und schlägt
mittels MSM eine Brücke zwischen MD Simulationen und experimen-
tellen Beobachtungen.
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1
I N T R O D U C T I O N

Biological macromolecules, like proteins or nucleic acids, are not
static structures. They are driven by thermal motion and interac-
tions with their molecular environment while undergoing conforma-
tional fluctuations and changing their spatial configurations. These
conformational transitions are essential to their biological function and
span large ranges of length scales, time scales and complexity. This
includes folding [9, 10], complex conformational rearrangements be-
tween native protein substates [11, 12], and ligand binding [13]. Out
of this decades-old proposal that biomolecular kinetics show a com-
plex structure, often involving transitions in a sophisticated network
of long-lived, or “metastable” states experiments for a wide variety
of biological systems have emerged [14]: With the ever increasing
time resolution of ensemble kinetics experiments and the more re-
cent maturation of single-molecule techniques in biophysics, experi-
mental evidence supporting the near-universality of the existence of
multiple metastable conformational substates and complex kinetics in
biomolecules has continued to accumulate [15, 16, 17, 18, 19, 20, 21].
Enzyme kinetics has been shown to be modulated by interchanging
conformational substates [22] and protein folding experiments have
found conformational heterogeneity, hidden intermediates, and the
existence of parallel pathways [23, 24, 25, 26, 27, 28]. The list of ex-
perimental data supporting the existence of such metastable states is
long, including the whole range of experimental possibilities, such
as Nuclear Magnetic Resonance (NMR) spectroscopy [29, 30, 20], flu-
orescence emission [31, 21], energy transfer [32, 25], correlation spec-
troscopy [33, 26], and non-equilibrium perturbation experiments [31].
Aside from a qualitative understanding, the fundamental quest is a
quantitative characterization of what gives rise to these essential con-
formations and their functional interactions. The answers to this will
have a significant impact on our understanding of many biological
processes, such as, for example, signaling events, enzyme regulation,
allostery, and drug design with conformationally flexible molecules.

Although laboratory experiments are designed to resolve kinetic
processes and, especially in the case of single-molecule experiments,
heterogeneity of some of these processes, the accessible methods are
adversely affected by several issues: Firstly, the observations are al-
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2 introduction

ways indirect which requires an interpretation of the collected data.
Secondly, only spectroscopically resolvable samples can be monitored,
and lastly, an acceptable signal-to-noise ratio generally comes at the
expense of either time resolution (in single molecule experiments) or
the ability to resolve heterogeneity of populations (in ensemble ex-
periments). To fill this gap, Molecular Dynamics (MD) simulations
have become a widely accepted tool to investigate structural details
of molecular processes in complementary ways and relate them to
experimentally resolved features [34, 35, 36].

Traditionally, MD studies often involved a manual analysis based
in the subjective interpretation of a few rare events utilizing visual-
ization software and molecular movies. Although visually appealing,
these single-molecule analyses may be misleading as they often mask
or distort the statistical relevance of such events in the ensemble pic-
ture and, conversely, might miss rare but important events altogether.
Another common approach, especially in protein folding analyses, is
to reduce the dynamics to a projection onto a few user-defined order
parameters (e.g. the Root Mean Squared Displacement (RMSD) to a
single reference structure, radius of gyration, principal components,
or selected distances or angles). The notion of these methods is that
carefully chosen order parameters will allow to resolve the slow and
relevant kinetics of the molecule while unimportant motions are sup-
pressed. While a simplification of this form directly allows for an
intuitive interpretation of the dynamics, these projection techniques
have been shown to disguise the true structure of the underlying ki-
netics. The artificial aggregation of kinetically detached structures
and merging of transition and stable conformational regions, might
draw an overly simplistic picture of the intrinsically complex kinet-
ics [37, 38, 39].

In order to resolve the important kinetic features such as low-pop-
ulated intermediates, structurally similar metastable states or struc-
turally distinct – but parallel – pathways, it is inevitable to employ
analysis techniques that are sensitive to such details. To generate
an analysis understandable to human intuition, clearly, some reduc-
tion of high-dimensional biomolecular dynamics data (e.g. from large
quantities of MD trajectories) is necessary. Nevertheless, such reduc-
tions must be done under mathematical and statistical considera-
tions and have to be guided by the specific structural and kinetic
information in this data, rather than by the subjectivity of the ana-
lyst. The natural course of action towards modeling the kinetics of
molecules is to first partition the conformation space into a discrete
set of states [40, 38, 41, 42, 43, 44, 45, 39, 46, 47, 48]. Although this
step could still disguise information when lumping states that have
an important distinction, it has been proven that a “sufficiently fine”
partitioning will be able to resolve a required level of detail [49]. Sub-
sequent to partitioning, transition rates or probabilities between states
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can be calculated, either based on rate theories [40, 11, 50], or based
on transitions observed in MD trajectories [37, 39, 51, 52, 53, 46, 47].
The resulting models are often called transition networks, Master
equation models or Markov State Model (MSM), where “Markovian-
ity” means that the kinetics are modeled by a memoryless jump pro-
cess between states.

This thesis focuses on “Markov (state) models” (abbreviated here
by “MSM” [54]), which model the kinetics with an n ⇥ n matrix of
transition probabilities. Given that the modeled system resides in
one of its n discrete substates, these transition matrices contain the
conditional (jump) probabilities to find the system in any of these
substates a fixed time t later. An essential feature of an MSM is the
switching to the ensemble picture of the dynamics instead of the view
of the single trajectories which in turn requires the dynamics to be er-
godic [55, 56]. Consider an experiment that traces the equilibrium
dynamics (i.e. the unperturbed dynamics for a single molecule) of an
ensemble of molecules – but starting from a distribution that is out
of equilibrium – such as in a laser-induced temperature-jump exper-
iment [57]. Here, the specific sequence of microscopic events occur-
ring during the trajectory of any individual molecule may be of little
relevance, as these individual trajectories all differ in microscopic de-
tail and the relevant physical details are statistical properties of the
ensemble: time-dependent averages of spectroscopically observable
quantities, statistical probabilities quantifying the change in popula-
tion of conformationally-similar states or the similarity of the domi-
nant trajectory pathways. All of these statistical features can be easily
computed from Markov models, as these models already encode the
ensemble dynamics [35, 58]. Respectively, individual realizations of
almost arbitrary length can be easily generated, simply by generating
a random state sequence according to the MSM transition probabilities
which is sometimes helpful for the development of human intuition.

Because Markov models recover the locality of physics also in the
configuration space, i.e. only conditional transition probabilities be-
tween discretized states are needed to construct a Markov model and
no global absolute probabilities, the computational burden can be
divided among many simulations using loosely-coupled parallelism,
facilitating a “divide and conquer” approach. To estimate the transi-
tion probabilities, the single independent trajectories only need to be
long enough to reach local equilibrium within the discrete state. The
time scales are rather short compared to global equilibrium relaxation
times that may be orders of magnitude longer. In other words, the
dependency between simulation length and molecular time scales is
largely lost; microsecond- or millisecond-time scale processes can be
accurately modeled despite the model having been constructed from
trajectories orders of magnitude shorter [35, 59]. Moreover, assess-
ment of the statistical uncertainty of the model can be used to adap-
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tively guide the process of model construction, achieving the desired
statistical precision with much less computational effort than would
be necessary with a single long simulation [60, 61, 35].

Finally, computation of statistical quantities of interest from Mar-
kov models is straightforward, and includes:

• Time-independent properties such as the stationary, or equilib-
rium, probability of states or free energy differences between
states [35, 38, 62].

• Relaxation time scales that can be extracted from experimental
kinetic measurements using various techniques such as laser-
induced temperature jumps, fluorescence correlation spectros-
copy, dynamic neutron scattering or NMR [35, 38].

• Relaxation functions that can be measured with non-equilibrium
perturbation experiments or correlation functions that can be
obtained from fluctuations of single molecule equilibrium ex-
periments [35, 58].

• Transition pathways and their probabilities, e.g. the ensemble
of protein folding pathways [35, 63].

• Statistical uncertainties for all observables [64, 58, 61, 60, 2].

Having briefly outlined the importance and possible future impact of
Markov models, this thesis deals with several aspects ranging from
the construction and usage over the application of MSMs in the context
of conformational changes of biomolecules. While previous works
have often stressed the model construction from simulations, here we
will address the connection to experimental data, trying to make way
for more advanced and especially adaptive simulation techniques.

Before continuing with the theory chapter it is advisable to first
read to the section on notation and symbols in the appendix A to
avoid misunderstandings in the notation and the meaning of fre-
quently used symbols. The thesis is outlined as follows:

Chapter 2 provides a general introduction into the theory, gener-
ation and applicability of MSMs in the given biological context and
is mainly based on the publication [1]. It is intended to provide the
necessary foundations to understand the subsequent chapters and
summarizes the current state of the art of theory and methodology
for MSMs. In addition to its review-like character, the chapter pro-
vides a detailed analysis of the discretization error for MSM and with
it important implications on the generation of Markov models based
on recently published quantitative upper error bounds. In contrast
to previous practice [51, 52, 65, 53] it is shown, that MSMs can be
improved if non-metastable states are introduced near the transition
states, providing a theoretical basis for the development of efficient
adaptive discretization methods.
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The three subsequent chapters are each separate projects dealing
with connected but not consecutive topics and are based on the MSM
theory in chapter 2. Each chapter is self-contained and closed by its
own conclusion section:

Chapter 3 is concerned with the efficient and robust calculation of
the committor, a widely used variable in the analysis of dynamics in
terms of MSM. A new viewpoint on the calculation utilizing eigenvec-
tors is presented which allows a physical interpretation in terms of
the slow relaxation processes. In addition, the method is extended to
a multiple committor with more than two cores that can then be inter-
preted as a fuzzy decomposition into a discrete number of states. The
method is finally applied to several examples of various sizes along a
detailed error analysis which provides the necessary foundation for
adaptive estimation techniques of the committor.

Chapter 4 is concerned with the construction of MSM in the case
where the collected data are chosen from different, but physically
related ensembles, e.g. simulations of the same system, but at vari-
ous ensemble parameters, such as temperature. It uses a new non-
parametric method called Dynamical Reweighting to combine observa-
tions of various related simulations to enhance the statistics at the
ensemble parameters of interest. The improvement in statistical pre-
cision is demonstrated on data from a previously published parallel
tempering simulation which is in particular challenging since the dy-
namical correlation length in each simulation is much shorter then
the longest relaxation time of the system.

Chapter 5 then addresses the issues in the reconstruction of MSM
properties from very low dimensional time series, often collected
from experimental setups. A new way to circumvent the problem
of the projection error in the construction of Markov models from
observations is presented by means of relaxation in dealing with the
non-Markovianity. This allows to more accurately reconstruct proper-
ties from the underlying dynamics which is demonstrated at sample
problems and on experimental data collected from an optical tweezer
experiment.

Finally, the last chapter 6 will discuss the presented results in a
more general context and conclude with an outlook of objectives and
challenges for future work. The accompanying appendices contain
additional information on the notation (appendix A), supplemental
information on the methods and systems used in multi-ensemble
estimation chapter (appendix B), extended mathematical proofs (ap-
pendix C) and details to the model systems (appendix D).





2
M A R K O V S TAT E M O D E L S

In the last years Markov models have become a well-established way
to describe dynamical processes in biology. In this chapter we want
to give a general overview over the standard methods used in the
process to generate Markov models. This includes the mathematical
basis and justification, the methods involved for estimating the pa-
rameters of the Markov model and last the validation against the data
for verification. The theory presented in the following is an adaption
of the content that was published in the article

[1] Prinz, J.-H., Wu, H., Sarich, M., Keller, B. G., Senne, M., Held,
M., Chodera, J. D., Schütte, C. & Noé, F. Markov models of
molecular kinetics: generation and validation. J. Chem. Phys.
134, 174105 (2011). doi 10.1063/1.3565032.

The style of this chapter is intended to resemble a textbook style to
support the usage as a reference.

2.1 continuous dynamics

A variety of simulation models that all yield the same stationary prop-
erties, but have different dynamical behaviors, are available to study
a given molecular model. Thus, if only stationary properties are of
interest, the choice does not matter and one can even change the ac-
tual evolution of the system beyond limitations of physical aspects.
This is extensively exploited in Monte-Carlo methods to increase the
rate of convergence in simulations. We are aiming at the dynamics
and therefore the choice of the concrete dynamical model must addi-
tionally be guided by a desire to mimic the relevant physics for the
system of interest (such as whether the system is allowed to exchange
energy with an external heat bath during the course of dynamical evo-
lution), balanced with computational convenience (e.g., the use of a
stochastic thermostat in place of explicitly simulating a large exter-
nal reservoir). Going into the details of these models is beyond the
scope of this thesis and therefore we will state the minimal physical
properties that we require the dynamical model to obey.

In the following we review the continuous dynamics of a molecular
system in thermal equilibrium, and introduce a mathematical object

7
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that characterizes the evolution of this system, the dynamical propa-
gator, whose approximation is our primary concern. We now assume
that there exists a one-to-one and onto mapping from the unique and
instantaneous states of the system onto elements from the mathemat-
ical object state space W. Depending on the physical nature of the
system, the state space W is often

continuous, e.g. W = Rn

or might be
discrete, e.g. W ⇢ N

in some special cases (such as spin glasses and on-lattice Go mod-
els [66]). The concrete shape of the evolution of a single system can
then be described as a mapping from a point in time t to a unique
state x 2 W in the state space which we will denote always by

x : t 2 R+ 7! xt 2 W.

For most systems, including molecular systems, this means that
aside from of the systems spatial coordinates of interest (e.g. the
geometrical configuration of a protein) we also have to include the
velocities and a description of the environment, e.g. all surrounding
heat bath particles. If our model is based upon real-world system,
the model should be time-continuous, t 2 R+ since time itself is
continuous. For other models and from an experimental point of view
is also reasonable to consider models which are based on discrete
timesteps Dt and predict the time-development only at these fixed
time-intervals

x : k 2 N0 7! xk := xkt

2 W.

2.1.1 Requirements

The concrete evolution xt can be regarded as a particular realization
of a stochastic process Xt 2 W with a probability space {W, F , µ} over
the state space W, the s-algebra F and a probability measure µ. For
reasons of simplicity we will not derive the following assumptions
and conclusions in the notation of stochastic processes, but rather as-
sume that the probability space can be equipped with the Borel set
B(W) and a weighted Lebesque-measure for continuous state spaces
W or a weighted discrete measure for discrete state spaces. In the
discrete case we will use probabilities in the original sense while in
the continuous case we assume that probabilities of any random vari-
able X can equivalently be expressed using a continuous probability
density function fX,

P(X 2 A) =
Z

A
dy fX(y), 8A 2 B(W)
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and that this holds for all sets A ⇢ W instead of using the s-algebra.
In general, we will assume the following properties to be true for a
such a dynamical process xt if not stated otherwise:

A. The dynamics is Markovian

For the evolution xt in its full state space (i.e. phase space) the change
of the system, either instantaneous or in non-vanishing time-steps
is determined solely by xt and no information at any time points
t1 < . . . < tv < t is required. This can be formulated as

P[xt+t

2 A|xt1 , . . . , xt = x] = P[xt+t

2 A|xt = x], 8A 2 W

being true which is called the Markov property and hence a Stochastic
process with this property is a Markov process.

Further, we assume that the rule of evolution is homogeneous in
time, i.e. invariant under a time-shift (which is then referred to as
a time-homogeneous Markov process). This allows to express the evo-
lution of a particles (and later also of an ensemble of independent
particle) at any point in time by either a discrete or a continuous dis-
tribution of jump probabilities p

t

(x, y) . These can be defined by
Z

A
dx p

t

(x, y) = P[xt+t

2 A|xt = x], 8A ⇢ W. (2.1.1)

describing the evolution for a particle at x 2 W to be found a time t

later in a set A ⇢ W.
The Markov property itself implies the Chapman-Komogorov-Semi-

group property, which states that the sequential application of evolu-
tion has to be in accordance with a single evolution by the total time

p
t1+t2(x, z) =

Z

W
dy p

t1(x, y) p
t2(y, z), 8z 2 W. (2.1.2)

The group property is not complete as we do not require the existence
of a time-inverse propagation – evolution is always forward in time.

B. Unique stationary distribution

We require first that the state space W cannot be separated into dis-
joint subsets which are not linked dynamically. This can be expressed
mathematically by

8x, y 2 W, 9t < • s.t. pt(x, y) > 0

that there is a non-vanishing probability to reach any point y 2 W
from any initial point x 2 W within a finite time t. In this case the
Markov process is said to be irreducible. For infinite state spaces
we additionally require that all states are positive-recurrent, which
means, that the average return time r(x) of a state x 2 W, given by

r(x) = E(t · pt(x, x)) =
•

Â
k=1

t · pt(x, x) < •
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is finite. If both holds, then an infinitely long realization xk of the
Markov process spends a uniquely defined fraction of time

p(x) = lim
T!•

1
T

T

Â
k=0

d(xk � x) µ
1

r(x)

in each state x 2 W that is inversely proportional to the average return
time r(x). This quantity is called the stationary density

p : x 2 W! p(x) 2 R+

or invariant measure µ when used as the probability measure instead
of the canonical measure.

C. The dynamics is ergodic

Later we will replace the evolution of single particles by the evolu-
tion of ensembles. For this case ergodicity assures that in equilibrium
time-averages will converge to the same values as ensemble-averages.
This especially means, that an arbitrary distribution of particles will
evolve over time to the unique stationary distribution p. For a Mar-
kov process it is enough to require a unique stationary distribution
and that all states x 2 W are aperiodic.

The stationary density has to correspond to the equilibrium prob-
ability inferred from the dynamics (if the dynamics can be approxi-
mated by a Markov process!). For dynamics in molecular simulations
done for some specific statistical ensemble this should correspond to
the equilibrium probability distribution of this statistical ensemble.
In particular for the canonical ensemble (NVT) this is the well-known
Boltzmann-Distribution. If the Hamiltonian can be separated into a
kinetic and a potential part

H(x) = T(x) + U(x)

the stationary distribution takes the simple form

p

Boltzmann[b](x) = Z(b)-1 exp (�bU(x)) . (2.1.3)

with a temperature T depended parameter b = (kBT)-1, U(x) the
potential energy of state x and

Z(b) =
Z

W
dx exp (�bU(x))

being the partition function. See Figure 2.1 for an example.

D. The dynamics is reversible

In equilibrium the number of particles moving from A ⇢ W to B ⇢ W
are the same as in the opposite direction per time unit. This can be
expressed as

p(x)p
t

(x, y) = p(y)p
t

(B, A),



2.1 continuous dynamics 11

which states that the absolute probability of a transition from x 2 W
to y 2 W is equal for transitions in the opposite direction. This is
referred to as detailed balance or microscopic reversibility and implies
that a given trajectory xt is equally likely to the trajectory x[�t] in
time-reversed direction if both are weighted with stationary distribu-
tion of their initial state. Thus, if started from equilibrium, from the
trajectory itself, one cannot deduce a direction in time.

This is different from stating that the time-reversed ensemble dy-
namics fulfills the same equations of motion, i.e. that the evolution
of an ensemble of particles is symmetric under the change of sign in
time which is often referred to as reversible dynamics. Here, we require
only the reversibility for a trajectory of a single particle, but not for
ensembles. For example, Brownian dynamics fulfills our requirement
of (microscopic) reversibility, but it is not time-reversible for ensem-
bles since any initial distribution diverges over time irrespective of
propagating forward or backwards in contrast to e.g. Hamiltonian
dynamics. The connecting property is determinism: If a dynamics
fulfills detailed balance and is deterministic it is also reversible in the
macroscopic sense.

Although detailed balance is not necessary to construct a Markov
model, it is reasonable from a physical point of view: For a system
which is in equilibrium and does not obey detailed balance there
exists a closed circle of states, that has a higher probability to be
traversed in one direction compared to the opposite one. Exploiting
this, one could build a device that could extract work from this imbal-
ance. This would contradict the second law of thermodynamics and
conversely implies, that there is some other mechanism than thermal
energy that drives the system. We will exclude these cases and state,
that in equilibrium means in thermal equilibrium and thus our dynam-
ics must fulfill detailed balance in order to not be in violation of the
laws of thermodynamics.

2.1.2 Applicability

After stating the requirements, the question remains whether these
can be fulfilled. Data measured directly from nature using exper-
iments will preserve the Markov property unless the experimental
setup interferes, which is an important aspect, but has to be ad-
dressed by the experimentalist. Mostly, we use time series from com-
puter simulations where the used integrator and, for protein simu-
lation, additional numerical methods to ensure ensemble constraints
might include systematic errors. In general, we can state that the
above conditions do not place overly burdensome restrictions on the
choices of dynamical models used to describe at least equilibrium
dynamics. Most stochastic thermostats are consistent with the above
assumptions, e.g. Andersen [67] (which can be employed with either
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massive or per-particle collisions, or coupled to only a subset of de-
grees of freedom), Hybrid Monte Carlo [67], over-damped Langevin
(also called Brownian or Smoluchowski) dynamics [68, 69], and step-
wise-thermalized Hamiltonian dynamics [53]. When simulating sol-
vated systems, a weak friction or collision rate can be used; this can
often be selected in a manner that is physically motivated by the heat
conductivity of the material of interest and the system size [67].

While, technically speaking, a Markov model analysis can be con-
structed for any choice of dynamical model, it must be noted that
several popular dynamical schemes violate the assumptions above.
Using them means that one is (currently) doing so without a solid the-
oretical basis, such as regarding the boundedness of the discretization
error analyzed in section 2.4. Counter examples include e.g. Nosé-
Hoover and Berendsen thermostats that are either not ergodic or do
not generate the correct stationary distribution for the desired ensem-
ble [70]. Also, energy-conserving Hamiltonian dynamics, even when
considering a set of trajectories that are in initial contact with a heat
bath, is not ergodic and therefore ensembles might not converge to
the stationary distribution.

We note that the use of finite-time step integrators for these models
of dynamics can sometimes be problematic, as the phase or config-
urational space density sampled can differ from the density desired.
Generally, integrators based on symplectic Hamiltonian integrators
(such as velocity Verlet [71]) offer greater stability for our purposes.

2.2 transfer operator approach

Instead of giving a probabilistic description of the evolution of a sin-
gle particle, we can also track the evolution of an ensemble of particles
which we already addressed shortly in the discussion about ergodic-
ity. We assume that our ensemble of particles consist of independent
realizations of the same dynamics, i.e. they do not interact with each
other and they are distributed according to a probability density func-
tion

p : x 2 W 7! p(x) 2 R+
0 ,

Z

W
dx p(x) = 1.

Positivity and the normalization condition assures that

p 2 L2
p

=

⇢

v | v : W 7! R |
Z

W
dx p(x)v(x)2 < •

�

holds and the time-evolution of a probability function can be ex-
pressed as a propagation in a p-weighted L2

p

-space1. To access all the

1 The more general approach is to use the stationary distribution as the measure in
the L2

p

-space, which is, in the cases we treat here, equivalent to a weighted L2
p

-space
with the canonical measure.
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features a Hilbert-Space provides we chose to use the natural scalar
product induced by the stationary distribution

ha, bi =
Z

W
dx p(x)a(x)b(x)

and with it, the induced norm

�

�a
�

� =
q

ha, ai.

If not stated otherwise we will always use the induced (p-weighted)
scalar product. As we will see later, this choice is convenient since
the main object of our concern, the transfer operator, will (usually) be
self-adjoint w.r.t. this scalar product and thus its eigenfunctions are
orthogonal under this scalar product.

It is now reasonable to define a reweighting operator P

P : L2
p

! L2
p

[P p](x) = p(x)p(x)

to switch between elements of L2
p

and the isomorphic dual space
which will prove to be useful later. Within this Hilbert-Space we
can define the propagator Q

t

that will evolve a probability distribu-
tion pt given at time t into a distribution pt+t

a lag time t later in
accordance with the single particle evolution given by the jump prob-
abilities p

t

(x, y). The acting of the propagator can be written as

pt+t

(x) = [Q
t

pt](x) =
Z

W
dy p

t

(y, x)pt(y) (2.2.1)

or in short
pt+t

= Q
t

pt.

If we do not talk about lag time t dependence or if it is not stated
otherwise, we will omit the indication of the lag time t and use e.g.
Q := Q

t

. For purposes of mathematical simplicity we also introduce
an equivalent description in form of the transfer operator

T
t

: L2
p

! L2
p

[55, 72], which acts on functions

vt = P-1 pt

that are simply probability distributions reweighted with the inverse
of the stationary distribution.

These functions can be considered as isomorphic representations
of elements in the dual space. Using the reweighting operator P we
can simply write the transfer operator in terms of the propagator as

T
t

= P-1 Q
t

P (2.2.2)
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and we should note, that the transfer operator is not the adjoint prop-
agator, which we will introduce later. The propagator Q and the
transfer operator T are essentially the same object only in two differ-
ent representations chosen w.r.t. to the invariant measure in L2

p

.
If the Markov process fulfills the requirements from section 2.1.1

(i.e. ergodicity) the dynamics will relax any given initial density pt

lim
t!•

pt+t

= lim
t!•

Q
t

pt = p

to its unique stationary distribution p.
Although the definition of the propagator Q or transfer operator T

in Eq. (2.2.1) is formal, it can be given in a concrete from, depending
on the kind of dynamics [55]. Independent from this concrete form
it has the following properties which are based on the Hilbert-Space
L2

p

and the properties of the Markov Process:

A. Eigenvalues and Eigenvectors

The propagator Q
t

has a set of eigenfunctions fi and associated eigen-
values li with i 2 I in some (usually infinite but countable) index set
I (see Figure 2.1 and Figure 2.3)

Q fi = li fi (2.2.3)

and the definition of T
t

implies that the eigenvectors yi of T
t

are
related by

fi = P yi.

From the Perron-Frobenius theorem it follows that both, the prop-
agator and the transfer operator, have a spectral radius of exactly
one, i.e. their eigenvalues lie in the unit circle in the complex plane
�

�

li
�

�  1. Ergodicity finally assures, that there is only one unique
eigenvalue/eigenvector pair to the eigenvalue of one l1 = 1 that has
the greatest norm [55]. The first eigenfunctions f1 and y1 take special
forms:

Q
t

p = 1 · p = f1,

the stationary distribution p and

T
t

1 = 1 · 1 = y1

the constant function 1 (see Figure 2.1c).

B. Reversibility

In the context of reversibility we first introduce the so-called back-
ward propagator Q-. To explain its meaning, we go back to the
picture of single particle dynamics in equilibrium2 and ask for the

2 In equilibrium means here, that we look at a particle which is chosen randomly from
an ensemble which is in equilibrium and where no driving forces are present.
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transition probabilities for ensembles under the time-reversed pro-
cess, i.e. a process where the probabilities to observe a particular
time series has been replace by the probabilities of the same trajec-
tory obersevd in time-reversed order. If for a forward time series xt
the absolute probabilities for a transition from x 2 W to y 2 W were
given by p(x) p(x, y), then, for the backward/time-reversed propaga-
tion we have to choose the absolute probability to come from y and
end in x respectively given by p(y) p

t

(y, x). The conditional transition
probability to come from y when being in x is then constituting the
backward transition probabilities p†

t

(x, y) given by

p†
t

(x, y) ⌘ p(y)
p(x)

p
t

(y, x)

representing the well-defined backward propagator Q
t

-. If we define
a transposed propagator QT using

[Q
t

T p](x) ⌘
Z

W
dy p

t

(x, y)pt(y) (2.2.4)

the backward propagator can be expressed by

Q
t

- ⌘ P Q
t

T P-1

In the case of the backward transfer operator we get

T
t

- ⌘ P-1 T
t

T P

and we can express this relationship using the induced (p-weighted)
scalar product as

hT†
t

f , gi ⌘ h f , T gi, 8 f , g 2 L2
p

(2.2.5)

and see that the backward transfer operator is the adjoint of the trans-
fer operator w.r.t. the scalar product induced by the stationary distri-
bution. Interestingly, if detailed balance

p(x) p
t

(x, y) = p(y) p
t

(y, x)

PQT = QP

holds, then forward and backward propagator Q
t

- = Q
t

conincide,
and also forward and backward transfer operator, T

t

- = T
t

. From
Eq. 2.2.5 then follows that the transfer operator T

t

is self-adjoint w.r.t.
the induced scalar product, while the propagator is self-adjoint w.r.t.
a scalarproduct that uses the inverse of the stationary distribution p

-1.
The backward propagator and transfer operator will be used again in
chapter 3.

Conclusively, since the transfer operator is bounded and self-adjoint
(if detailed balance holds), there exists a (usual infinite but countable)
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set of eigenfunctions yi of the transfer operator T
t

that are orthogonal
w.r.t. the weighted scalar product

li 6= lj ) hyi, yji = 0, 8i 6= j

provided that the corresponding eigenvalues are different. Self-adjointness
also implies that all eigenvalues li of T

t

have to be real-valued and
hence li 2 (�1, 1], i 2 I.

We can now use the Chapman-Komogorov-Semi-group property in Eq. 2.1.2
to infer an important lag time t dependence of the eigendecomposi-
tion. In terms of operators it simply translates into

Q
t2+t1 = Q

t2Q
t1

which implies that the eigenfunctions fi of the propagator Q
t

are
independent of the lag time t while the eigenvalues are related by

li(k · t) = l

k
i (t), k 2 Q+, t > 0.

Finally, we get the important relation, that in case of detailed bal-
ance, the eigenvectors yi of the transition operator T

t

equal the eigen-
vectors of the adjoint operator Q

t

T which is in the discrete case often
used to identify the left eigenvectors of the transition matrix with the
eigenfunctions fi of the propagator Q.

Lastly, we note a few technical details: We agree on the normaliza-
tion

hyi, yii = 1

which will result in

y1(x) = 1
Z

W
dx f1(x) =

Z

W
dx p(x) = 1.

Even though the eigenspectrum {li | i 2 I} is usually continuous we
only distinguish a finite number of m dominant eigenvector/eigen-
value pairs with the largest absolute value. By convention we sort all
pairs descending by the absolute values of their eigenvalue

l1 = 1 >
�

�

l2
�

� �
�

�

l3
�

� � ... �
�

�

lm
�

�

and consider the reminder of the spectrum confined to a ball of ra-
dius r 

�

�

lm
�

� centered on 0 in the complex plane. Even if detailed
balance does not hold, it can be shown, that if the dynamics is re-
versible enough, the dominant eigenvalues are real-valued and that
the complex-valued eigenvalues can be contained in ball in the com-
plex plane with a radius strictly smaller than one [55]. In the follow-
ing we will only deal with the transfer operator since it carries the
same information as the propagator and allows for an easier notation
and the usage of the natural scalar product.
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2.2.1 Timescale Separation

Using the eigenvector/eigenvalue pairs {yi, li}the transfer operator
T

t

can be expanded into a sum of operators as

T
t

= Â
i2I

li(t) X (yi) (2.2.6)

with the projection operator

X (v) = v
hv, ·i
hv, vi

that projects any function onto the subspace spanned by v. This
idea permits an illustrative physical interpretation: In general, we
can expand any probability distribution p into a basis spanned by the
eigenvectors yi. In this basis the propagation is simply an exponen-
tial decay, except for the stationery distribution with l1 = 1 which
is always present. Therefore, the dynamics can be regarded as sin-
gle processes that push the distribution p back to equilibrium p each
with a distinctive speed given by the eigenvalues li. The processes
are then indicated by the eigenvectors yi since these determine the
basis transformation, while the li for i 2 {2, ..., m} correspond to a
physical time scale

ti = � t

ln li
, (2.2.7)

which is often called the i-th Implied Time Scale (ITS) [53]. In the limit
of long time steps, k ! •, only the stationary distribution survives
since

lim
k!•

l

k
i ! 0, i 6= 1.

We now separate the eigenvalues into 3 subsets, that then constitute
one part each of the total dynamics:

1. The stationary part for l1 = 1 which is turned into

Tstat v = 1

2. (m � 1) dominant (slow) real eigenvalues with li � lm which
give

Tslow
kt

= Â
i2{2,...,m}

l

k
ii X(yi)

and will be the later be identified with the dominant dynamical
part we are interested in

3. and the remaining fast contributions with
�

�

li
�

� <
�

�

lm+1
�

� into

Tfast(t),

which we want to neglect if the time scale t is large enough.
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This means for the propagation of k equidistant timesteps of length t

that the transport operator can be written as

Tt+kt

= Tstat +Tslow
kt

+Tfast
kt

= 1h1, ·i+
m

Â
i=2

l

k
i X (yi)+Tfast

kt

. (2.2.8)

This decomposition requires all three subspaces Tstat, Tslow and Tfast

to be orthogonal, which is a direct consequence of detailed balance.
When observing the expansion into eigenfunctions (Eq. 2.2.8), the

dependence of the time step t + kt is left only in the exponential
of l

k
i so that with increasing number of timesteps k or longer lag

times t, the number of contributing processes decreases. This allows
an approximation of the dynamics (see Figure 2.3) in various time
regions. Especially if the lag time t exceeds a certain minimal lag
time t > t

fast, only the dominant processes are present. We choose

t

fast =
log e

log l[m+1]

where e < 10-4 is chosen small enough to cancel the influence of
Tfast to the dynamics and we can set approximately Tfast ⇡ 0. Note,
that if the spectral gap between the fastest dominant process lmand
the next slowest processes l[m+1] is small, then in this choice of t

fast

also the fastest dominant process (and even more) vanishes which is
usually not desired. The will assume that in the analyzed systems
we can (at least to some degree) separate fast and slow processes
by choosing an appropriate number m of dominant processes and
a suitable separation lag time t

fast. Even if this is not the case the
presented methods are still valid, only their convergence behaviour
will be worse.

In Figure 2.1, the second process, y2, corresponds to the slow (l2 =
0.9944) exchange between basins A+B and basins C+D, as reflected by
the opposite signs of the elements of y2 in these regions (Figure 2.1c).
The next-slowest processes are the A$B transition and then the C$D
transition, while the subsequent eigenvalues are clearly separated
from the dominant spectrum and correspond to much faster local
diffusion processes. The three slowest processes effectively partition
the dynamics into four metastable states corresponding to basins A,
B, C and D, which are indicated by the different sign structures of the
eigenfunctions (Figure 2.1c). The metastable states can be calculated
from the eigenfunction structure, e.g. using the Perron Cluster Clus-
ter Analysis (PCCA) method[43, 51]. Figure 2.1d shows the projected
eigenfunctions of the transfer operator, X?yi, onto the crisp subsets
indicated by the states A, B, C and D. While the projection error is
small for the projections of the four dominant processes the two next
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processes almost vanish, indicating that these processes will not be
present in dynamics projected onto these 4 states.

2.3 markov models vs . master equation

Alternatively to Q
t

and T
t

which describe the transport of densities
exactly by a chosen time-discretization t, one could investigate the
density transport with a time-continuous operator L called generator,
which is the basis of rate matrices, frequently used in physical chem-
istry [44, 73] and being related to the Fokker-Planck equation [74].

The generator can be defined as an infinitesimal small transport
operator by

L = lim
t!0

1
t

(Q
t

� Id) (2.3.1)

if it exists. This allows to express the time evolution of an ensemble
p by a first-order differential equation

∂tpt = L pt.

It has to be noted that one can always construct a propagator Q
t

for
a lag time t from a generator using

T
t

= exp (tL) (2.3.2)

where we used the Taylor expansion of the exponential function to
define the exponential of an operator by

exp (tL) =
•

Â
k=0

1
k!

t

k Lk.

From Eq. (2.3.2) then follows, that the generator and propagator share
the same set of eigenfunctions and that the eigenvalues µi of the gen-
erator are given by µi = ln(l).This explains that the generator only
uniquely exists, if all eigenvalues of the propagator are real valued
(which is true when detailed balance holds) and are also positive,
li 2 R+, 8i 2 I. Conclusively, the generator has one single zero eigen-
value µ1 = 0 and all other eigenvalues are negative µi < 0, 8i 6= 1. In
the following we focus on using the transfer operator description.

2.4 discretization

In the context of Markov models we cannot neglect that, for computa-
tional purposes, we have to discretize the original full Markov model.
In principle, there would be no objections to reduce the problem to



20 markov state models

En
er
gy
U
�x⇥

1 A 25 B 50 C 75 D 100

State x

Pr
ob
ab
ili
ty
��x⇥

� 1
� 2

� 3

1 A 25 B 50 C 75 D 100

State x

� 4

�
1

�
2

�
3

1 A 25 B 50 C 75 D 100

State x

�
4

�
5

1 A 25 B 50 C 75 D 100

State x

�
6

X
� �

1
X

� �
2

X
� �

3

1 A 25 B 50 C 75 D 100

State x

X
� �

4
X

� �
5

1 A 25 B 50 C 75 D 100

State x

X
� �

6

(a) (b)

(c) (d)

Figure 2.1 – 1D model potential and eigensystem decomposition (a) Potential energy function
with four metastable states and corresponding stationary density p(x), (b) The four dominant
eigenfunctions f1, . . . , f4 of the transfer operator T weighted with the stationary density p(x)
which correspond to the eigenfunctions of the propagator, (c) The four dominant eigenfunctions of
the transfer operator, y1, . . . , y4, which indicate the associated dynamical processes, and the next
two slowest eigenfunctions y5, y6. The first eigenfunction is associated to the stationary process,
the second to a transition between A + B $ C + D and and the third and fourth eigenfunction
to transitions between A $ B and C $ D, respectively. The two next eigenfunctions correspond
to processes within the metastable states, (d) The four dominant and the two next eigenfunctions
of the transfer operator projected onto the 4-states A, B, C, D given by X?y1, . . . , X?y6. While the
projection is quite good for the four dominant eigenfunctions and thus a small projection error,
the projection of the two next eigenfunctions almost vanishes, indicating that these processes will
not be present in the projected dynamics.
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Figure 2.2 – Transfer operator Density plot of the transfer operator for the simple diffusion-in-
potential dynamics defined on the range W = {1, . . . , 100} (see Appendix D) for lag times t =
{10, 200, 2000, 50000}. Red indicates high transition probability, white zero transition probability.
Of particular interest is the nearly block-diagonal structure where the transition density is large
within blocks allowing rapid transitions within metastable basins, and small or nearly zero for
jumps between different metastable basins. Depending on the lag time t the number of metastable
sets changes.
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Figure 2.3 – Timescale Regions The development of eigenvalues li(t) vs
lag time t. Red, yellow, green and blue correspond to the four dominant
processes. Grey bars on the right indicate the regions, where the dominant
processes disappear while grey bars on the left indicate region where the
fast processes are present and at the very left the region not accessible by
sampling due to a finite sampling rate. The arrows indicate the range of
lag times where the 3 dominant processes are observable. The white region
in the middle is the region, where all four dominant processes are exclu-
sively present and thus the approximation by the dominant spectral part is
good. The gap between the four metastable processes (li ⇡ 1) and the fast
processes (blue region) is clearly visible.

one with a finite (and small) state space, but the observed projected
dynamics is in almost all cases not Markovian anymore. That means,
that any parametrized Markov model based on this observation can-
not or only approximately reflect the real dynamics, which is what
we are aiming for when building a model for the system in any sim-
ulation or experiment. In this section we will deal with the problem
of discretization and errors involving the construction of a Markov
model from it. In general, we have to distinguish three types of er-
rors:

1. The spectral error from neglecting the fast part of the dynamics,

2. the projection or discretization error arising from a loss in informa-
tion by the projection onto a finite-dimensional subspace, and

3. the statistical error caused by estimations based on observations
of finite length (insufficient data)

where, in this section, we are mainly dealing with the first two sys-
tematic errors.

In practical use, the Markov model is not obtained by actually dis-
cretizing the continuous propagator although the dynamics is still
based on it. Instead, one defines a discretization of state space and
then estimates the corresponding discretized transfer operator from a
finite quantity of simulation data, such as several long or many short
Molecular Dynamics (MD) trajectories that transition between these
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discrete states. The statistical error in estimating the parameters of a
finite state Markov model from an also finite set of data is dealt with
later.

While molecular dynamics in full continuous state space W is Mar-
kovian by construction, the term Markov model is due to the fact that
in practice, state space must be somehow discretized in order to ob-
tain a computationally tractable description of the dynamics. The
Markov model then consists of the partitioning of state space used
together with the transition matrix modeling the jump process of the
observed trajectory projected onto these discrete states. However, this
jump process is no longer Markovian, as the information where the
continuous process would be within the local discrete state is lost
in the course of discretization. Modeling the long-time statistics of
this jump process with a Markov process is an approximation, i.e., it
involves a discretization error.

This error is a systematic error, since it causes a deterministic devia-
tion of the Markov model dynamics from the true dynamics that per-
sists even when the statistical error is excluded by excessive sampling.
In order to focus on this effect alone, it is assumed in this section that
the statistical estimation error is zero, i.e., transition probabilities be-
tween discrete states can be calculated exactly. The results suggest
that the discretization error of a Markov model can be made small
enough for the Markov State Model (MSM) to be useful in accurately
describing the relaxation kinetics, even for very large and complex
molecular systems.

2.4.1 Discretization of state space

The most prominent case is the clustering of parts of the state space
into a finite number of macro states which will then define a so called
crisp clustering. For a crisp partitioning or clustering we define a
countable set M of subsets of the full state space wi ⇢ W, i 2 M, called
macro states, which are mutually exclusive states wi \ wj = ∆, i 6= j
and have associated indicator functions

c : i 2 M, x 2 W 7! ci(x) = 1
wi(x) 2 {0, 1} (2.4.1)

that measure if a certain state x belongs to macro state i. More gen-
eral, we can define membership functions that allow the splitting of the
probability between several macro states. Similar to the crisp case,
this is a generalization and fulfills the same requirements as a parti-
tion of unity with strict non-negative functions

c : i 2 M, x 2 W 7! ci(x) 2 [0, 1] (2.4.2)

and
Â
i2M

ci(x) = 1, 8x 2 W.
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For a clustering, be it fuzzy or crisp, we can define a projection oper-
ator X, that projects any function p(x) onto the subspace induced by
the clustering c. Using a symmetric mass matrix

M : M⇥M 7! Mij 2 [0, 1] ⇢ R+

defined by
Mij = hci, cji

that measures the overlap of two membership functions, the projec-
tion operator takes the form

X = Â
i,j2M

�

Mij
�-1

cihcj, ·i (2.4.3)

and the orthogonal projection is given by

X? ⌘ Id� X

If the clustering is crisp, the mass matrix is diagonal and the projec-
tion can be reduced to a superposition of single projections

X ⌘ Â
i2M
hci, cii-1cihci, ·i.

2.4.2 Quantifying the discretization error

The unavoidable discretization leads to a quantitative analysis of the
systematical error induced by the projection. In Markov models of
molecular dynamics, this state space reduction usually consists of
both, a neglect of degrees of freedom and an additionally discretiza-
tion of the remaining ones. Formally, all of these operations aggregate
sets of points in the continuous state space W into discrete macro
states, and the question to be addressed is what is the magnitude
error caused by treating the non-Markovian projected jump process
between these sets as a Markov chain. We will deal with an alterna-
tive view on the projection error in chapter 5.

The projected transfer operator TX
t

that propagates in subspace
spanned by the projection operator X is defined by

TX
t

= X T
t

X, (2.4.4)

first projecting, then a transport using the original transfer operator
and afterwards again a projection. The projected operator can now
be used to propagate any distribution spanned by the membership
functions c, i.e. it is closed w.r.t. to X. This definition is unique
up to the specification of the lag time t used for the parametrization
and causes a certain ambiguity in the propagation: To propagate an
arbitrary distribution in the projected subspace X pt for k timesteps
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of length t we can either use the original (exact) propagation and
project afterwards

porig
t+kt

= X Tkt

X pt

= X Tk
t

X pt

or we directly use the projected and thus approximated transfer op-
erator TX

kt

pproj
t+kt

= X TX
kt

X pt

= X (X T
t

X)k X pt

= X (T
t

X)k pt

where in the last step the idempotency

X X = X

of the projection operator X was used. Due to the intermediate pro-
jections in the second case, both solution differ in most cases, but we
can quantify the approximation error

e(k) =
�

�

�

porig
t+kt

� pproj
t+kt

�

�

�

=
�

�

�

⇣

X Tk
t

X� X [T
t

X]k
⌘

pt

�

�

�

by measuring the difference between both solutions as a function of
the number of time steps k used. To proceed we define the eigenfunc-
tion approximation error

di := kyi � X yik =
�

�

�

X? yi

�

�

�

, i 2 {1, . . . , m} (2.4.5)

measuring the error of approximating the true continuous eigenfunc-
tions of the transfer operator, yi and define

d := max
i

di

as the largest approximation error amongst these first m eigenfunc-
tions. The spectral error

h(t) :=
l[m+1](t)

l2(t)

is the error due to neglecting the fast subspace of the transfer opera-
tor, which decays to zero with increasing lag time: lim

t!• h(t) = 0.
The general statement is that the Markov model error E(k) can be
bounded [49] from above by the following expression

E(k) : =
�

�

�

X (T(t))k X� X (T(t) X)k
�

�

�

(2.4.6)

 min{2, [md + h(t)] [a(d) + b(t)]} l

k
2 (2.4.7)
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with

a(d) =
p

m(k−1)d (2.4.8)

b(t) =
h(t)

1� h(t)
(1� h(t)k�1) (2.4.9)

which implies two interesting observations:

1. For long times k, the overall error decays to zero with l

k
2, where

0 < l2 < 1, thus the stationary distribution (recovered as k !
•) is always correctly modeled, even if the kinetics are badly
approximated. This is a direct consequence of the fact, that the
stationary eigenvector, the constant function, was chosen to be
part of the projection, which is always true for a partition of
unity, and

2. the error during the kinetically interesting time scales consists
of a product whose terms contain separately the eigenfunction
approximation error and the spectral error. Thus, the overall
error can be diminished by choosing a fine discretization (where
fine means it needs to well trace the slow eigenfunctions, small
d), and using a large enough lag time t.

Depending on the distribution of eigenvalues, the decay of the spec-
tral error h(t) with t might be slow. It is thus interesting to consider
a special case of the discretization where d = 0. This is achieved by a
Markov model that uses a fuzzy partition with membership functions
derived from the first m eigenfunctions yi of the transfer operator [75].
From a more practical point of view, this situation can be approached
by using a Markov model with mfine � mmacro states located such
that they discretize the first m eigenfunctions with a vanishing dis-
cretization error d! 0, and then declaring that we are only interested
in these m slowest relaxation processes.

In other words, a Markov model can approximate the kinetics of
slow processes arbitrarily well, provided the discretization can be made
sufficiently fine or improved in a way that continues to minimize the
eigenfunction approximation error d. This observation can be ratio-
nalized by Eq. (2.2.8) which shows that the dynamics of the transfer
operator can be exactly decomposed into a superposition of the sta-
tionary and the slow and fast processes.

An important consequence of the d-dependence of the error is that
the best partition is not necessarily one which uses a few metastable
states. Previous work [53, 51, 65, 52] has focused on the construction
of partitions with high metastability (defined as the trace of the tran-
sition matrix T(t)), e.g. the partition into three states shown in Fig-
ure 2.4. i. This approach was based on the idea that the discretized dy-
namics must be approximately Markovian if the system remained in
each partition sufficiently long to approximately lose memory [52]. It
can be shown that if a system has m metastable sets with lm � lm+1,
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then the most metastable partition into m sets also minimizes the
discretization error [49]. Still, the expression for the discretization er-
ror given here has two other profound ramifications: Firstly, even in
the case where there exists a strong separation of time scales so the
system has clearly m metastable sets, the discretization error can be
reduced even further by splitting the metastable partition into more
than m sets which are then not metastable. And secondly, even in the
absence of a strong separation of time scales, the discretization error
can be made arbitrarily small by making the partition finer, especially
in transition regions, where the eigenfunctions change most rapidly.

Figure 2.4 illustrates the Markov model discretization error on a
two-dimensional three-well example where two slow processes are of
interest. The top most panels show a metastable partition into 3 sets.
As seen in rows four and five of Figure 2.4, the discretization errors
kX? y2k and kX? y3k are large near the transition regions, where the
eigenfunctions y2(x) and y3(x) change rapidly, leading to a large dis-
cretization error. Using a random partition (Figure 2.4, iii) makes the
situation worse, but increasing the number of states reduces the dis-
cretization error (Figure 2.4, iv), thereby increasing the quality of the
Markov model. When states are chosen such as to well approximate
the eigenfunctions, a very small error can be obtained with few sets
(Figure 2.4, ii)

These results suggest that an adaptive discretization algorithm may
be constructed which minimizes the E(k) error. Such an algorithm
could iteratively modify the definitions of discretization sets as sug-
gested previously [52], but instead of maximizing metastability it
would minimize the E(k) error which can be evaluated by compar-
ing eigenvector approximations on a coarse discretization compared
to a reference evaluated on a finer discretization [49].

For an illustration of this possibility we implemented a simple
Metropolis-Monte carlo scheme to optimize the centers y of a 12

Voronoi cell partitioning for the previously introduced 2D-model. The
initial points were randomly distributed on the entire state space and
randomly shifted in each iteration. A metropolis acceptance criterion
was chosen to minimize the eigenvector approximation error di by

P(accept) = min {1,exp
�

�b

�

di(ynew)� di(yold)
��

}

where the final minimal solution was chosen after sufficiently long
run out of all produced cluster definitions y[t]. The result (in Fig-
ure 2.4, v-vii) shows that the cluster centers tend to move into the
transition region that is important for the selected process.

Combining this idea of discretization with the idea of time scale
separation from Eq. (2.2.8) leads to the intriguing insights that if – for
a given system – only the slowest dynamical processes are of interest,
it is sufficient to discretize the state space in such a way that the first
few eigenvectors are well represented (in terms of small approxima-
tion errors di). For example, if one is interested in processes on time
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Figure 2.4 – Eigenvector Approximation Eigenfunction approximation errors d2 and d3 on the
two slowest processes in a two-dimensional three-well diffusion model (see appendix D for de-
tails). Rows: Different state space discretization with white lines as state boundaries: (i) 3 states
with maximum metastability, (ii) the metastable states subdivided manually into 12 states with
good resolution in the transition region, (iii)/(iv) voronoi partition using 25/100 randomly chosen
centers, (v)/(vi)/(vii) optimized centers the position of 12 voronoi cells to minimize d2, d3, d2 + d3.
Columns: (1) Potential, (2/3) Exact eigenfunctions, y2(x) and y3(x), (4/5) Approximation errors
X? y2 and X? y3 with error norms d2 and d3.
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scales t⇤ or slower, then the number m of eigenfunctions that need to
be resolved is equal to the number of implied time scales with ti � t⇤.
Due to the perfect decoupling of processes for reversible dynamics
in the eigenfunctions (see section 2.2), no gap after these first m time
scales of interest is needed, provided that the dynamics of interest oc-
curs wiht the space spanned by the dominant eigenfunctions. Note,
that the quality of the Markov model does not depend on the dimen-
sionality of the simulated system, i.e. the number of atoms. Thus, if
only the slowest process of the system is of interest (such as the fold-
ing process in a two-state folder), only a one-dimensional parameter,
the dominant eigenfunction y2(x), needs to be approximated, even
if the system is huge. This opens a way to discretize state spaces of
very large molecular systems.

2.4.3 Approximation of eigenvalues

One of the important and interesting kinetic properties of molecular
systems are the intrinsic time scales ti of the system, the specific time
scales it takes the system to relax towards equilibrium. They can be
accessed experimentally via relaxation or correlation functions that
are measurable with various spectroscopic techniques [76, 77, 57, 33].

It is worth noting that observing convergence of the slowest im-
plied time scales in t is not a test of Markovianity. While Markovian
dynamics implies constancy of implied time scales in t [51, 53], the
reverse is not true and would require the eigenvectors to be constant
as well. However, observing the lag time-dependence of the implied
time scales is a useful approach to choose a lag time t at which a pro-
jected Markov model TX

t

shall be calculated, but this model needs to
be validated subsequently (see section 2.6.6).

For Markov models these intrinsic time scales are identified with
the eigenvalues, which need to be corrected for the lag time t consid-
ered

ti(t) = � t

log li(t)

and are constant if the Chapman-Kolmogorov property holds. In this
case the relation

li(t) = l̄

t

i

is true with lag time independent eigenvalues l̄i ⌘ li(t0) chosen at
some native time-step t0 and conclusively

ti(t) = � t

log li(t)

= � t

log l̄

t

i

= � 1
log l̄i

= const.
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If we now construct a Markov model from the observed process
which is not Markovian the ITS can be used as a measure of how well
the Markov property holds. More precisely, we can only infer a good
Markov model, that is a model for some projected Markovian dynam-
ics, if the ITS ti is constant not vice versa. Thus, it is desirable to find
a measure, how well the eigenvalues of the projected model will ap-
proximate the exact eigenvalues. Again, we consider the first m eigen-
values of the transfer operator T

t

, 1 = l1(t) > l2(t) � . . . � lm(t),
and let 1 = l̂1(t) > l̂2(t) � . . . � l̂m(t) denote the associated eigen-
values of the Markov model TX. The rigorous mathematical estimate
from [78] then states that

max
j=2,...,m

|lj(t)� l̂j(t)|  (m� 1) l2(t) d

2, (2.4.10)

where d is the previously introduced maximum discretization error
of the first m eigenfunctions. This shows that the eigenvalues are
well reproduced when the discretization traces these eigenfunctions
well. In particular if we are only interested in the eigenvalue of the
slowest process, l2(t), which is often experimentally reported via the
slowest relaxation time of the system, t2, the following estimate of the
approximation error can be given:

|l2(t)� l̂2(t)|
|l2(t)|  d

2
2 (2.4.11)

As l2(t) corresponds to a slow process, we can make the restric-
tion l2(t) > 0. Moreover, the discretization error of Markov models
based on full partitions of state space is such that the eigenvalues are
always underestimated [78], thus l2(t)� l̂2(t) > 0. Using Eq. (2.2.7),
we obtain the estimate for the discretization error of the largest im-
plied time scale:

t̂-1
2 � t-1

2  �t

-1 ln(1� d

2
2), (2.4.12)

which implies that for either d2 ! 0+ or t ! •, the error in the
largest implied time scale tends to zero. Moreover, since l2(t) ! 0
for t ! •, this is also true for the other processes:

lim
t!•

|lj(t)� l̂j(t)|
|lj(t)| = 0, (2.4.13)

and also

lim
d!0

|lj(t)� l̂j(t)|
|lj(t)| = 0. (2.4.14)

which means that the error of the implied time scales also vanishes
for either sufficiently long lag times t or for a sufficiently fine dis-
cretization. This fact has been empirically observed in many previous
studies [79, 53, 52, 58, 44, 51, 35], but can now be understood in detail
in terms of the discretization error.
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The implications of these two theorems are important: We now
have the mathematical justification to express the dynamics of a sys-
tem with continuous state space by an approximation or stated in
reverse for each system it is possible to find a discrete approximation
for any given initial level of accuracy.

2.5 discrete state space / transition matrix

After a thorough discussion of the problems involved in projections,
we are now making the transition to the case of a discrete state space
or the projection of a (possibly very large) discretized space. With the
results above it is – at least for the physical relevant cases – possible to
find a discretization, that is sufficiently fine to reproduce the qualities
of the original Markov model arbitrarily well.

Since the propagation of the projected operator TX is closed with
respect to the projection X we can express the propagation in terms
of the basis c that spans this closed subspace of W. Provided that the
number of macro states, |M| = M < •, is finite, we will define the
transition matrix T(t) 2 RM⇥M by

Tij(t) =
hcj, T

t

cii
hci, cii

.

In the case of a crisp partitioning, using the definition for the transfer
operator in Eqs. (2.2.1) and (2.2.2), this is equal to

Tij(t) =

R

Wdx p(x) cj(x) [P-1 Q
t

P ci] (x)
R

Wdx p(x)ci(x)ci(x)

=

R

Wdx p(x) cj(x) p

-1(x)
R

Wdy p
t

(x, y) p(y) ci(y)
R

Wdx p(x) ci(x) ci(x)

=

R

Wdx cj(x)
R

Wdy p
t

(x, y) p(y) ci(y)
R

Wdx p(x) ci(x) ci(x)
.

Chosing the indicator functions 1
wi(x) for the crisp clustering wi as

membership functions ci(x)

ci(x) = 1
wi(x) ⌘

8

<

:

1 if x 2 wi

0 else

the matrix simplifies to

Tij(t) =

R

wj
dx
R

wi
dy p

t

(x, y) p(y)
R

wi
dx p(x)

=
P[xt+t

2 wj ^ xt 2 wi]

P[xt 2 wi]

= P[xt+t

2 wj | xt 2 wi]
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which corresponds to the counting of relative transition probabili-
ties between subsets wi and wj in an infinitely long trajectory and is
thus exactly what we desired it to be. Note that in this crisp case the
integrals run over individual sets and only need the local equilibrium
distributions

pi ⌘
Z

wi

dx p(x)

as weights. This is a very powerful feature: In order to estimate
transition probabilities, we do not need any information about the
global equilibrium distribution of the system, and the dynamical in-
formation needed extends only over time t. In principle, the full
dynamical information of the discretized system can be obtained by
initiating trajectories of length t out of each state i as long as we draw
the starting points of these simulations from a local equilibrium den-
sity [75, 56, 55] given by

p

[wi ](x) = d(x 2 wi)
p(x)

hd(x 2 wi), d(x 2 wi)i

= d(x 2 wi)
p(x)

pi
.

Lastly, the transition matrix can also be written in terms of correlation
functions

cor [a | b] (t) ⌘ Et [a(xt) b(xt+t

)] (2.5.1)

of the time series xt [53] between two state-space observables a, b :
W 7! R. Using two membership functions ci and cj from a (fuzzy
or crisp) clustering c will then measure the absolute probability to
find a transition between the two substates i and j in the observed
trajectory xt. Correctly normalized these resemble the conditional
jump probabilities of the transition matrix T that are then given by

Tij(t) =
cor

⇥

ci | cj
⇤

(t)

Et [ci]
. (2.5.2)

and for a crisp clustering even

Tij(t) =
cor

⇥

ci | cj
⇤

(t)

cor [ci | ci] (t)
. (2.5.3)

The use of correlation functions will be addressed in more detail in
chapter 5.

From now on we will assume w.l.o.g. that the exact underlying
Markovian dynamics can be approximated well enough by a finite
state space. Since the transition matrix T(t) is a discretization of
the transfer operator T

t

[72, 49, 55](see section 2.2) and we explicitly
assume detailed balance (see section 2.1.1), we can relate the functions
vt and probability densities pt that are transported by T

t

and Q
t

to
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Chapman-Kolmogorov semi-group property

T(k · t) = [T(t)]k

Eigensystem decomposition of transition matrix

T(t) = RL(t)R-1 = L-TL(t)LT

normalization convention
RL = Id
with detailed balance PT = TTP

L = RTP

LTL = P, RRT = P-1

T(t) = RL(t)L = RL(t)RTP = P-1LTL(t)L
Correlation matrices

C(t) = cor
⇥

Xi· | Xj·
⇤

(t)

for the identity clustering X = Id
C(t) = PT(t)

Table 2.1 – Matrix Relations used for discrete time, discrete state space
Markov State Model (MSM)

column and row vectors that are multiplied to the transition matrix.
The choice of T(t) being row-stochastic corresponds to

pt 7! pT(t)

as row vectors that are multiplied to the matrix from the left and

vt 7! v(t)

as column vectors from the right [79, 53, 51, 80, 81, 44, 52, 73, 49].
This finally allows to simplify the notation to matrix operations in
the following chapters. We will use the symbols given in Table A.1
in the remainder of this thesis and assume the relations in Table 2.1,
which are a direct consequence of the concepts introduced for the
transfer operator and the propagator.

2.5.1 Discretization Methods for molecules

Macromolecular systems generally possess configuration spaces of
such high dimension that grid-based methods for partitioning space
become impractical, why this is often referred to as the “Curse of Di-
mensionality”. However, in many macromolecular systems such as
proteins, the region over which the configurational probability den-
sity is significant defines a low-dimensional (but potentially highly
nonlinear) subspace [82]. As a result, data-driven methods, where a
clustering of conformations sampled by some form of molecular sim-
ulation defines the partitioning of this low-dimensional subspace, are
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both attractive and practical. Various combinations of distance met-
rics and clustering methods have been proposed: Distance metrics in-
clude Euclidean distance in backbone coordinates [35] or Root Mean
Squared Displacement (RMSD) [62, 52]. Clustering methods include
manual clustering [83], k-means clustering [35], k-centers clustering
[62], density-based clustering [84, 85] and adaptive clustering ap-
proaches [52]. Approaches to directly discretize certain coordinates,
such as the rotameric states [64, 44] or the hydrogen-bond patterns
[51, 79] were also made.

All of these metrics and clustering methods have their advantages
and disadvantages and the applicability and feasibility has to be de-
cided from case to case, there is no best or worst method. Every
method that allows a more accurate approximation of the (dominant)
eigenvectors with increasing number of clusters permits the genera-
tion of a Markov model to arbitrary precision. A metric or a cluster-
ing algorithm that optimizes the macro states w.r.t. this criterion is
difficult to design and so, in practice, one often measures structural
differences on a subset of coordinates (e.g. backbone coordinates). In
almost any practical way, the approximation is not perfect and the
eigenvector approximation error will not decrease to zero. That must
be compensated by increasing the lag time t. Generally, it is impor-
tant that the metric is selected such that the molecular events under
investigation can be resolved.

However, it is interesting to see that MSMs are robust with respect to
changes of the metric and the clustering method, within a significant
range[1].

Markov models typically only use atom positions while the veloc-
ities are projected out [52, 51]. So far, Markov models have also ne-
glected solvent degrees of freedom and have only used the solute
coordinates [52, 35], and the effect of this was studied in detail in [84].
Indeed, it may be necessary to incorporate solvent coordinates in sit-
uations where the solvent molecules are involved in slow processes
that are not easily detected in the solute coordinates [86]. Often, Mar-
kov models are also based on distance metrics that only involve a
subset of the solute atoms, such as RMSD between heavy atom or
alpha carbon coordinates [52, 62, 35], or backbone dihedral angles
[51, 44]. Possibly the strongest approximation is caused by clustering
or lumping sets of coordinates in the selected coordinate subspace
into discrete states [79, 52, 44, 62, 35].

2.6 estimation from data and validation

So far the continuous transfer operator has been the basis for the con-
tinuous and discretized Markov models. In almost all practical cases
we have no access to the transfer operator or any other analytical de-



2.6 estimation from data and validation 35

scription and the transition matrix T(t) has to be estimated from a
finite quantity of simulation or even experimental data.

This includes a statistical error component into the overall error in
modeling the true dynamics with Markov models which will be dis-
cussed in this section. Here we assume that a sufficiently accurate
state space discretization (either crisp or fuzzy) has been defined and
that a trajectory is projected onto this discrete space. We then address
the question how to estimate a Markov model based on such trajec-
tory data. Note that while in the previous section we have studied
only the discretization error of the Markov model without considera-
tion of statistical issues (i.e., it was assumed that the transition matrix
could be computed exactly), this section only studies statistical issues
without consideration of the discretization error (i.e. the discrete dy-
namics is now assumed to be perfectly Markovian).

2.6.1 From trajectories to count matrix

We start with a time series (a trajectory) which is observed at fixed
time intervals Dt at L + 1 points

t : tk = kDt, k 2 {0, . . . , L}

and use the simplified discrete trajectory

xk : k 2 {0, . . . , L} 7! x(tk) 2 W

as before for a finite state space W = {1, . . . , M}. For convenience,
integer variables are used for the time with equidistant time intervals.
The state-to-state correlations in Eq. 2.5.2 have been used to compute
the transition probabilities since these can measure the absolute prob-
abilities for a transition in a time series. To get an estimate of the
state-to-state correlation from a given time series xk we can use the
definition in Eq. 2.5.1 and get

cor
⇥

ci | cj
⇤

(l) ⌘ En
⇥

ci(xn) cj(xn+l)
⇤

= (L + 1� l)-1
L�l

Â
n=0

ci(xn)cj(xn+l)

for finite time series. This naturally leads to the count matrix Z defined
to consist of the absolute number of transitions in the trajectory when
using a fixed lag time l by

Zij(l) =
L�l

Â
n=0

ci(xn)cj(xn+l)

or simply

Zij(l) = (L + 1� l)cor
⇥

ci | cj
⇤

(lDt)
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leaving a total of L transition counts for the shortest possible lag time
l = 1. As a shorthand notation we define the row sums of Z by

zi(l) ⌘ Â
j2M

Zij(t), (2.6.1)

which are the total number of times the trajectory started from state
i. Note, that z(l) is not independent of the lag time l since the last l
timesteps at the end of the trajectory are omitted from the counting.

The purpose of this counting is two-fold: To estimate transition
probabilities and their statistical uncertainty in these estimates. While
the estimation (so far) does not depend on the total number of ob-
served transitions, the statistical properties, such as standard devia-
tions surely will. Regarding this, one has to be careful when counting.

We distinguish between two approaches to counting, i.e to estimate
the number of events of interest from an observed trajectory. Both
approaches differ only in the case where we estimate for lag times l >
1 larger than the native sampled time step Dt. The remaining question
is, how to treat jumps between jumps. Nevertheless, the total number
of counts has to match the total length of the trajectory ttotal = LDt
divided by the lag time t = lDt which is the number of jumps of lag
time t that can be contained in the trajectory.

A. Sampling at fixed time intervals t only

Here the trajectory is sampled at lag time intervals t and only these
sample points are used for counting

Zij(l) =
bL/lc�1

Â
k=0

ci(xl·k)cj(xl·(k+1)) (2.6.2)

while intermediate points are neglected. When the observed jump
process is Markovian at t, this generates statistically independent
transition counts. It is therefore straightforward to use the resulting
count matrix in order to derive expressions for the likelihood and pos-
terior of the transition matrix (see sections below). This is important
in order to obtain models that do not underestimate the statistical un-
certainties [58, 52, 64]. A disadvantage of this approach is that for lag
times l � 1 much of the data is ignored, which can lead to numeri-
cal problems. In particular, states that have been actually visited or
transitions that have been actually observed might be missed when
subsampling the data at interval t, which may be a reason for esti-
mators breaking down or giving problems to compare estimations at
different lag times.

B. Sampling using a shifting window

In this method we use a count window of width t = lDt that is
shifted along the time line
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Zij(l) =
(L + 1� l)

l
Cor

⇥

ci, cj
⇤

(lDt)

which is exactly the way the computation of transitions using a cor-
relation function works with the benefit that this method uses all
observed transitions. The resulting count matrix has to be corrected
for over-counting with a factor of 1/l as for lag times l > 1 not all
counts can be considered independent. However, the scaling does
not affect maximum posterior estimators (section 2.6.3), such that the
estimates are asymptotically correct and the window count method is
generally preferred for this case. In principle this counting can be re-
garded as an averaging over many estimations with the same length:
The error stays, but the mean improves. If the observations would
be independent, which we can normally not assume, also the error
would decrease!

2.6.2 Likelihood, Bayesian

We finally address the problem of statistical uncertainty. The objective
is to find a parametrization of a Markov State Model that is able to
reproduce the dynamics in the trajectory. It is intuitively clear that
in the limit of an infinitely long trajectory, the elements of the true
transition matrix are given by the trivial estimator

T̂ij(t) =
Zij(t)

Âk2M Zik(t)
,

i.e. the fraction of times the transition i ! j led out of state i into
state j. For a trajectory of limited length, the transition matrix T that
reproduces this trajectory is no longer uniquely determined which
can easily be seen: For a trajectory of length L + 1 the above estima-
tor would still result in a valid transition matrix, with the additional
property that it will reproduce the initial observation more likely than
any other transition matrix. Still, small (or even large) changes in
these transition probabilities might also, although being less proba-
bly, lead to the same observation and so the estimation from a finite
trajectory must carry an uncertainty.

The better the agreement, the more the predictions from the model
can be assumed to be correct. Here, we introduce a term called like-
lihood L which is the probability, that a given observation (e.g. a
trajectory) will be reproduced by a certain (Markov) model, in our
case, represented by the sought-after transition matrix T. Assuming,
that a parametrized model is already given by a transition matrix T,
we can, following [87], write down the likelihood P (Z | T) for this par-
ticular model to reproduce a certain observation that is encoded in
a particular count matrix Z. As long as the matrix Z contains statis-
tically independent transition counts (see discussion in section 2.6.1
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above), the probability that a particular T will generate a sequence
{y0, ..., yL} as the observed trajectory is given by the product

P (Z | T) µ
L�1

’
k=0

T[yk ,yl+1]

of the individual jump probabilities Tij. The result in terms of the
count matrix Z is a multinomial distribution

P(Z|T) µ ’
i,j2M

TZij
ij (2.6.3)

or in the more convenient logarithmic likelihood

log P(Z|T) = Â
i,j2M

Zij log(Tij) + const

where we omitted the normalization parameters. What we were ac-
tually aiming for is the reverse direction of implication, the posterior
probability P (T | Z): The answer to the question, How probable is
a particular model, if the observation is given? To solve this, Bayes’
theorem (found e.g. in [88]) is applied which states that

P (T | Z) =
P(Z | T)P(T)

P(Z)

=
P(Z | T)P(T)

ÂT0 P(Z | T0)P(T0)

or even simpler
P(T | Z) µ P(Z | T)P(T).

All we have to do is to choose P(T), the prior probability to consider
a certain model in the first place without any knowledge about an
observation. We explicitly assume that the parametrization of T only
permits valid transition matrices and that we do not need to use the
prior probabilities for this. The simplest choice of a prior would then
be to assume all models to be equally likely

Puniform (T) µ 1

which seems trivial, but leads to Dirichlet distributions as the wanted
posterior probability distribution P (T | Z). If we want to include
more a priori knowledge about our model we can do this, although it
is often practical to use a conjugate prior to the multinomial likelihood
distribution. This ensures that prior and posterior will have the same
(algebraic) form which is a Dirichlet Distribution for the multinomial
model parametrization in the likelihood L.

If the prior is given by a Dirichlet distribution we can write down
the form

log P (T) = Â
i,j2M

Zprior
ij log(Tij) + const
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which can be regarded (just from the algebraic shape) as a likelihood
function for a transition matrix with the same transition probabilities
but additional counts Zprior. Now using different priors is equivalent
to simply adding prior counts to the real observed ones

log P (T | Z) = Â
i,j2M

⇣

Zprior
ij + Zij

⌘

log(Tij).

As long as we use a prior of this form, we define the effective count
matrix by

Zeff := Zprior + Z.

and note that the case of the uniform prior P(T) = 1 implies that
there are no prior counts Zprior

ij = 0 which is in agreement with the
interpretation as additional counts.

2.6.3 Maximum probability estimators

Once we have a computable form of the posterior, we can find repre-
sentative models with certain properties from the total set of possible
parameters. The application of some of these properties leads to an
algebraic from of the transition matrix in terms of the count matrix.
If we assume a uniform prior and want the model with the highest
posterior probability, we find

T̂ij(t) =



argmax
T

P(T | Z)

�

ij
=

Zij(t)

Âk2M Zik(t)
(2.6.4)

for the estimated transition probabilities, which is simply the row-
wise normalized count matrix or the estimation we have computed
from the canonical correlation matrix.

In the limit of infinite sampling, i.e., trajectory length N ! •,
P(T|C) converges towards a Dirac delta distribution with its peak
at T̂(t). In this case the prior contribution vanishes

lim
N!•

T̂ij = lim
N!•

Zprior
ij + Zij

zprior
i + zi

= lim
N!•

Zij

zi
= Tij, (2.6.5)

i.e., the estimator is “asymptotically unbiased”.
Note, that the estimator T̂(t) does not necessarily fulfill detailed

balance PT̂ = T̂TP even if the underlying dynamics is in equilibrium
and thus detailed balance holds for the true transfer operator T

t

. In
many cases it is desirable and advantageous to estimate a transition
matrix that does fulfill detailed balance, but there is no known closed
form solution for the maximum probability estimator with the de-
tailed balance constraint. One simple way to ensure detailed balance
for trajectories sampled from equilibrium is to count the trajectory
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forward and backwards and correct for the over-counting. The count
matrix then takes a symmetric form

Zsym(t) =
1
2
(Z + ZT)

and as long as the prior is symmetric, the posterior estimator will also
fulfill detailed balance [53, 79]. This method is asymptotically correct
if the underlying dynamics is reversible and the starting points of
the trajectory were drawn from equilibrium. In this case forward
and backward counted trajectory have equal probabilities and so the
combined use leads to a symmetric count matrix sampled from the
same dynamics. Another, more direct way was presented in Ref. [62],
an iterative method to obtain a reversible estimator that was later
reformulated into a computationally more efficient algorithm [1].

2.6.4 Expectation and Uncertainty

Since simulation data is finite, all validation procedures (either consis-
tency checks or comparisons to experimental data) need to account
for statistical uncertainties. For these, standard deviations or con-
fidence intervals induced by the posterior distribution of transition
matrices are of interest. It follows from the well-studied properties
of the Dirichlet distribution in the posterior distribution of transition
matrices [87] that the expectation value for posterior distribution of
transition matrices is given by

T̄ij = E[Tij] =
Zeff

ij + 1

zeff
i + M

while the variance takes the form

Var[Tij] =
(Zeff

ij + 1)((zeff
i + M)� (Zeff

ij + 1))

(zeff
i + M)2((zeff

i + M) + 1)
=

T̄ij(1� T̄ij)

zeff
i + M + 1

.

Both equations display a 1/M dependency. To understand this im-
plication consider a trajectory of a given molecular system which
is analyzed with two different state space discretization, one with
Msmall = 10 and one with Mlarge = 1000 and assume that one lag
time t has been chosen which is long enough to provide Markov
models with small discretization error for both M (discussed in the
previous section). When using a uniform prior (Zeff = Z), the ex-
pectation values would be different for the two discretization: In the
Mlarge case, if the total number of observations L is not large enough,
the information is small compared to the information inferred by the
prior distribution and the expectation value would be biased towards
the uninformative Tij ⇡ 1/M matrix. Compared to the case of Msmall

case one would need (Mlarge/Msmall)2 times more samples to simi-
larly suppress the prior. This behavior is statistically correct w.r.t. to
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the prior assumption, but for practical cases undesirable. Thus, for
uncertainty estimations it is suggested to use a less influencing prior
which allows the observed data to have more impact. The general
proceeding is to keep the prior uniform to not introduce an artifi-
cial bias Zprior

ij = a and reduce the value of the contraction parameter
a! �1. The result is, that the prior probability distribution (without
observations) is shifted from a totally uniform distribution (a = 0)

P(Tprior) = const

towards a highly localized distribution (a ' �1) where only one entry
per row is approximately one and the others are are about zero

P(Tprior) µ

8

<

:

1 if 8a 9b : Tab ⇡ 1, T[a,c 6=b] ⇡ 0

0 else

Three choices are common:

1. the 1/M prior (a = 1/M� 1) leading to the first moments [[2, 60]]

T̄ij = E[Tij] =
Zij + 1/M

zi + 1
,

Var[Tij] =
(Zij + 1/M)((zi + 1)� (Zij + 1/M))

(zi + 1)2((zi + 1) + 1)
=

T̄ij(1� T̄ij)

zi + 2
,

2. the “Null prior” (a = �1), the extreme case [35, 2] (see chapter
3) giving the moments

T̄ij = E[Tij] =
Zij

zi
= T̂ij,

Var[Tij] =
(Zij)(zi � Zij)

(zi)2(zi + 1)
=

T̄ij(1� T̄ij)

zi + 1
.

Thus, with a null prior, the expectation value is located at the
likelihood maximum, or equivalently at the maximum of the
posterior when a uniform prior would be used.

3. The “neighborhood prior” which assumes additional knowl-
edge about the topological structure of the model and assumes
a symmetric (e.g. uniform or 1/M prior) restricted to the subset
of transitions induced by the topology (here the states assumed
to be adjacent within the lag time t) and a “null prior” on all
other transitions. An example will be given in chapter 3.

For the first two prior choices, the variances Var[Tij] are independent
of the number of discretization bins used and all three of them decay
asymptotically with the number of transitions Ziout of the state i,
which is expected for sampling expectations from the central limit
theorem.
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2.6.5 Errors in Dependent Variables

In practice, one is often not primarily interested in the uncertainties
of the transition matrix elements themselves, but rather in the uncer-
tainties in properties f (T) computed from the transition matrix. Two
different approaches have been suggested for this:

1. Linear error perturbation [60, 2, 61]: Here, the posterior dis-
tributions of transition matrices are approximated by a Multi-
variate Gaussian Distribution using the first two moments. If
the property of interest f (T) is approximated by a first-order
Taylor expansion

f (T) ⇡ f (T̄) + Â
i,j2M

�

Tij � T̄ij
�

∂Tij f
�

�

�

T̄

the distribution in transition matrices can be propagated using
Gaussian error propagation. Here, ∂Tij f

�

�

�

T̄
refers to the partial

derivative of the function f w.r.t. the i, j-th entry in the transi-
tion matrix T evaluated a the mean transition matrix T̄. This re-
sults in a Gaussian distribution of the property of interest with
a mean and a covariance matrix that can be computed in terms
of Z. The approach is deterministic, which is desirable in sit-
uations where uncertainties are used to steer an adaptive sam-
pling procedure [89, 50, 61, 60], and may be implemented very
efficiently. The disadvantage of this approach is that the Gaus-
sian approximation of the transition matrix posterior is only
asymptotically valid, but breaks down easily when few counts
have been observed and hence permits unphysical values (e.g.
Tij outside the range [0,1]). Moreover, depending on the non-
linearity of f , the first-order Taylor expansion is only valid for
small deviations from the mean and thus the error estimation is
only good for large numbers of transitions at all.

2. Markov chain Monte Carlo (MCMC) sampling of transition
matrices [90, 64, 58]: In this approach, a set of transition matri-
ces is drawn from the posterior distribution. The property of
interest is then calculated for each transition matrix, and the un-
certainties are directly estimated from this set. This approach re-
quires that the true distribution is sampled often enough so that
well-converged estimates of standard deviations or confidence
intervals can be made. The advantage of this approach is that
no approximations are made concerning the functional form of
the distribution or the property being computed. Furthermore,
this approach can be straightforwardly applied to any function
or property of transition matrices, including complex properties
such as transition path distributions [35] without deriving the
expressions necessary for the linear error perturbation analysis.
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Its disadvantage is that sampling may become slow for large
matrices or complex objective functions.

The issue will be addressed in detail in chapter 3.

2.6.6 Validation: Chapman-Kolmogorov test

As mentioned earlier it is often usually not possible to describe the dy-
namics in a projected / discretized observable by a Markov model ex-
actly. And as the choice of an appropriate lag time for the parametriza-
tion of our model is not unique it is desirable to find a suitable mea-
sure for these purposes. The goal is to match the prediction of the
dynamics as closely to the observation as possible. If we now choose
a certain lag time t, the model is exact for this specific choice, but
predictions for longer times become inaccurate in the sense that (as
mentioned in section 2.4.2) there is an error E(t) depending on the
discretization and on the choice of the lag time t. We wish to check
if

(T(t))k ⇡ T(kt), (2.6.6)

holds where the left side is the prediction of the model, while the
right side is the exact, observed dynamics. For more practical pur-
poses we compare the result for different initial distributions and
evaluate the result directly from the estimated model as well as from
the observed trajectory and compare for a range of lag times.

In section 2.4.2 we have formulated conditions for choosing a dis-
cretization and a lag time t that minimize the discretization error of
a MSM. However, in practice it is essential to conduct a test whether
a lag time and a discretization have been chosen so that the Markov
model obtained is at least consistent with the data used to parametrize
it within statistical error. In the previous discussion the discretization
error was measured as the difference between Markov model prop-
agation and true propagation in the continuous space. Since the ex-
act propagation is usually not accessible, it is easier to measure the
propagation error on the discrete space directly. In particular, we are
interested in checking whether Eq. (2.6.6) with the estimated approx-
imations

(T̂(t))k ⇡ T̂(kt), (2.6.7)

holds within statistical uncertainty. Here, T̂(t) is the transition ma-
trix estimated from the data at lag time t (the Markov model), and
T̂(kt) is the transition matrix estimated from the same data at longer
lag times kt. Note that when the non-reversible maximum likelihood
estimator, Eq. (2.6.4), is used, this approximation is trivially exact
for k = 1 since the Markov model was parametrized at lag time t

to match exactly the observed transition probabilities. Also, for all
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k � t2/t, the approximation should always be good as well, as Mar-
kov models correctly model the stationary distribution, even for bad
choices of t and discretization (see section 2.4.2). Thus, this test is
only sensitive in ranges of k greater than one and smaller than the
global relaxation time of the system.

There are various ways how a test of Eq. (2.6.7) could be imple-
mented, but it it should consider the following points:

1. For large transition matrices, individual elements of T̂(kt) or
(T̂(t))k can be very uncertain, and comparing M⇥M elements
may be cumbersome. Therefore, we suggest to compare the
probability of being in a given set of states, A, when starting
from a well-defined starting distribution. This narrows the test
down to few observables and allows to check the kinetics of
states that are of special interest, such as folded / unfolded or
metastable states.

2. The test should be done for all times kt for which trajectory
data is available. Tests that compare Markov models that differ
only one lag step (t and 2t) are likely to be unreliable as small
approximation errors at short times may amplify at long times.

3. The quality of the approximation in Eq. (2.6.7) should be judged
within the statistical uncertainties induced by the data.

Here we present an implementation that takes these properties into
account [1]. Let p be the stationary probability of the Markov model
T̂(t) and

p

[A]
i :=

pi 1A(i)
Âj2M pj 1A(j)

the corresponding normalized stationary distribution restricted to an
arbitrary set A. As a model test, the following “relaxation experi-
ment” may be carried out: Using p

[A] as initial probability vector, the
probability of being at the same set at all later times kt is computed
according to the observed trajectory data and the Markov model, and
is subsequently compared. The trajectory-based time-dependence of
the probability to be in set A after time kt with starting distribution
p(A) is

p̂obs
AA(kt) = Â

i,j2M
p

[A]
i T̂obs

ij (kt) 1A(i) (2.6.8)

where T̂obs(kt) is the trajectory-based estimate of the conditional
jump probabilities. Likewise, the probability to jump to A according
to the MSM is given by:

p̂msm
AA (kt) = Â

i,j2M
p

[A]
i Tk(t) 1A(i). (2.6.9)
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Testing the validity of the Markov model then amounts to testing how
well the equality

p̂obs
AA(kt) = p̂msm

AA (kt) (2.6.10)

holds, which is essentially a test of the Chapman-Kolmogorov prop-
erty. Note that the initial distribution p

[A] is simply a chosen refer-
ence distribution with respect to which the comparison is made.

The equality in Eq. (2.6.10) is not expected to hold exactly as a result
of statistical uncertainties caused by the fact that only a finite number
of transitions are available to estimate the true transition probabilities.
To account for this, we use the variance in the likelihood computed
for the Dirichlet distribution of a two state model with the two states
{A, W\A} as derived in section 2.6.4. The uncertainties s

obs
AA(kt) (one-

sigma standard error) of the transition probabilities is then estimated
as

s

obs
AA(kt) =

s

k
p̂obs

AA(kt)(1� p̂obs
AA(kt))

Âi2A ẑi(kt)

with ẑi(kt) being the number of transitions originating in state i
while assuming a lag time of kt. The test finally consists of assessing
whether Eq. 2.6.10 holds within these uncertainties.

For an illustration, a single 250,000 step trajectory was simulated in
the 2D-three-well diffusion model (see appendix D for model details)
started from the energy minimum at x = (10, 10). Figure 2.5 shows
the corresponding results: For each of the seven different discretiza-
tion shown in the first column of Figure 2.5 the probability to stay in
a state is shown for the three states with the largest Markov model er-
ror (highlighted in 2.5, left column). It is apparent that the metastable
three-state discretization (Figure 2.5(i)) performs well, however sacri-
ficing metastability in order to more finely discretize the transition re-
gion, generating a superior discretization (Figure 2.5(ii) and (v)-(vii)).
The “uniform” random 25-state clustering (Figure 2.5(iii)) performs
worst but can be improved significantly by using more states (Fig-
ure 2.5(iv)). This further supports our theoretical finding that either
a clustering adapted to the eigenfunctions or using more states can
improve the quality of the constructed MSM.

2.7 discussion and conclusion

Markov modeling is a simulation analysis tool which is rapidly gain-
ing popularity in the MD community. In this chapter we have sum-
marized the state-of-the-art of generation and validation of Markov
models of molecular kinetics. The theoretical framework and impor-
tant concepts have been laid out and, in addition, some important
methodological gaps have been filled.

As shown in section 2.1, any physically reasonable implementation
of equilibrium molecular dynamics can be understood in terms of
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Figure 2.5 – Chapman-Kolmogorov test for the three-well-diffusion-model (see also Figure 2.4).
For each of seven discretizations (first column), the Chapman-Kolmogorov test is shown for the
three states with the largest error (labeled with white numbers in the first column). Relaxation
curves from a 250,000 step trajectory, p̂obs

AA(kt) (black) along with the uncertainties s

obs
AA(kt) are

compared to the model prediction, p̂msm
AA (kt) (red). The total error s given in the top right corners

is measured as the 2-norm of the vector containing the differences p̂obs
AA(kt)� p̂msm

AA (kt) for time
points in the range k 2 {1, 2, 4, 8, 16, 32, 64, 128} and a chosen lagtime of t = 64.
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relaxation processes that are described by the eigenfunctions of the
dynamical operator, i.e. the transfer operator T

t

. The role of these
eigenfunctions in molecular kinetics cannot be overemphasized, ir-
respective of whether Markov models are used or not, for they un-
ambiguously yield a structural dynamical interpretation of the relax-
ation processes. Each eigenfunction is linked to one eigenvalue with a
corresponding relaxation time scale that is accessible experimentally,
thus Markov models can serve as a means to interpret kinetic exper-
imental data (we will address this idea again in chapter 5). From a
modeling point of view, the dynamical decomposition in Eq. (2.2.8)
shows that these eigenfunctions define coordinates in which slow and
fast dynamics can be separated exactly. Indeed, they are the only
choice of coordinates for which such a separation is possible and any
different attempt to model the dynamics via a projection onto slow
degrees of freedom or order parameters will necessarily introduce
memory terms that are challenging to deal with [91]. In chapter 5

we will introduce a new way to circumvent the projection problem by
relaxing the constraints of a Markov model.

One of the key insights from the work in this chapter that was
published in Ref. [1] is that the discretization error made by using a
Markov model on a discrete state space can be controlled by choos-
ing the discretization and the lag time adequately (see section 2.4). In
particular, the quality of the Markov model depends on how well the
discretization approximates the slowly relaxing eigenfunctions of the
true dynamics. It is shown in section 2.4.2 how the Markov model
can be used to precisely approximate only selected slow processes
with relatively few discrete states slicing the state space finely in re-
gions where the corresponding eigenfunctions change rapidly while
leaving the discretization coarse in regions where only the fast eigen-
functions vary. This answers a key concern about discretization-based
kinetic model approaches, namely that for complex macromolecular
systems there is no hope to enumerate all energy basins in the dis-
crete model. The present analysis shows that this is indeed not nec-
essary and that in principle, very few states are sufficient to obtain
an excellent model. Moreover, the analysis also shows that metasta-
ble partitions suggested in previous works [52, 51] are good among
partitions where the number of states n is allowed to be less or equal
to the number of metastable states in the system, but that the approx-
imation error can be further reduced by increasing the number of
partitions, even if this means that the individual discrete states are no
longer metastable.

This immediately raises the question how such a discretization can
be created for a complex molecular system where the true eigenfunc-
tions are initially unknown and this issue has not yet been solved.
Based on current results, it is clear that subdividing discrete states
should always reduce the discretization error. Thus, when geometric
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clustering methods are used to subdivide state space, it is advisable
to use as many clusters as possible without running into serious sta-
tistical problems. In the longer term, much better discretization can
be expected from methods that adaptively discretize in an iterative
manner. For example, first an initial Markov model is created based
on a geometric clustering, these clusters are then subdivided, pro-
viding a finer Markov model. The discretization error of the coarser
model with respect to the finer model is computed using the error
bound from section 2.4.2, and it is then decided which states are kept,
lumped or split. An adaptive method based on maximizing metasta-
bility has been proposed in [52], and a similar approach may be fol-
lowed by minimizing the error bound from section 2.4.2 as we have
qualitatively demonstrated.

In a broader sense, adaptive space discretization methods based on
error bounds are commonly and successfully used in other disciplines
where equations must be solved on a grid, e.g., in fluid mechanics
and engineering. Moving to such approaches, MD becomes more and
more a numerical analysis problem of molecular phase spaces, and
may therefore benefit from the understanding of discretization meth-
ods that have been acquired in scientific computing.



3
E F F I C I E N T C O M M I T T O R C O M P U TAT I O N

This chapter is based on the publication

[2] Prinz, J.-H., Held, M., Smith, J. C. & Noé, F. Efficient Computa-
tion, Sensitivity, and Error Analysis of Committor Probabilities
for Complex Dynamical Processes. Multiscale Model. Sim. 9,
545–567 (2011). doi 10.1137/100789191.

3.1 introduction

In many cases, characterizing the dynamics between two subsets A, B ⇢
W of configurational space W provides a satisfactory picture of the
process (e.g. in protein folding dynamics, A being unfolded and B
native [35]), whereas in other cases the simultaneous consideration
of multiple substates is necessary. It is now widely recognized that
the committor probability, also called splitting probability or prob-
ability of folding in some contexts, is one of the central mathemat-
ical objects needed for intersubstate processes to be characterized
[92, 93, 94, 95, 96, 97, 98, 99].

The committor q is a state function that provides the probability that
a system initially at state x 2 W will encounter B first rather than A
under the action of the given system dynamics. The committor thus
defines a dynamical reaction coordinate, which has the advantage
over ad hoc reaction coordinates that it does not bring the danger of
concealing relevant dynamics of the system. In this chapter, we inves-
tigate how the committor probability can be efficiently computed for
large-scale systems and study its sensitivity as well as its uncertainty
in cases where the full dynamics has been inferred from a finite set
of observations.
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3.2 theory

3.2.1 Definition

Given a time-discrete Markov process with state space W as defined
in chapter 2, the committor values

q : x 2 W 7! q(x) 2 [0, 1]

for each state x 2 W are defined as the probability that a process
starting in state x will reach subset B ⇢ W before it hits subset A ⇢ W.
Thus it can simply be evaluated by running Monte Carlo simulations
starting in x until they reach either A or B with the committor being
the fraction of simulations that reach B first. For the examined time-
discrete case we also need to specify the point in time, when we test
if a subset is hit. A check before the first transition means that starting
in one of the two sets is already a hit and so we define naturally the
committor values for these states x 2 A and x 2 B to be

q(x) = 0, 8x 2 A
q(x) = 1, 8x 2 B

whereas checking after the first transition allows for a non-zero prob-
ability to leave the two subsets and henceforth leads to slightly differ-
ent boundary conditions for the committor values

q(x) � 0, 8x 2 A
q(x)  1, 8x 2 B.

3.2.2 Relevance of the committor

Given a dynamical model, let us examine a number of aspects of the
system dynamics that can be accessed via the committor probability:

Firstly, for a continuous state space W all subsets I ⇢ W of constant
committor probability

I : q 2 [0, 1] 7! I(q) := {x 2 W | q(x) = q} ⇢ W

part the state space into two disjoint subsets

A ⇢ I-(q) := {x 2 W | q(x) < q} ✓ W, q > 0

and
B ✓ I+(q) := {x 2 W | q(x) > q} ✓ W, q < 1.

The committor is thus a measure for the progress of a process or
reaction, i.e. it is the ideal reaction coordinate for the process A! B
[92, 96, 99]. Of special interest in this context is the isocommittor
surface WTS = I(0.5) ⇢ W, which can be interpreted as the transition
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state ensemble in protein folding theory [100]. If the state space is
discrete or infinite but without topological structure the definition
of I, I+ and I- has to be seen in a less strict sense. The transition
state ensemble is then WTS =

S

q⇡0.5 I(q) ⇢ W, the set of states of
approximately committor value 0.5.

Once the committor has been computed, the change of any state
variable (an observable)

a : x 2 W 7! a(x) 2 R

may be monitored along the A! B coordinate using

a(q) = E [a(x)]I(q) =

R

I(q)dx p(x)a(x)
R

I(q)dx p(x)
,

with p being the stationary distribution. If the stationary distribution
is unique (see chapter 2.2), one can define a Potential of Mean Force
(PMF) V given by

V(q) = V(q0)� b

-1

 

log

R

I(q)dx p(x)
R

Wdx p(x)
� log

R

I(q0)
dx p(x)

R

Wdx p(x)

!

(3.2.1)

which can be interpreted as the origin of a virtual force causing
changes in the stationary probability along the committor value q
at inverse temperature b. The potential V(q0) at some arbitrary com-
mittor value q0 can be chosen freely to fix the absolute height of the
potential function. For discrete state spaces W this definition fails and
one has to introduce e. g. binning.

For simplicity, we assume next, that the system dynamics can be
given in terms of a transition matrix T or a rate matrix K over the
countable state space W to compute transport properties from A to B
via Transition Path Theory (TPT) [101, 63]. In particular, the reactive
flux F between two states i and j is then given by

Fij = piq-
iKijq+

j

for rate matrices [63], or

Fij(t) = piq-
iTij(t)q+

j

if the transition probability matrix T is used [35]. The forward q+

and backward q- committor will be defined later in section 3.2.3. The
reactive flux Fij is proportional to the probability that the transition
i ! j is part of the reactive trajectories from A to B. The reactive
trajectories directly go from A to B (i.e. never hitting A or B except
from the beginning or end) and thus effectively contribute to the A!
B reaction, whereas trajectories that start in A and directly go back
to A are not reactive. Also the net transport through i ! j can be
expressed using the reactive flux by

F+
ij = max{Fij � Fji, 0}, (3.2.2)



52 efficient committor computation

which defines a network-flow out of A and into B that can be de-
composed into a set of A ! B reaction pathways along with their
respective probabilities [63, 35, 101].

Lastly, one can also express different rates using the committor
probability. The global A ⌦ B flux F from TPT is defined as the aver-
age number of trajectories traveling between A and B per time unit.
It can be expressed by [63]

F = Â
i2A,j/2A

Fij = Â
i2A,j/2A

F+
ij (3.2.3)

and is the inverse expected time needed for an A ⌦ B cycle. It can be
composed into the inverse forward rate constant kAB and the inverse
backward rate constant kAB by

F-1 = kAB
-1 + kBA

-1.

In order to calculate these rate constants directly we need the mileston-
ing probability p

mile
A , i.e. the equilibrium expectation over all states

x 2 W that the process has last been in A while p

mile
B = 1�p

mile
A is the

expectation that it has been in B before. The milestoning probability
can be computed by

p

mile
A ⌘ Â

j2W
piq-

i

and using a detailed balance condition

p

mile
A kAB = (1� p

mile
B )kBA,

we can derive the expression for the A! B rate constant kAB as

kAB =
⇣

p

mile
A

⌘-1
F.

For alternative rate definitions and their relations see e.g. [102].
Given the fundamental relevance of the committor probability in

the characterization of dynamical processes, it is important to be able
to compute q efficiently and to understand its sensitivity to pertur-
bations; especially in cases where the system dynamics can be com-
puted only approximately, e.g., by some sampling scheme such as
molecular dynamics simulations or Monte-Carlo dynamics.

3.2.3 Committor Equations

We will now give a derivation of the well-known committor equation
using a recursive approach for the case of a finite state space W with
|W| = M states. For this we will construct a set of linear equations,
that uniquely define the committor and only use assumptions which
are in accordance with the definition of the committor. To be precise,
given a transition matrix T 2 RM⇥M we define the forward committor
q+ to be the (unique) solution of the following set of equations:
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1. The committor for states a 2 A are zero by definition

q+
x ⌘ 0, 8x 2 A,

2. for states b 2 B the committor is one

q+
x ⌘ 1, 8x 2 B,

3. while for all intermediate states i /2 A [ B the committor is
chosen in accordance with the dynamics given in the transition
matrix T: That means that the committor qi of state i can be
set into relation to the committor values of all connected states
which need to be weighted with the conditional probability to
reach this particular neighboring state. This mathematically be
expressed by

q+
i = Â

j2W
Tijq+

j , i /2 A[ B.

These equations can conveniently be reformulated in matrix notation
as the solution of the set of linear equations

(T� Id)q = 0 (3.2.4)

subject to boundary conditions

qx2A = 0, qx2B = 1.

In contrast to this forward definition, a backwards directed committor
probability, q-

i is defined respectively as the probability that being in
state i, the system was in B last rather than in A. In order to obtain
the backward committor, we use the previously defined backward
propagator

T- := P-1TTP,

which contains the probabilities that if the system is in state i then
it came from state j (see section 2.2). Proceeding in analogy to the
forward committor q+ we get

q-
i = 0 if i 2 A

q-
i = 1 if i 2 B

Â
j2W

T-
ijq

-
j = 0 if i /2 A[ B.

for the backward committor q-. For reversible dynamics the forward
and backward propagations are equal (see section 2.2) from which it
immediately follows that

q-
i = 1� q+

i

holds. One should note, that the different definitions can lead to am-
biguity when speaking just about the committor. One has to specify:
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1. the target set A or B to be hit first,

2. the direction of propagation: forward (T) or backward (T-),

3. and for time-discrete processes, when to measure the hitting:
At time step t or the next step t + 1.

This, in principle, allows for 8 different committor functions and if
not stated otherwise, we denote with q the forward committor to hit
set B at time t.

3.2.4 Rate Matrix

Given the rate matrix K 2 RM⇥M, we can use a similar argument as
for the time discrete case and derive expressions for the committor

qi = 0 if i 2 A
qi = 1 if i 2 B

Â
j2W

Kijqj = 0 if i /2 A[ B.

and the corresponding equations hold also for the backward commit-
tor. A proof can be found in [103, 63].

3.2.5 Transforming between Rate and Transition Matrices

It turns out that there is a simple way to transform rate matrices
into transition matrices and vice versa that leaves the committor prob-
abilities unchanged. This transformation is useful when a method is
available to compute the committor from the transition matrices, but
not for rate matrices, or vice versa.

Theorem 1. Let K 2 RM⇥M be a rate matrix and Tc(K) 2 RM⇥M a
stochastic matrix defined by the transformation

Tc(K) = c K + Id, 0 < c < cmax (3.2.5)

with cmax = �mini2W Kii representing the largest entry in magnitude in
the rate matrix. Then T(K) and K have the same committor probabilities
for any choice of A, B ⇢ W.

Proof. For arbitrary A and B we need to show, that if K fulfills the
committor equations for rate matrices, then Tc(K) has to fulfill the
committor equation for transition matrices. By definition this is true
for all states x 2 I ⌘ A [ B. For all other states we start with the
committor equation for transition matrices and replace the transition
matrix by Tc(K) and get

Â
j/2I

�

c · Kij + dij
�

qj = qi
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which can be simplified to the committor equation for rate matrices

c · Â
j2I

Kijqj = 0.

The theorem is independent of the choice of c, but 0 < c < cmax

assures that the row sum of zero in the rate matrix translates into a
row-stochastic transition matrix Tc(K). A more direct proof is the fact
that scaling of matrices by a constant factor and adding multiples of
the identity matrix do not change the eigenvectors of a matrix. Thus
Tc(K) inherits the same eigenvectors as K, but with different eigen-
values. Since we show later, that aside the boundary conditions, the
committor can be computed from the eigenvectors, both matrices will
result in the same committor probabilities. However, it is important
to note that Tc(K) will not reproduce the dynamical behavior of the
rate matrix K on any but infinite timescales.

The theorem allows the methods explained later to be used with
equal computational effort to rate matrices. In particular, the theorem
will keep a potentially sparse structure of the rate matrix and allows
to use sparse eigensystem algorithms in these cases as well. As a
side remark the committor equations for the rate matrix takes the
particular simple form

Kq = 0, qx2A = 0, qx2B = 1.

The committor equations in Eq. (3.2.4) can easily be solved with
any linear systems solver. When the system is very large and sparse,
a sparse linear systems solver may still be able to handle them ef-
ficiently. An alternative approach to compute the committor proba-
bility from K has been proposed in [104]. However, this approach
requires the K-matrix to be inverted, which effectively limits its ap-
plicability to systems of |W|  104 states.

3.3 alternative committor computation

An alternative view is obtained when formulating the committor
problem in terms of the dominant eigenvectors of either K or T(t).
This is useful from a numerical point of view, because efficient solvers,
such as the Power method or Krylov subspace methods, exist for dom-
inant Eigenvectors. Moreover, it is useful from a physical standpoint
as it allows the committor to be understood in terms of the slowest
relaxation process of the system.

An approach to approximate q in terms of the second eigenvector
of K or T(t) has been proposed in [105]. This approach is valid
only if the second eigenvector is similar to the A! B committor and
the second and third eigenvalues are well separated. In molecular
processes, this is often referred to as a “two-state” process, where
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there exists one slow process that is clearly separated from all other
processes in terms of timescales (l3 ⌧ l2 ⇡ 1). In the following,
we will derive equations that allow the committors to be computed
exactly in terms of dominant eigenvectors for any Markovian system.

3.3.1 A! B Committor

We construct an altered transition matrix T̃ with absorbing states A
and B from the original dynamics in T by

TAB
ij =

8

>

>

>

<

>

>

>

:

Tij if i /2 A[ B

1 if i 2 A[ B, j = i

0 if i 2 A[ B, j 6= i

assuming that the underlying dynamics is ergodic or equivalently T
irreducible, positive recurrent and aperiodic. We then define a tran-
sition matrix for infinite times T̃• that transports any initial distribu-
tion infinitely into the future

T̃• = lim
k!•

T̃k (3.3.1)

and consequently directly into either A or B which follows from er-
godicity. Given an ensemble which is located completely at state
x 2 W, its committor value qx is then given by the total probability
to find this ensemble in set B after it has been propagated infinitely
into the future using T̃•. The initial ensemble can be expressed by a
canonical unit vector ei : eix = dix leading to

qx = Â
b2B

(eT
x T̃•)b = Â

b2B
T̃•

xb (3.3.2)

as a way to compute the committor. In the following we will show
that T̃• and thus the committor q are computationally fast and robust
to derive in terms of the eigenvectors of T. Without loss of generality
we treat here the case where the we reduce the sets A = {a} and
B = {b} to a single state each.

In cases where the sets are larger they can simply be aggregated
into a single state in the definition of T̃. For this one defines a crisp
membership matrix

c 2 [0, 1]M0⇥M : i 2 WX, x 2 W 7! [0, 1]

with a reduced state space WX ⌘ W\(A [ B) [ {a, b} and M0 = |WX|
that simply clusters the states into a single state by defining

cix ⌘ ci(x) =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

1 if i = a ^ x 2 A

1 if i = b ^ x 2 B

1 if i /2 {a, b} ^ i = x

0 else

.
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Now Eqs. 2.4.3 and 2.4.4 can be used to get the clustered transition
matrix TX which can in this case be written as

TX = (c

TPc)
-1

c

TP Tc

in matrix notation. Now we can proceed as before using the clustered
transition matrix and construct T̃.

When diagonalizing T̃, one obtains

T̃• = lim
k!•

R · diag(l

k
1, . . . , l

k
N) · R-1 (3.3.3)

= R ·
✓

lim
k!•

diag(l

k
1, . . . , l

k
N)

◆

· R-1,

with R being the matrix of right eigenvectors of the infinite-time and
A, B-absorbing transition matrix T̃• and li the corresponding eigen-
values, which are sorted as usual from the largest to the smallest ab-
solute value. It follows from the Perron-Frobenius theorem that there
exist exactly two eigenvectors with eigenvalue one while the absolute
value of all other eigenvalues are strictly smaller than one. Since,

lim
k!•

|lk
i | = 0, 8li < 1,

we get the simplified representation

T̃• = R · diag (1, 1, 0, . . . , 0) · R-1. (3.3.4)

Using, that the right eigenvectors can be expressed in terms of the
left ones if these are chosen to be LT := R-1, allows to reduce the
computation to

T̃• = R · diag (1, 1, 0, . . . , 0) · LT

= R[·,1:2]LT
[1:2,·]. (3.3.5)

This means that once we have the basis of left eigenvectors that equal
R-1 we can avoid the expensive calculation of the inverse. Although
this is no advantage in general, in the present case, the left eigenvec-
tors of T̃• take a particularly simple form: T̃• will transported any
initial ensemble only to A or B so that any row in T̃• different from a
or b has to be zero. This structure of T̃• implies that the left eigenvec-
tors to the eigenvalue of one are a linear combination of the canonical
unit vectors ea and eb which leads to

LT
[1:2,·] = S · [ea, ea]

T

= S · Id[{a,b},·]

using a mixing matrix S 2 R2⇥2 and recall that Id[{a,b},·] 2 {0, 1}2⇥M

contains only a one at column a in the first row and a second one
in column b in the second row. Exploiting the fact that T̃• is still a
stochastic matrix we can choose one of the right eigenvectors to be
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the constant right Perron Eigenvector, 1 := R[1,·] = (1, . . . , 1). Conclu-
sively, only one (non-constant) right eigenvector r := R[2,·] needs to
be known for

T̃• = [1, r] · S · Id[{a,b},·], (3.3.6)

to be computed. Using Eq. (3.3.2) we find the compact form

[q!A, q!B] = T̃• · Id[·,{a,b}]

= [1, r] · S · Id[{a,b},·] · Id[·,{a,b}]

= [1, r] · S (3.3.7)

for the committor q!B and q!A respectively where we used that
Id[·,{a,b}] selects columns a and b. Thus the committor is a linear com-
bination of the two right Perron eigenvectors of T̃•. To derive an
expression for the mixing matrix S we make use of the boundary
conditions that

q!A
A = 1 q!B

A = 0
q!A

B = 0 q!B
B = 1

is true by definition. Multiplying Eq. (3.3.7) with Id[{a,b},·] from the
left will select rows a and b results in

Id[{a,b},·][q!A, q!B] = Id[{a,b},·] · [1, r] · S
 

q!A
a q!B

a

q!A
b q!B

b

!

=

 

1 0
0 1

!

=

 

1 ra

1 rb

!

· S

with the simple solution

S =

 

1 ra

1 rb

!-1

. (3.3.8)

Using Eq. (3.3.8) in (3.3.7) yields the final solution

[q!A, q!B] = [1, r] ·
 

1 ra

1 rb

!-1

or expressed for the single committor elements qxby

q!B
x =

rx � ra

rb � ra
. (3.3.9)

Finally, we have avoided the inversion of the matrix R of right eigen-
vectors required in Eq. (3.3.4) and instead reduced the effort to com-
puting one largest non-trivial right eigenvector. This is consistent
with the computational effort of solving the system of linear equa-
tion in Eq. (3.2.4).

Based on Eq. (3.3.9), the committor probability can be computed for
large sparse transition matrices using e.g. the Power method [106], or,
if the system dynamics is specified in terms of the rate matrix, this
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computation can be performed by first applying the transformation
(3.2.5). In the case when the Power method is used to solve for r2,
the parameter c has to be larger than zero and strictly smaller than
one, otherwise it cannot be proven that all eigenvalues, except one
(the Perron-eigenvalue l1 = 1), are inside the unit circle of the com-
plex plane (| l |< 1), assuring convergence to the correct eigenvector.
Since in large systems the eigenvalues are expensive to compute, a
good guess is to choose c close to one, which, in most cases, will max-
imize the relative gap between the Perron-Eigenvalues and the next
smaller eigenvalues and thus the rate of convergence. The advantage
of the Power method is its simplicity, low memory requirement and
applicability to sparse matrices, which allows it to treat very large
systems (M ⇠ 106) as shown later in the 3D model. However, in
the case of slow processes indicated by a very small spectral gap, the
Power method might converge too slowly or not at all due to nu-
merical issues. In these cases more advanced methods like Krylov
subspace methods (Arnoldi, Lanczos) [106] or graph theoretical ap-
proaches [107] can be a solution. One should note, that if the com-
mittor is not needed for the full state space, it is enough to compute
the values of the eigenvector at A, B and the region of interest. This
might be another possibility for speed up.

3.4 generalization to multiple states

In many applications, it is desirable to compute the committing prob-
ability between more than just two subsets. Consider a system for
which a number N � 2 of so called core sets

Y = {Y1, . . . , YN}, Yi ⇢ W

have been defined. For each state x 2 W we want to evaluate the
probability that the system dynamics will hit a specific core Yi rather
than any other core set

S

j 6=i Yj which resembles the A! B committor
in the two-state case N = 2. For simplicity we again assume single
state cores Yi = {yi} and define a combined set Y containing all cores
by

Y ⌘
N
[

i=1
Yi = {y1, . . . , yM}.

The committor matrix

Q 2 [0, 1]M⇥N : x 2 W, n 2 {1, . . . , N} 7! Qnx

contains the N multi-committor probabilities and is defined by

Q ⌘ [q!Y1, . . . , q!YN ]



60 efficient committor computation

where the elements Qxn contain the committor probability of encoun-
tering core n before any other core given the system was initially in
state. Each row sums up to one and is strictly non-negative

Qxn � 0,
N

Â
n=1

Qxn = 1

so that Q forms a fuzzy membership similar to the continuous mem-
berships c as defined in section 2.4.1.

To solve this general case, all states in Y are considered absorbing
in the altered transition matrix, and a basis for all N eigenvectors
to the eigenvalue of one is computed. Proceeding in analogy to the
2-state case the solutions are a linear combination the these N right
eigenvectors. The parameters for the eigenvectors can then be com-
puted using a simple matrix inversion in analogy to the two state case
by

Q = [R[1,·], . . . , R[N,·]] ·

0

B

B

@

R[1,y1] · · · R[N,y1]
... . . . ...

R[1,yN ] · · · R[N,yN ]

1

C

C

A

-1

(3.4.1)

or in short
Q = R[1:N,·] · R[1:N,Y]

-1.

One eigenvector can be always chosen as the right constant Perron-
Eigenvector, although this is for most eigenvector solver no advan-
tage. The usage of a multi-state committor and its relation to mem-
berships and projected dynamics is exploited extensively in mile-
stoning theory [108] and Multi-State Transition Interface Sampling
(MSTIS) [109].

3.5 sensitivity and uncertainty

For a sensitivity analysis we will assume, that the transition matrix
can be expressed as a function of a single continuous variable q. We
are then computing the sensitivity ∂

q

q of the committor q with re-
spect to changes in the transition matrix T(q) given in terms of the
parameter q. It is shown, how this sensitivity can be used for a first-
order estimate of the uncertainty in the committor dq even in cases
where the transition matrix T is not exactly known, but is for exam-
ple estimated from simulation data such as from molecular dynamics
[54, 60].

3.5.1 Sensitivity analysis

We first define the matrix

A := T̃� Id,
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so that the null space (kernel) of A coincides with the space spanned
by the two Perron eigenvectors of T̃. This implies

Aq = 0.

and the derivative with respect to q is

∂

q

Aq = A∂

q

q + (∂

q

A) q = 0. (3.5.1)

To get ∂

q

q we need to invert A which is not of full rank. Since ∂

q

qk = 0
for k 2 A [ B by definition of the committor we can exclude these
from the calculation and we then use the Moore-Penrose pseudoin-
verse [·]+ (see appendix C) as a way to only invert the part of A, that
is not in the kernel and thus affecting states k 2 A [ B. This ensures
the correct treatment of the boundary conditions and leads to the
expression

∂

q

q = � [A]+ (∂

q

A) q (3.5.2)

for the sensitivity.

3.5.2 Uncertainty / Sampling Error of the Committor

Let us now consider the case where the transition matrix T is not
known exactly but is instead sampled by a finite number of observa-
tions [54, 60, 64, 38]. We will be interested in the question of how
the uncertainty involved in this finite sampling translates into uncer-
tainty of the committor. We use the same definitions as in section 2.6
and let Z be the count matrix of observed counts and ZPrior the matrix
of virtual prior observations imposed on the model. We are looking
for the sensitivity of the entries of the transition matrix Tij to these
count matrices.

The covariance between elements in different rows in the transition
matrix is zero since a change in an element of the count matrix can
affect only transition probabilities in the same row, provided that de-
tailed balance is not enforced. This independence allows to treat the
uncertainty for each row independently and we compute the sensitiv-
ity of A to changes in the entries in T by

∂

[i]
j A ⌘ ∂Tij A = ∂Tij T = ei · eT

j

leading to the expression for the sensitivity S of the committor

S[i]
[·,j] ⌘ ∂

[i]
j q = � [A]+ ·

⇣

eieT
j

⌘

q

= � [A]+[·,i] qj

and in matrix form
S[i] = � [A]+[·,i] qT.
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The covariance between elements from the same row in the transi-
tion matrix T is computed from the Dirichlet posterior distribution
(see section 2.6) and the covariance matrix S[i] becomes

S
[i]
ab ⌘ cov [Tia | Tib] =

(a

[i]
a )(a

[i]
dab � a

[i]
b )

(a

[i])2((a

[i]) + 1)

and where we used that

a

[i] ⌘ Zeff
[i,·] + 1

and

a

[i] ⌘
M

Â
j=1

a

[i]
j = zeff

i + M

to simply the notation. In matrix form this takes the form

S[i] = ((a

[i])2(a

[i] + 1)
-1 ⇣

diag
⇣

a

[i](a

[i])
⌘

� (a

[i])(a

[i])
T⌘

(3.5.3)

and the standard deviation can be written as

dta =
q

cov [Tia | Tia] =

✓

(a

[i]
a )(a

[i]�a

[i]
b )

(a

[i])2(a

[i]+1)

◆1/2

.

Another simple and often used approach for propagating uncer-
tainty from T to the uncertainty of the committor (or any other prop-
erty derived from T), is to sample the posterior distribution of tran-
sition matrices and compute the committor for each sample of this
distribution [54, 64]. However, this procedure involves sampling it-
self and thus creates additional uncertainty in the estimation of the
original uncertainty, which may be undesirable in situations where
the estimation is conducted repeatedly, e.g. within an adaptive sam-
pling scheme [54, 60].

To derive the final committor covariance we start with linear error
propagation for the committor and use the sensitivity S[i], given in
Eq. (3.5.2), to extend the error in the transition matrix S[i] as follows:

cov [q | q] = Â
i2W

S[i] · S[i] · (S[i])
T

= Â
i2W

[A]+[·,i]

⇣

qT · S[i] · q
⌘ ⇣

[A]+[·,i]

⌘T

= Â
i2W

✓

[A]+[·,i] ·
⇣

[A]+[·,i]

⌘T
◆

⇣

qT · S[i] · q
⌘

We then insert the analytical expression for the uncertainty S in
Eq. (3.5.3) to obtain an expression for the covariance between single
elements of the committor as
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cov
⇥

qx | qy
⇤

= Â
i2W

(((a

[i])2(a

[i] + 1))
-1 ⇣

[A]+xi [A]+yi

⌘

⇥

⇥
⇣

qT
⇣

diag
⇣

a

[i](a

[i])
⌘

� (a

[i])(a

[i])
T⌘

q
⌘

= Â
i2W

(((a

[i])2(a

[i] + 1))
-1 ⇣

[A]+xi [A]+yi

⌘

⇥

⇥
⇣

qT diag
⇣

a

[i](a

[i])
⌘

q� qT(a

[i])(a

[i])
T

q
⌘

= Â
i2W

(((a

[i])2(a

[i] + 1))
-1 ⇣

[A]+xi [A]+yi

⌘

⇥

⇥
✓

a

[i]qT diag
⇣

a

[i]
⌘

q�
⇣

qT
a

[i]
⌘2
◆

This last expression is quadratic in the number of states leaving us
with the inversion of A as the most expensive operation of cubic order.
Finally, we introduce abbreviations for

1. the contribution of each row to the statistical uncertainty by

u[i] = (((a

[i])2(a

[i] + 1))
-1
✓

a

[i]qT diag
⇣

a

[i]
⌘

q�
⇣

qT
a

[i]
⌘2
◆

,

2. and the plain sensitivity of the committor by

v[i]
xy =

⇣

[A]+xi [A]+yi

⌘

and compute the variance in the elements of the committor qx by

d

2qx ⌘ cov [qx | qx] = Â
i2W

v[i]
xxu[i]

= Â
i2W

(((a

[i])2(a

[i] + 1))
-1 �

[A]+xi
�2 ⇥

⇥
✓

a

[i]qT diag
⇣

a

[i]
⌘

q�
⇣

qT
a

[i]
⌘2
◆

. (3.5.4)

Lastly, the total uncertainty contribution vector w, given by

wi = Â
x2W

v[i]
xxu[i], (3.5.5)

contains the contribution of state i to the total uncertainty and can
therefore be used in order to direct new simulations that are most
promising in reducing this error [60].
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Figure 3.1 – Energy Landscape for diffusion in a 2D potential with 3
basins discretized into a grid of 30x30 bins. The minima in each basin
are indicated by the letters A, B and C. Blue indicates low energies, red
high energies.

Figure 3.2 – 2D three-well model: Committor from state A to B computed
directly from the reference transition probability matrix Tij.



3.6 applications 65

3.6 applications

3.6.1 Diffusion in a 2D Three-Well Potential

To illustrate an application of the above equations we use a simple
model of a particle diffusing in a two-dimensional potential with
three wells (see Figure 3.1 and appendix D for details), partitioned
into a grid of M = 30 · 30 = 900. The minima and their associated
regions of configurational space will be referred to as A, B and C.
Transition probabilities are defined based on the potential energies
Ui on each grid point using a Metropolis acceptance criterion given
by

Tij µ min
✓

1, exp
�

�b

�

uj � ui
��

· P(j! i)
P(i! j)

◆

, i 6= j (3.6.1)

with b = 1, which has the correct invariant distribution

pi µ exp (�bUi) .

Only transitions between horizontal or vertical neighboring micro-
states are allowed with equal probability, resulting in a maximum of
five nonzero entries per row in the 900x900 transition matrix. Note,
that this choice requires to correct the Metropolis acceptance crite-
rion for unsymmetric proposal probabilities P(i ! j) in the edges
and corners. This matrix is used as the reference for the dynamics of
the system. The committor from state A to B, given in Eq. (3.3.9), is
shown in Figure 3.2.

To investigate the dependence of the committor and its uncertainty
on the actual number of observations and the chosen prior proba-
bility distribution, we computed the expected number of observed
transitions in an equilibrium simulation as

Z̄ij = L pi T̂ij,

which is the product of the total number of simulation steps L , the
invariant density of a state pi and the true transition probabilities T̂ij.
Four different types of prior distributions are considered here (see
Tab. 3.1).

The committors computed for different simulation lengths

L =
n

101, 103, 105, 107
o

and all prior sets except the null prior are presented in Figure 3.3.
The null prior was omitted since in this case the committor does

not depend on the simulation length L and equals the exact commit-
tor (see Figure 3.2). It is important to note that this equivalence is
only true on average and not for every possible simulation outcome.
The influence of the full uniform prior is so strong that the computed
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Prior Zprior
ij

Uniform Prior 0
Null Prior �1
1/M Prior 1/M� 1

Neighbor Prior

8

<

:

0 if (i, j) neighbors

�1 else

Table 3.1 – Prior probability distributions used for the 2D example

Figure 3.3 – 2D three-well model: Committor from state A to B computed for different prior
choices (rows: neighbor prior, 1/M prior, full uniform prior) and simulation lengths (columns:
L =

�

101, 103, 105, 107 ). Isocommittor surfaces for q = {0.25, 0.5, 0.75} are given in black.
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committor differs from the true committor vastly even for L = 107.
The other two priors behave similarly to each other while the neigh-
bor prior has the general advantage over the null prior that it always
provides a transition matrix that can numerically be evaluated.

Eq. (3.5.4) gives the expression for the uncertainty in the computed
average committor from a given number of observations. For the
same set of total observations L and all priors in Table 3.1 the covari-
ance was computed and is shown in Figure 3.4. The main uncertainty
is always greatest in the transition region, and depends strongly on
the choice of the prior, especially when few observations have been
made.

Figure 3.5 show the difference in the predicted committors com-
pared to the true reference committor given in Figure 3.2. The quality
of the average predicted committor depends mainly on the amount
of prior information put into the predictions: Priors with little infor-
mation (null prior, neighbor prior) have less bias, while priors with
much information (1/M prior, uniform prior) strongly bias the com-
puted committor. However, committors with much information are
less sensitive to perturbations in the transition matrix elements (see in
Figure 3.6, i.e. thus having smaller uncertainties. However due to the
bias this uncertainty is misleading in the cases of few observations.
This behavior changes once the simulation length is long enough for
the estimated committors to be similar.

The effects of the bias of the prior are also visible in the contri-
bution to the uncertainty from each state i given by wi in Eq. (3.5.5)
as shown in Figure 3.7. In general the main part of the contribu-
tions to the uncertainty is located in states inside the transition re-
gion. For small simulation lengths L the contribution is more widely
distributed and mainly in regions that have also a significant equi-
librium probability. With increasing simulation time, the uncertainty
contributing states shift towards the outer perimeter of the energy
landscape, where the uncertainty remains mostly unchanged since
these parts of phase space are hardly visited at all.

The net flux for the system as given by Eq. (3.2.2) is shown in Fig-
ure 3.8. The opacity of the arrows indicates the intensity of the flux
in the direction of the arrow. The main fraction of the flux traverses
the barrier between A and B, while a minor fraction travels over state
C.

Finally, the 3-state committor, given by Eq. (3.4.1) was computed
for states A, B and C (see Figure 3.9), thus partitioning the configura-
tional space into three subsets divided by the main barriers. In this
manner the multistate committor can be used to partition the config-
urational space into subsets, that are dynamically close to one state
of a set of predefined states which can be regarded as cluster centers.
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Figure 3.4 – 2D three-well model: Statistical uncertainty (variance) in the entries of the
committor probability Cov [qx, qx] in Eq. (3.5.4) from state A to B for different prior choices
(rows: null prior, neighbor prior, 1/M prior, full uniform) and simulation lengths (columns:
L =

�

101, 103, 105, 107 ). Isocommittor surfaces from Figure 3.3 shown in black. Blue indicates
no variance, red indicates high variance. The related absolute error development is given in Fig-
ure 3.6. States A and B are fixed by definition, thus at this points the variance is equal to zero. The
highest variation is found in the transition region, the size of which depends strongly on the prior
information. With increasing simulation length, the error in the low energy states reduces fastest.



3.6 applications 69
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Figure 3.5 – 2D three-well model: Norm of the difference of the com-
puted committor for different prior probability distributions (neighbor prior,
1/M prior, full uniform) versus simulation length L. The uniform estimation
is about six orders of magnitude slower in convergence since the amount of
prior information is also about six orders of magnitude larger compared to
the other priors.
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Figure 3.6 – 2D three-well model: Theoretical average uncertainty in the
estimated committor for different prior probability distributions (null prior,
neighbor prior, 1/M prior, full uniform) versus simulation length L. The
initial erratic behavior of the 1/M prior and uniform prior is caused by a
wrong committor prediction due to the high impact of these prior, when
only few transitions have been observed.
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Figure 3.7 – 2D three-well model: Uncertainty contribution vector wi in Eq. (3.5.5) for different
prior choices prior choices (rows: null prior, neighbor prior, 1/M prior, full uniform) and simulation
lengths (columns: L =

�

101, 103, 105, 107 ). Isocommittor surfaces from Figure 3.3 shown in
black. Blue indicates vanishing sensitivity, red maximal sensitivity for each plot separately, thus
absolute comparison is not possible between plots. This was chosen to better indicate the highest
uncertainty contributions. The absolute sensitivity is given in Figure 3.6. The figure shows that in
the case of the uniform prior a length of L = 107 is insufficient for an accurate description of the
uncertainty.
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Figure 3.8 – 2D three-well model: Net Flux between states A and B computed from the reference
transition matrix T̂ij. The underlying colors represent the reference committor. Arrows indicate
the direction of the flux and the opacity the intensity. Most flux travels over the direct barrier from
state A to state B.

Figure 3.9 – Committor Computed for 3 states from Eq. (3.4.1). The committor clearly shows a
clear separation of the configurational space into 3 subsets divided by the potential barriers.
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Figure 3.10 – 3D Ligand:protein model: Equipotential surfaces.

3.7 3d model

The method is now further examined on a simple model system that
mimics diffusional protein:ligand association. For this, a 3-dimensional
potential was defined by a potential function U by a sum of five 3D-
Gaussian functions that mimic an electrical field in which the ligand
diffuses (for parameters see appendix D). The potential was coarse-
grained on a grid with a total of M = 100 · 100 · 100 = 106 states in the
range of [�1, 1]3, while the dynamics was modeled as a diffusional
process under the influence of the potential as in the previous 2D case
(see Eq. (3.6.1)). Figure (3.10) shows equipotential surfaces for a set
of 19 exponentially spaced values of the potential U(x), effectively
depicting surfaces of equal equilibrium probability.

The outer boundary of the grid is defined as the “unbound” state
A while all states inside a sphere at the center of the grid with a
radius of 0.2 define the “bound” state B. The committor probability
was computed using the procedure described in the theory section,
employing the Power method to solve for the dominant eigenvector
of the absorbing process [106]. The isocontours of the committor
are shown in Figure 3.11. It is seen that these contours are roughly
spherical around the binding site B, but have protrusions due to the
existence of local energy minima.

Figure 3.12 shows some paths integrated along the normals to the
isocommittor hypersurfaces. To compute these the committor func-
tion, given on each grid point, was interpolated by linear polynomi-
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Figure 3.11 – 3D Ligand:protein model: Isocommittor surfaces for the po-
tential U.

als between each neighboring grid point and computed the normals
from the continuous interpolation. As initial points a set of 20 circu-
larly positioned points on the inner B state were chosen which were
directed toward the potential minimum at {�0.6,�0.6,�0.6} (see ap-
pendix D). The integrated paths define a bundle of field lines con-
necting the outer perimeter and the binding site, depicting the most
probable paths towards the virtual binding site on the protein.

Using the committor also the reactivity g [63], i.e. the probability
that a state contributes to a reactive trajectory, was computed using

gi = q+
i piq-

i (3.7.1)

The results are shown in Figure 3.13. Due to the higher equilibrium
probability in Eq. (3.7.1), the density of reactive trajectories increases
towards the binding site and especially in the local minima.

3.8 discussion and conclusion

We have conducted a numerical study of the committor probability
– the central mathematical object for characterizing dynamical pro-
cesses – for discrete-state Markov processes.

An eigenvector-based approach to compute the committor proba-
bility was derived. This method is efficient and easy to implement
and computes the committor for dynamical systems with large state



74 efficient committor computation

Figure 3.12 – 3D Ligand:protein model: Bundle of association path lines
starting at the virtual binding site along the normals to the isocommittor
surfaces.

Figure 3.13 – 3D Ligand:protein model: Density of reactive trajectories g
as given in Eq. (3.7.1).
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spaces. If the considered transition matrix is sparse enough even very
large systems can be investigated with computational effort roughly
proportional to the number of states and is thus limited only by mem-
ory constraints. As an example, it was demonstrated that the ap-
proach is able to investigate the electrostatically steered ligand bind-
ing pathways to a protein which has also been used in [7].

Furthermore, a sensitivity and error analysis of the committor was
conducted. Computation of the sensitivity requires the inversion of a
matrix of the size of the number of states which is in general of cubic
order, but can be made quadratic if the matrix is sufficiently sparse.
The other computations are also maximally of quadratic order, which
in principle allows a sensitivity analysis for medium system sizes.

Using the obtained error analysis, an adaptive algorithm can be
defined for a fast committor computation by collecting information
from different parts of the configurational space separately and com-
bining this to produce more accurate estimations than possible from
one single long simulation.
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4.1 introduction

Sampling the underlying phase space by straightforward molecular
dynamics simulation often suffers from the problem that the time
scales of conformational changes can be orders of magnitude larger
than simulation times accessible using current computational resour-
ces. Parallel Tempering (PT) molecular dynamics simulation has been
an effective and thus popular approach to overcoming the issue of
convergence in molecular simluations, by allowing replicas to heat
up and overcome enthalpic barriers as the simulation proceeds while
still sampling from an appropriate equilibrium distribution [110, 111,
112, 113]. At the same time this approach permits an analysis of
the temperature dependence of properties of interest, which is espe-
cially important for comparisons with certain experimental results
(e.g. melting curves, heat capacities) [57]. Although PT molecular dy-
namics produces unphysical replica trajectories, the short physical
trajectories in between the exchanges can provide useful dynamical
information. If the PT simulation is well-equilibrated, these initial
configurations of the short trajectory segments will be sampled from
the equilibrium at their corresponding temperatures.

Buchete and Hummer have shown that both thermodynamic and
kinetic properties can be estimated over the range of temperatures by
constructing Markov models using the short physical trajectories gen-
erated from PT simulations [114]. However, if a complete description
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of dynamics across the entire thermodynamically relevant configura-
tional space at a given temperature is desired, one quickly runs into
problems if use is made of trajectories only from the temperature of
interest, as some states that are sampled at other temperatures may
not be well-sampled at the single temperature [114]. One would like
to make use of the data collected at all temperatures to character-
ize the kinetic behavior in all regions sampled over the full range of
temperatures spanned by the PT simulation in a manner similar to
equilibrium reweighting [115, 116, 117, 118, 119, 120].

Here, we propose a method for integrating Molecular Dynamics
(MD) simulation data from all temperatures by making use of dynami-
cal reweighting [4], allowing a smooth, continuous, and differentiable
estimate of the transition probabilities at any temperature without
requiring the assumption of any kinetic model (such as Arrhenius ki-
netics [121]) and taking advantage of the increased transition rates at
higher (or, for transitions with entropic barriers, lower) temperatures.
Reweighting methods (such as histogram-based [115, 116, 117, 118]
or histogram-free [119, 120] approaches) allow the use of samples col-
lected from multiple distributions to provide an improved estimate of
the expectation value of some static property at the distribution of in-
terest, and have been used extensively in the analysis of equilibrium
thermodynamic properties in replica-exchange simulations [122].

Dynamical reweighting has recently been proposed as a new way
of estimating dynamical properties (such as correlation functions) us-
ing an asymptotically optimal estimator, simultaneously providing a
good estimate of the statistical error [4]. Here, we show how dynami-
cal reweighting can be used to estimate transition probabilities (and
their statistical uncertainties) for the construction of a Markov model
as a smooth function of temperature, making use of data from all
temperatures. This has the advantage of producing a useful Markov
model at any temperature containing the dependence of kinetic prop-
erties on temperature while providing an assessment of the error in
this model.

We illustrate this approach for the standard test case of the ter-
minally-blocked alanine peptide in explicit solvent. A Markov model
constructed from short (6 ps) trajectories from each state has been
previously shown to accurately describe the kinetics of this system
at 302 K [65]. This peptide system presents a challenge for estima-
tors based on individual temperatures, due to the presence of highly
metastable states with very high free energies relative to the most
populated states. These states are poorly sampled at temperatures
near 300 K, even though their temporal behavior can dominate the
non-equilibrium relaxation kinetics at this temperature. Finally, we
also determine whether dynamical reweighting using all the data
produces substantially improved kinetic models in comparison to (a)
present single-temperature approaches, such as Buchete and Hum-
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mer [114] in the full range of temperature and (b) to a high-statistics
model at 302 K.

4.2 dynamical reweighting

The recently proposed method named dynamical reweighting [4] al-
lows to compute correlation function estimates of a system where
observed time series have been collected from different ensemble set-
tings. In this section we lay out the necessary theoretical basis to
compute these enhanced estimates for the specific case of a system in
the canonical ensemble at several inverse temperatures bk ⌘ (kBTk)

-1,
where the systems obeys Hamiltonian dynamics meaning that any
initial point

q(0) ⌘ (q(0) 2 W, v(0))

in phase space is transported deterministically along a trajectory q(t)
to a final point

q(t) ⌘ (x(t) 2 W, v(t)).

This corresponds to the case of “canonical distribution of Hamilto-
nian trajectories” examined in detail in Ref. [4].

Within this system at a fixed temperature we assume that the Hamil-
tonian dynamics can be well approximated by a markov model (as
laid out in chapter 2). We now demonstrate how transitions observed
at all temperatures can be used to infer transition probabilities at any
temperature of interest through the use of a reweighting procedure.

With this definition of dynamics, the (now temperature-dependent)
state-to-state correlation functions C (t; b) for the crisp membership
definition

ci(x) : i 2 M, x 2 W 7! {0, 1}
can be expressed as a Boltzmann-weighted expectation function

Cij(t; b) =
1

Z(b)

Z

dq(0) e-bH(q(0))
ci(x(0))cj(x(t)),

where Z(b) is the complete partition function of both kinetic and
potential energies. From this correlation functions we can compute
the associated transition probabilities

Tij =
Cij(t; b)

Âk2M Cik(t; b)

as shown in Eq. (2.5.2).
Suppose we have a set of N Hamiltonian phase space trajectories

q[n](t), n 2 {1, . . . , N}

of length tmax, t 2 [0, tmax] sampled from equilibrium at K distinct
temperatures bk, k 2 {1, . . . , K}. For convenience, we group the N
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trajectories into subsets Qk ⇢ {1, . . . , N} according to which tem-
perature bk their initial phase space points q[n](0) were drawn from.
For the reweighting procedure, only the total number of trajectories
Nk ⌘ |Tk| sampled from the temperature bk is relevant, and not the
direct association of a specific trajectory q[n](t) with the temperature
bk it was sampled from [4, 120].

By the application of dynamical reweighting [4], a correlation func-
tion Cij(t; b) can then be estimated using the entire set of trajectories
at all temperatures with

Ĉij(t; b) ⇡
N

Â
n=1

w[n](b)Ĉ[n]
ij (t; b) (4.2.1)

where the individual trajectory contributions

Ĉ[n]
ij (t; b) = cor

⇥

ci | cj
⇤

(t)

are estimated as the state-to-state correlation functions as in Eq. (2.5.3).
The normalized trajectory weights w[n](b) are given by

w[n](b) = Ẑ-1(b)

 

K

Â
k=1

NkẐ-1
k e-(bk�b)En

!-1

, (4.2.2)

where the normalization constants Ẑ(b) are chosen that

N

Â
n=1

w[n](b) = 1

holds. Here, E[n] ⌘ H(q[n](0)) denotes the total energy of the sys-
tem in trajectory q[n](t), which is constant over trajectories subject
to Hamiltonian dynamics. The missing normalization constants Ẑk
need to be determined from the solution of a set of K self-consistent
equations indexed by i 2 {1, . . . , K}

Ẑi =
N

Â
n=1

 

K

Â
k=1

NkẐ-1
k e�(bk�bi)En

!-1

(4.2.3)

which can be obtained efficiently in a number of ways (see details
in appendix B.1), although it is often necessary to work with loga-
rithmic representations to avoid numerical instability. The choice of
weights w[n] in Eq. (4.2.2) gives an asymptotically optimal (i.e. lowest
variance) estimate of the correlation function in Eq. (4.2.1). A detailed
exposition of dynamical reweighting for the estimation of correlation
functions is presented in Ref. [4].

Finally, the row-stochastic transition matrix estimate T̂(t; b) is com-
puted from Eq. (4.2.1) using Eq. (2.5.3), where the symmetry of Ĉ(t; b)
results in a reversible transition matrix estimate T̂(t; b) (i.e., it will sat-
isfy detailed balance). Note, that this will introduce the unavoidable
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projection error discussed in section 2.4.3. As stated above, we will
assume that the lagtime t is large enough for this error to be small.
If we would only be interested in certain properties there exist ways
to circumvent this projection error as shown in chapter 5.

4.2.1 Estimation of uncertainties in transition probabilities

For a given temperature b and lagtime t, the statistical uncertainty in
Ĉab ⌘ Ĉab(t; b) can be estimated in a straightforward manner [4, 120].
We start with the weight matrix

W : n 2 {1, . . . N}, k 2 {1, . . . K} 7!Wnk ⌘ wn(bk)

where k runs over the set of temperatures bk and n over all trajectories.
Augmenting W by three additional columns, indexed by the letters A,
X, and Y, defined by

WnA = wn(b)

WnX = WnA
Ĉ[n]

ab
Ĉab

; WnY = WnA
Ĉ[n]

a0b0

Ĉa0b0
,

the covariance S of two correlation matrix elements Ĉab and Ĉa0b0 can
be estimated by [4]

S[a,b,a0,b0] ⌘ cor
⇥

Ĉab | Ĉa0b0
⇤

⇡ Ĉab Ĉa0b0 ·
�

Q̂AA � Q̂AY � Q̂XA + Q̂XY
�

. (4.2.4)

The covariance matrix estimate Q̂ is computed as [4]

Q̂ ⌘ WT
h

Id�WNWT
i+

W, (4.2.5)

with N = diag(N1, . . . , NK, 0, 0, 0) and [·]+ the generalized inverse.
Next, the uncertainty Var(T̂) in the estimated transition probabili-

ties can be approximated as a function of the uncertainty in the cor-
relation matrix elements, S[a,b,a0,b0], by a first-order Taylor expansion
about the mean

⌦

T̂ij
↵

,

Var(T̂) ⌘
D

�

T̂�
⌦

T̂
↵�2

E

⇡ Â
a,a0 ,b,b0 2M

⇣

∂Ĉab
T̂
⌘

S[a,b,a0,b0]

⇣

∂Ĉa0b0
T̂
⌘

. (4.2.6)

Using Eq. (2.5.3), the sensitivity of T̂ to the correlation matrix element
Ĉab is given by

∂T̂ij

∂Ĉab
=

dajdbi + daidbj � dab

Âk2M Ĉik
�

Ĉij (�Mdab + dai + dbi)
�

Âk2M Ĉik
�2 , (4.2.7)



82 multi-ensemble estimation

or in matrix form

∂Ĉab
T̂ = diag(Ĉi)

-1
(eaeT

b + ebeT
a � Iddab)

� diag(Ĉi)
-2(Ĉ

⇣

�Mdab + 1
⇣

eT
a + eT

b

⌘⌘

). (4.2.8)

The complete expression for the variance in the transition probabili-
ties d

2T̂ij in Eq. (4.2.6) can be evaluated using Eqs. (4.2.4), (4.2.5) and
(4.2.7) and the final result is complex but still calculable, as demon-
strated in section 4.4. A detailed description of the procedure for com-
puting statistical uncertainties for arbitrary properties can be found
in Ref. [4, 120].

4.2.2 Modified parallel tempering protocol

We employ a modified PT protocol in which a set of K ⇥ N Hamil-
tonian trajectory segments q[k,n](t) of uniform length tmax is gener-
ated [4] and with temperature index k 2 {1, . . . , K} and iteration
n 2 {1, . . . , N}. For the Markov property to hold in the later estima-
tion, the length tmax between proposed exchanges in the PT protocol
needs to exceed the lagtime tmax � t. We start by assuming that some
process was used to generate the initial phase space points q[k,1](0) for
the first set of trajectories (n = 1) from equilibrium within the canon-
ical (NVT) ensemble at each corresponding inverse temperature bk

P
⇣

q[k,1](0); bk

⌘

=
1

Z(bk)
exp(�bkH(q[k,n](0))).

These initial phase space points may be obtained, for example, by
a standard PT protocol, or by running the modified protocol for a
number of iterations starting from one or more arbitrary initial con-
figurations.

In each subsequent iteration (n > 1), Hamilton’s equations of mo-
tion are used to propagate all replicas using a symplectic integrator
with sufficiently small timesteps to generate trajectories q[k,n](t) of
length tmax. At t = tmax, we propose exchanges between the final
configurations q[i,n](tmax) and q[i±1,n](tmax) of neighboring tempera-
tures bi and bi±1, starting from the highest temperature down to the
lowest one in odd iterations and in reverse order in even ones [65].1

The Metropolis-like probability [113] for accepting or rejecting the ex-
change pexch(i $ j) depends on the potential energies of the final
configurations Uk ⌘ U(Zkn(tmax)) with

pexch(i$ j) = min
�

1, exp(-(bi � b j)(Uj �Ui))
 

.

1 Note that other exchange proposal schemes can be used, provided the resulting
algorithm satisfies the condition of “balance” (which is less strict than detailed bal-
ance) [123].
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Regardless of whether the exchange is accepted or rejected, we re-
assign the velocities according to the Maxwell-Boltzmann distribu-
tion [67] at the new (or old, if rejected) temperatures, and denote the
new phase space points from which the next iteration can be carried
out as q[k,n+1](0) (see proof in Appendix B.2). This satisfies the con-
ditions defined by Okamoto [113] in order for the kinetic energies to
not appear in pexch(i$ j) and is equivalent to rescaling the velocities
for accepted exchanges and then applying a massive collision for the
Andersen thermostat [67]. The reason for reassignment of velocities
instead of rescaling is that when using Hamiltonian trajectories to
propagate dynamics, no thermostatting would otherwise take place.
Without this velocity reassignment, the use of Hamiltonian trajecto-
ries (even if velocity rescaling were performed after exchanges) would
mean that no or minimal thermostatting would take place, generating
an improper ensemble; velocity reassignment ensures the canonical
ensemble is generated.

4.3 application to markov models

In the previous section we have presented the statistical justification
and the mathematical basis to use dynamical reweighting for the es-
timation of transition probabilities between a set of M states defined
by c.

For reasons of comparability, we also consider two Bayesian meth-
ods for estimation of the transition matrices and rate matrices using
data collected only from a single temperature. Both methods sample
transition probabilities or rates according to the same likelihood func-
tion in Eq. (2.6.3) assuming detailed balance piTij = pjTji, but employ
different model parameterizations and, more importantly, different
prior probability distributions.

4.3.1 Reversible Transition Matrices

We first consider the approach described in Ref. [64] to infer transition
matrices that satisfy detailed balance. Starting with an observation
represented by the fractional count matrix Z, the posterior probability
a transition matrix T was responsible for generating this observation
is given by

P(T|Zeff) µ P(Z|T) P(T) = ’
i,j2M

TZij
ij P(T). (4.3.1)

As the prior, P(T), we choose the “null”-prior (see section 2.6.4)

P(T) ⌘ ’
i,j2M

T�1
ij (4.3.2)
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Method Abbreviation Color

Transition matrix estimation [64] [TE] red
Rate matrix estimation [114] [RE] green
Dynamical reweighting [4] [DR] blue
Shooting trajectories at 302 K [65] [ST] black

Table 4.1 – Estimation Methods Table of methods used for transition prob-
ability or rate estimation with their corresponding abbreviations and colors
used consistently throughout this paper.

to keep the influence from the prior as small as possible. Here, the
distribution in Eq. (4.3.1) was sampled using a Markov Chain Monte
Carlo (MCMC) procedure described in Ref. [64].

4.3.2 Reversible Rate Matrices

We also consider a second approach to estimating transition probabil-
ities from individual temperatures using Bayesian estimation. Here,
we sample rate matrices K (discussed in section 2.3) with elements
Kij > 0 for i 6= j and Kii = �Âj 6=i Kij using the approach described
in Ref. [114]. This approach does not estimate the transition probabil-
ities directly, but instead uses a parametric form of a reversible rate
matrix K, that uses the logarithms of the elements in the upper-right
triangular matrix Kij for j > i (without diagonal entries) and the equi-
librium distribution pi, thus assuring a rate matrix with non-positive
eigenvalues and also positive off-diagonal rates.

The posterior in Eq. (4.3.1), written in terms of the rate matrix K, is
given by

P(K|Zeff) µ P(Z|K)P(K) = ’
i,j2M

exp (tK)
Zij
ij P(K) (4.3.3)

where the prior is uniform in ln Kij, j > i and ln pi. After sampling
rate matrices with a Metropolis Monte Carlo scheme [114] the related
set of transition matrices with the lagtime t is computed by

T(t) = exp (tK) (4.3.4)

All methods with their abbreviations and colors used consistently in
this chapter are listed in Table 4.1.

4.4 application to alanine dipeptide pt simulation

4.4.1 System Setup

To illustrate the construction of temperature-dependent Markov mod-
els using dynamical reweighting, we estimated the transition proba-
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Figure 4.1 – Distribution of trajectory total energies from parallel tempering simulation. Dis-
tributions for trajectories sampled at temperatures 302 K, 425 K, and 600 K — for which single-
temperature Bayesian analysis convergence properties are shown in Figure B.1 — are highlighted.

bilities between conformational states for the terminally-blocked ala-
nine peptide (Ace-Ala-Nme) (see Figure 4.2) in explicit solvent from a
PT molecular dynamics simulation. This dataset2 was published pre-
viously as part of a study that explored the suitability of a Markov
model for describing dynamics at 302 K [65]; here, we make use of
this dataset to facilitate comparison to an independent trajectory set
that appears in that reference. The PT dataset consists of an ensemble
of 501 Hamiltonian trajectories 20 ps in length at each of 40 tempera-
tures, spanning 273 to 600 K, with peptide configurations stored every
0.1 ps. The temperatures were exponentially spaced to ensure good
overlap in the potential and total energy distributions between neigh-
boring temperatures and reasonably high exchange probabilities (see
Figure 4.1).

A leapfrog Verlet integrator [124, 125, 126] (with bonds involving
hydrogen atoms constrained) was used to produce the dynamical tra-
jectories. The fluctuation in total energy averaged over all 20 ps trajec-
tories at each temperature was minimal and the drift negligible (see
Table 4.2). The production run followed a 1 ns equilibration phase
during which exchanges were attempted at 1 ps intervals, ensuring
that all initial configurations were drawn from equilibrium at their
respective temperatures.

Previous work has demonstrated that a Markov model based on
a six-state decomposition (M = 6), as depicted in Figure 4.2, can
accurately describe the dynamics of this peptide for lagtimes longer
than t = 6 ps [65]. We employ the same state decomposition for all
temperatures with the suggested minimal lagtime of t = 6 ps.

To evaluate the accuracy of the methods for estimating transition
probabilities, we compare the separate estimates obtained using Dy-
namical reweighting (DR), Transition Matrix Estimation (TE), and Rate

2 The alanine dipeptide parallel tempering and kinetics datasets are available online
for download at https://simtk.org/home/alanine-dipeptide/.

https://simtk.org/home/alanine-dipeptide/
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Temp [K] SD [kcal/mol] Drift [kcal/(ps mol)]

302 0.214 ± 0.014 0.0056 ± 0.0006
426 0.280 ± 0.019 0.0073 ± 0.0006
600 0.376 ± 0.026 0.0097 ± 0.0011

Table 4.2 – Consistency of (PT) trajectories Standard deviation (SD) and
drift of the total energy over 20 ps leapfrog trajectories, averaged over all
trajectories at selected temperatures.
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Fig. 1. Potential of mean force and state boundaries. Left: The terminally blocked alanine
peptide with (�, �) torsions labeled. Right: The potential of mean force in the (�, �) torsions at
302 K estimated from the parallel tempering simulation, truncated at 10kBT (white regions), with
reference scale (far right) labeled in units of kBT . Boundaries defining the six manually identified
states are superimposed and the states labeled.

Swope, Pitera, and Suits in the special case that the selection cells from which sets
of simulations are initiated are coincident with the states [49].

We do not expect dynamics of a macromolecule in solution to resemble a Markov
process for all observation intervals � , as ballistic motion dominates on very short
times, and su�cient time must be allowed for collisions with the solvent and decor-
relation of the trajectory within a metastable state. Imperfect definitions of the
metastable states may also lead to non-Markovian behavior on short times [49]. At
su�ciently long intervals � , however, we might observe that dynamics resembles a
Markov process. While it is impractical to test the condition of complete history
independence (see (2.1)), we can simply check the (weaker) condition imposed by the
Chapman–Kolmogorov equation (see (2.3)): For transition matrices constructed for
a given � , we check whether (2.3) holds for several lag times n = 2, 3, 4, . . . to within
statistical uncertainty. If so, the Markovian model can be assumed to be a reasonable
model of dynamics.

3. Application to terminally blocked alanine peptide.

3.1. System setup and equilibration. Using the LEaP program from the
AMBER7 molecular mechanics package [6], a terminally blocked alanine peptide (se-
quence ACE-ALA-NME; see Figure 1) was generated in the extended conformation
with peptide force field parameters taken from the AMBER parm96 parameter set [23].
The system was subsequently solvated with 431 TIP3P water molecules [21] in a trun-
cated octahedral simulation box with dimensions chosen to ensure all box boundaries
were at least 7 Å from any atom of the extended peptide. All minimization and

Figure 4.2 – Terminally-blocked alanine peptide and potential of mean
force with Markov state definitions. Left: The terminally blocked alanine
peptide with (f, y) torsions labeled. Right: The potential of mean force as
a function of (f, y) torsions at 302 K in units of kBT, estimated from the PT
simulation using WHAM [83, 118], truncated at 10 kBT (white regions). The
six manually identified states are labeled in black (note periodic boundaries).
The picture was taken from Ref. [65].

Matrix Estimation (RE) with a separate dataset of 6 ⇥ 10 000 short
(10 ps) trajectories (ST) initiated from the equilibrium ensemble within
each state at 302 K, also taken from Ref. [65]. The PT simulation, in
comparison, furnishes a total of 501 independent trajectories at that
temperature.

The system is small enough that reasonable statistics can be ob-
tained with moderate CPU requirements, while complex enough that
some transitions (and even some states) are sampled only at high
temperatures. In what follows, the results from the Markov model
obtained from the dynamical reweighting method are compared to
the model computed by Bayesian analyses using data from individual
temperatures from the parallel tempering simulation, as in Buchete
and Hummer [114].
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4.4.2 Estimated transition probabilities as a function of temperature

A comparison of various approaches to estimating the transition prob-
abilities between all 6⇥ 6 pairs of states as a function of temperature
is given in Figure 4.3. The blue lines give the estimates from dynami-
cal reweighting (DR) [65] using all available data at all temperatures,
as described in Section 4.2. To obtain the normalization constants Ẑk,
we solved the set of self-consistent equations in Eq. (4.2.3) with a rela-
tive convergence tolerance in the residual of 10�7 (see Appendix B.1).
Transition probabilities were also estimated at one intermediate tem-
perature between each pair of simulated temperatures.

The red lines in Figure 4.3 show transition probabilities for the re-
versible single temperature estimation of transition matrices (TE) [64].
For each of the 40 temperatures the sampler was run to collect a total
of 10 000 samples. For the sampling of reversible rate matrices (RE)
the same amount of data was collected using the sampling proposed
in Ref. [114]. Diagnostics of convergence for both methods appear as
supplementary Figure B.1. For reasons of clarity, the performance of
the rate matrix estimation (RE) is only shown in the detailed compari-
son plots in Figure 4.4 discussed in the subsequent section. The black
cross-hair in Figure 4.3 refers to the reference values (ST) at 302 K
estimated from the shooting trajectories.

Qualitatively, both methods agree, especially for transitions among
highly populated states (1,2,3,4). However, the dynamical reweight-
ing estimate, which uses the combined data from all temperatures,
has smaller uncertainties than the estimators that use only individual
temperatures. In addition, the general agreement with the reference
simulation is best for dynamical reweighting.

4.4.3 Detailed comparison of transition probability estimates at 302 K

For a detailed comparison with precisely known transition probabil-
ities, the Bayesian analysis method with reversibility constraint for
transition matrices [64] (TE) was also applied to a large set of shoot-
ing trajectories at 302 K, in which the trajectories were initiated from
an equilibrium distribution within each state. The results of this com-
parison at 302 K at a lagtime of t = 6 ps between the distributions
of transition probabilities T(t) of the different estimation methods
are shown in Figure 4.4. Here, the 95%-confidence intervals of the
distributions are given in the lower half of each plot. All colors are
consistent with Figure 4.3 and Table 4.1.

Overall the reweighting method performs very well compared to
the single-temperature estimates. Even transition probabilities that
are sampled very poorly at 302 K (such as transitions involving high
free energy states 5 and 6) are in good agreement with the reference
values at 302 K. Table 4.3 shows the standard deviation in the abso-
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RMSE at 302 K
DR TE RE

Low free-energy states (1,2,3,4) 0.007 0.019 0.020

High free-energy states (5,6) 0.140 0.223 0.162

All Transitions 0.079 0.126 0.092

Table 4.3 – Comparison of error in estimation Root-mean squared error
(RMSE), computed from the absolute difference of transition probabilities
for t = 6 ps to the reference simulation dataset (ST) at 302 K for the three
methods of Markov model estimation and high and low free-energy subsets
of transitions.

lute difference of the estimation methods compared to the reference
simulation (ST) using a lagtime of t = 6 ps. The dynamical reweight-
ing (DR) estimates have a smaller deviation (see also 95%-confidence
intervals in Figure 4.4) than both Bayesian methods for both high and
low free-energy states.

For transitions that are not sampled at certain temperature ranges,
the maximum-likelihood estimates obtained with the presented re-
weighting method are close to zero (see Figure 4.3). Generally, for
transition probabilities close to zero or unity, the asymptotic normal
distribution assumed in the statistical error estimate of dynamical
reweighting is a poor approximation to this highly asymmetric distri-
bution and therefore tends to overestimate the true uncertainties in
these cases (see Figure 4.4). Comparing the two Bayesian methods,
we find they behave almost identically for transitions among states
where many transition counts are observed, but differ for transitions
with few transitions (those involving states 5 and 6). Recall that these
methods utilize the same likelihood functions but different parame-
terizations and priors; the influence of this difference is expected to
be most prominent when statistics are poor, which is exactly as ob-
served here.

4.4.4 Comparison of temperature dependence of eigenvalues

Dynamical reweighting can also be applied to estimate properties de-
rived from the transition probabilities. For example, the eigenvalues
li of a transition matrix are related to the time scales of processes ti
by

ti = �t/ ln(li), (4.4.1)

where we assume that the eigenvalues li are sorted in order of de-
scending absolute value (l1 = 1 > |l2| > . . . > |lM| > 0) [79, 53].
Note that Eq. (4.4.1) implies that eigenvalues close to unity are related
to slow processes – those we are generally most interested in.
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Figure 4.5 – Temperature dependence of estimated eigenvalues. Red: Single temperature estima-
tion of transition matrix (TE), Blue: dynamical reweighting estimation (DR), Black: reference 2nd
and 3rd eigenvalue at 302 K using shooting trajectories (ST). Upper: Comparison of the second
largest eigenvalue vs temperature, Lower: Comparison for third eigenvalue. The third reference
eigenvalue is well predicted by both estimation methods at all temperatures although it matches
only the second eigenvalue in the transition matrix estimation (TE). The second reference eigen-
value at low temperatures (below 350 K) is only detected by dynamical reweighting (DR).

We investigated the dependence of the eigenvalues on the temper-
ature in the present system. Figure 4.5 compares estimates for the
second and third eigenvalues (l2, l3) of the transition matrix at each
temperature with the different methods. The variance in the (TE) case
was estimated from the set of eigenvalues of each sampled transition
matrix. To estimate the statistical error in the estimates produced
by (DR), we used a first-order Taylor expansion to propagate the sta-
tistical uncertainties in the transition matrix to uncertainties in the
eigenvalues [61].

At low temperatures (below 350 K), the second eigenvalue is es-
timated correctly by dynamical reweighting (DR), but not by single-
temperature estimations. This is due to the fact that the transition pro-
cess corresponding to this slowest timescale is not sampled at these
low temperatures. Thus, estimates using only data collected at that
temperature are erroneous. The agreement of dynamical reweighting
time scales with the reference simulation is very good, although the
error bars of the reweighted estimate are still very large compared to
the good agreement of the estimated values with the reference values
from the shooting trajectories. We speculate that the inappropriate
approximation of the asymmetric posterior distributions with normal
distributions used for the linear error propagation may lead here as
well to an overestimation of the errors in the transition probabilities.

The third largest eigenvalue is predicted by both methods equally
well (Figure 4.5), although it occurs as the second-largest eigenvalue
in the single-temperature estimates, which missed sampling the slow-
est process (described by l2) completely. A direct comparison of the
predicted eigenvectors (Figure 4.6) reveals that the slowest process
(given by the second eigenvector of the reference transition matrix
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Figure 4.6 – Similarity matrices S (scalar product) of eigenvectors from symmetrized transition
matrices estimated with different methods at 302 K. The eigenvectors indicate the states involved
in the process, and thus high similarity (red) indicates a good approximation to the reference
process (ST). Eigenvectors are sorted as descending eigenvalues. The 2nd eigenvector is found
most reliably by dynamical reweighting (DR).

(ST)) is not detected by any of the single temperature methods. How-
ever, dynamical reweighting successfully finds all the processes, al-
though the matching eigenvalues, and thus time scales, are permuted
for faster processes.

The comparison of Markov models is a nontrivial task [127], for
which we use a symmetrized form of the transition matrix Tsym and
expand it into a sum of rank one matrices spanned by an outer prod-
uct of the eigenvectors of Tsym by

Tsym = diag((p)1/2) T diag((p)-1/2)

= R diag(l1, . . . , lM) RT

= Â
i2M

liri rT
i .

Here, diag((p)1/2) means the diagonal matrix with the square root
of the equilibrium distribution p on the diagonal, R the matrix of
normalized eigenvectors of Tsym and li the corresponding eigenval-
ues. Neglecting the time scales (i.e. the eigenvalues li), two Markov
models are similar if their inherent processes, described by the right
eigenvectors ri, are similar. Thus, we define the similarity matrix S
for two transition matrices T and T0 by the mutual scalar product of
eigenvectors ri and r0j of their symmetrized form by

S
⇥

T | T0
⇤

⌘ R(R0)T

the results of which are presented in Figure 4.6.

4.4.5 Contributions from different temperatures to the estimates of expec-
tation values

The relative contribution from each temperature to the estimation of
any expectation value at a given temperature is presented in Fig-
ure 4.7. We plot the relative total contribution from the subset of
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Figure 4.7 – Relative contribution w̄kl in Eq. (4.4.2) to the estimates at inverse temperature bk
from simulations at inverse temperature bl summed over all trajectories at the same tempera-
ture. On average, seven temperatures contribute more than 1% each to the estimation.

trajectories Qk ⇢ N = {1, . . . , N} sampled from the distribution at bk
to estimates at bl given by

w̄(bl |bk) =

Â
n2Qk

w[n](bl)

Â
n2N

w[n](bl)
(4.4.2)

with normalized trajectory weights w[n](b) as defined in Eq. (4.2.2).
On average, seven temperatures contribute more than 1% to the ex-
pectation.

Figure 4.8 illustrates the contribution from the sampled data at bk
to the computed expectation of the time-correlation function (Eq. 4.2.1)
for three types of transitions: a highly sampled transition (1 ! 4), a
highly sampled remaining in a state 3! 3) and a the rarely sampled
transition 6! 5. These contributions can be written as

Ĉij(bl | bk) = Â
n2Qk

w[n](bl)Ĉ[n]
ij , (4.4.3)

with k indicating the temperature contributed from and l the temper-
ature estimated at. The weighted combination of estimations from
multiple temperatures provides a much smoother and continuous es-
timation (rightmost column) then the estimation from a single tem-
perature (topmost column).

4.5 discussion

We have presented a method that provides an estimate of Markov
state transition probabilities from PT molecular dynamics simulations
of biomolecules as a continuous function of temperature. This allows
Markov models to be constructed for intermediate temperatures not
included in the simulation. In addition, transition matrix estimates
at temperatures included in the simulation are much more precise
than those obtained with the methods examined here that make use
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Figure 4.8 – Contributions to the estimation of the correlations Ĉij for the three transition 1! 4,
3 ! 3 and 6 ! 5 as defined in Eq. (4.4.3). The sum of one row (rightmost column), equal to the
total counts estimated by the method at the desired temperature, provides a smoother estimate
than the single temperature estimation (topmost column).

of data from a single temperature alone. At low temperatures, even
when some transitions are not observed at all at the temperature of
interest, corresponding transition probabilities can still be estimated
by incorporating dynamical information from higher temperatures
without resorting to approximate rate laws such as Arrhenius.

Additionally, the estimates of transition probabilities can be differ-
entiated with respect to the inverse temperature b, because the tra-
jectory weights w[n](b) in Eq. (4.2.2) are differentiable functions of
temperature. This allows, in principle, kinetic and thermodynamic
properties that depend on temperature derivatives (e.g., heat capaci-
ties) to be computed, provided care is taken in dealing with numerical
issues since the trajectory weights w[n](b) can easily span hundreds
of orders of magnitude.

In our illustrative calculations, we chose to employ a modified PT
protocol to produce a series of Hamiltonian trajectories with initial
configurations drawn from the NVT ensemble. However, the ap-
proach itself is not limited to Hamiltonian trajectories, but can be
extended to other dynamics (e.g. Brownian and Langevin dynam-
ics) provided a temperature-independent dynamical analogue of the
Hamiltonian can be computed, as described in Ref. [4].

The way in which the transition probabilities are estimated in terms
of equilibrium correlation functions requires that the trajectory seg-
ments sampled during the PT simulation are drawn from equilibrium,
which is ensured by the modified PT protocol provided the simulation
is sufficiently long (see Appendix B.2). For systems with long corre-
lation times, there may be very few uncorrelated trajectories sampled
from global equilibrium, but mixing within the Markov states may be
sufficiently fast for many uncorrelated phase space configurations to
be generated within each state. In this case, it is conceivably advanta-
geous to apply dynamical reweighting to the trajectories originating
from each set wi ⇢ W separately to estimate each row of the transi-
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tion matrix T(t) separately, though the resulting matrix is no longer
guaranteed to satisfy detailed balance.

The degree to which the use of PT can enhance the thermodynamic
sampling efficiency is limited. Although activated processes will be
sampled more often at higher temperatures, it becomes less that en-
tropic bottlenecks will be penetrated. Lower temperatures, on the
other hand, lead to an increased sampling of entropic barriers, while
at the same time decreasing transitions across enthalpic barriers. This
effectively limits the possible improvement in sampling and the range
of temperatures that contribute substantial weight to transitions at a
given temperature of interest. Despite this, dynamical reweighting
allows information about activated processes to be transferred from
higher to lower temperatures and, for entropic barriers, from lower
to higher temperatures.

Both single-temperature methods give similar results for transi-
tions with good statistics, differing mostly for transitions that were
only rarely or not at all sampled, due presumably to the dependence
on the choice of a Bayesian prior. The rate matrix estimation (RE)
assumes, in addition to the detailed balance constraint present in
both methods, positivity of all transition matrix eigenvalues and non-
negative off-diagonal rate matrix entries. The uniform distribution
of parameters in logarithmic space leads most likely to favoring of
low transition probabilities in states with poor transition statistics.
Surprisingly, the reversibility constraint seems to enable the Bayesian
estimates to provide a reasonable bound on transition probabilities to
and from a state even when the state is not sampled at all.

The general predictions of dynamical reweighting are very good,
while the quality of the statistical error estimation is limited near ex-
tremely small or large transition probabilities due to the reliance on
asymptotic normality in the errors. Some combination of Bayesian
and reweighting methods (such as T-WHAM [115]) may provide the
best of both types of estimators by yielding more accurate uncertain-
ties at the expense of introducing some bias from the introduction
of energy histograms or some other parametric distributions for de-
scribing the energy density of states (now transitions). Finally, the
enhanced estimates of mean values and their respective statistical un-
certainties may be used to guide subsequent (potentially adaptive)
sampling strategies, as described in Ref. [60].
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E S T I M AT I O N F R O M E X P E R I M E N TA L T I M E S E R I E S

This chapter is partially based on the publication

[8] Prinz, J.-H., Chodera, J. D. & Noé, F. Spectral rate theory for
two-state kinetics. submitted to Physical Review X, ArXiv preprint
physics (2012). url http://arxiv.org/abs/1207.0225.

5.1 introduction

The description of complex molecular motion through simple kinetic
rate theories has been a central concern of statistical physics and is
the goal of our construction of Markov state models. In contrast to the
previous chapters where these simplified models were parametrized
from simulations at the atomistic level, experiments concerned with
molecular processes often allow only access to low-dimensional pro-
jections or are limited to ensemble averages. The recent maturation
of measurement techniques that are able to collect extensive traces of
single molecule extensions or fluorescence [128, 129] has lead to an in-
creased interest in the analysis of these single molecule observations.

One common approach, first-order rate theory, treats the relaxation
kinetics among distinct regions of configuration space by single-ex-
ponential relaxation. When the available observable or order param-
eter is a good reaction coordinate that allows the slowly-converting
states to be clearly separated, classical rate theories apply and the ro-
bust estimation of transition rates is straightforward using a variety
of means [130]. However, in the common case in which the reac-
tion coordinate is poor and the separation of the slowly-converting
states is not obvious, a satisfactory theoretical description is missing
and many estimators break down. In section 2.4.3 the difficulties in
constructing Markov models using projections were extensively dis-
cussed for the case of various crisp and fuzzy clusterings and lead
to error bounds on the approximation quality with respect to the
projection. This finally implied enhanced strategies in the choice of
projections to minimize this error.

In this chapter we will deal we the problem to (re-)construct key
properties of an underlying Markov process from low-dimensional
single-molecule projections. This will allow to estimate rates and time
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scales with increased accuracy and much improved convergence be-
havior. The theory is derived with an discussion of systematic and
statistical errors and a procedure to apply the new method for the
actual estimation of time scales. Later, the method is tested for vari-
ous sample cases with and without statistical uncertainty. It is finally
applied to real experimental trajectories from an optical tweezer ex-
periment of a 56-base single-stranded RNA (ssRNA) hairpin revealing
3 additional relaxation time scales beside the 1 apparent slowest one
in a 2-state system. For a more detailed analysis also a physics-based
model of the experimental setup. This finally allows to match the
experimental findings to actual sets of RNA configurations and inter-
pret the relaxation processes in terms of configurational changes in
the hairpin.

5.2 classical approaches

Our goal is to establish a connection between properties of the orig-
inal process and the observed time series. At best, the recovery of
the dominant time scales and eigenvectors, which define the struc-
tural changes occurring at the respective time scale of these processes,
would allow for the construction of a simplified model of the relevant
underlying kinetics.

There have been a wide variety of approaches to estimate the dom-
inant time scales: Most rate theories and estimators are based upon
dividing the observed state space U into reactant, product and inter-
mediate substates and then in some way counting transition events
that cross the dividing surface. Transition state theory measures the
instantaneous flux across this surface, which is known to overestimate
the rate due to the counting of unproductive re-crossings over the di-
viding surface on short time scales [131]. Reactive flux theory [132]
has proposed to cope with this by counting a transition event only if it
has succeeded to stay on the product side after a sufficiently long lag
time t. Reactive flux theory involves derivatives of autocorrelation
functions that are numerically unreliable to evaluate [133]. In prac-
tice, one therefore typically estimates the relaxation rates via single-
or multi-exponential fits to a suitable correlation function, such as
the number correlation function of reactants or the autocorrelation
function of the experimentally measured signal [134, 135, 130].

In the previous chapters it was shown, that especially Markov State
Models (MSMs) provide powerful means in producing a simplified
statistical model of complex molecular dynamics. These allow the
computation of dominant time scales and can thus be regarded as
an attempt towards a multi-state rate theory. When the state divi-
sion allows the metastable states of the system to be distinguished
[65, 52, 51, 1], the transition matrix can be used to derive a phe-
nomenological transition rate matrix for sufficiently large lag times
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t [53]. It has been shown in [49, 1] (see also chapter 2) that by in-
creasing the number of substates used to partition state space, and
hence using multiple dividing surfaces instead of a single one, these
rate estimates become more precise. In the limit of infinitely many
substates, the eigenfunctions of the dynamical propagator T in the
full phase space are exactly recovered, and the rate estimates become
exact even for t ! 0+ [75]. In practice, however, a finite choice of t

is unavoidable due to the finite sampling rate and necessary in order
to have a small systematic estimation error, which is caused by the
projection onto the experimental observables. An alternative way of
estimating transition rates is by using a core based state definition
that is incomplete and treats the transition region implicitly via the
committor functions from chapter 3 [44, 108].

The quality of the rate estimates in all of the above approaches
(MSM based or not) relies on the ability to separate the slowly-con-
verging states in terms of some dividing surface or fuzzy state def-
inition. The better the state definition the smaller the implied error
in the estimated rates. In the case where the available observables or
order parameter(s) do not permit such a separation, i.e. when kinet-
ically distinct states overlap in the histogram of the observed order
parameter, most estimators break down or fail to provide estimates
within a specified confidence interval.

In data collected from simulations the full phase-space information
is present and one has wide freedom to optimize the simplifying pro-
jections. However, in single-molecule experiments where the avail-
able observation or order parameter is limited by the experimental
setup, this is usually not the case and there might be no choice of
projecting the observation to be a good reaction coordinate. While
Hidden Markov Models (HMMs) are able to estimate transition rates
even in such situations [136, 137, 138], they depend on a probabil-
ity model of the measurement process and rather represent a com-
putational optimization approach than a physically motivated the-
ory. Also, HMMs are relatively complex to implement and the often
used estimation-maximization (EM) algorithms are based on local op-
timization which requires a check of convergence.

5.3 observations and projections

In the following we will assume that the underlying dynamics can
be exactly described by a (stochastic) reversible Markov process Xt

1

on some state space W as we have defined in chapter 2 and thus all
information of the dynamics is contained in the transfer operator T
or, in an approximated discretized context, in the transition matrix T.

1 Here, Xt represents the Markov process itself while xt refers to a concrete realization
of the original process in the full state space W.
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5.3.1 Observed Dynamics

In most experiments the underlying Markovian dynamics is only par-
tially observable. This is also the case in simulations if not the full
phase space (including solvent and velocities) is recorded. Hence,
a mathematical object is necessary that can describe the relation be-
tween a certain state in the full-dimensional phase space W and its
representation in the projected or observable space U. We chose this to
be real-valued, U ⇢ R, to be in accordance with a physically measur-
able quantity and call a surjective function

x : x 2 W 7! x(x) 2 U ⇢ R

that maps between these two spaces a projection x. To deal with
higher-dimensional observed spaces, U ⇢ Rd, the function can be
split into a set x = {x1, . . . , xd} of single projections while complex-
valued functions can be treated by splitting them into real and imagi-
nary parts.

While in a full atomic molecular simulations arbitrary projections
can be chosen, this is not possible in an experiment: The concrete
setup of the experiment determines the measurable output, which
can then be analyzed further. We will call projections that are deter-
mined by an experimental setup or can be measured by other means
an observable y(x). These observables are a priori given and if ap-
plied to a time series xt 2 W, the experimentally observed time series
yt ⌘ y(xt) is recovered. If the available projections that will later be
used in the analysis are to be limited by this fixed observable y, we
can express this by x(x) = x(y(x)) and regarded this as a two-fold
projection: The first (inner) projection is fixed by the experiment and
the second can be chosen freely by an algorithm (see Figure 5.1).

To clarify the terminology: All functions x from W to R are referred
to as projections while observations y are a special type of projections,
that are directly accessible by an experiment or simulation.

5.3.2 Correlations

To proceed, we first introduce the correlation density c(x, y) that con-
tains the absolute probability density for a transition from x 2 W
to y 2 W to occur according to the given dynamics. The density is
defined by

c
t

(x, A) ⌘ p(x) p
t

(x, A)

= P[xt = x] P[xt+t

2 A|xt = x]

= P[xt+t

2 A, xt = x],

the product of the conditional jump probability density p
t

(x, y) weigh-
ted with the stationary probability density p(x) to find the system
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full-dimensional 
phase space

experimental
observable

arbitrary
projection

y 2 R

x 2 R
x 2 W

y(x)
x(y)

x(x)

Figure 5.1 – Functional relation between projections and observations Ob-
servations y are projections from the original full phase space W that can
be observed by an experiment or simulation. For further analysis these ob-
served quantities are often projected onto a specific and problem specific
general projection x that itself can also be seen as a two-fold projection.

initially in a state x 2 W. In the case of microscopic reversibility, c
t

is
symmetric

c
t

(x, y) = c
t

(y, x)

and it therefore exists a symmetric representation in terms of eigen-
functions yi and eigenvalues li, i 2 I expressed as

c
t

(x, y) = Â
i2I

l

t

i p(x)yi(x)p(y)yi(y) (5.3.1)

using that the eigenfunctions have been chosen yi(x) are orthonormal
w.r.t. the p-weighted scalar product

Z

dx p(x)yi(x)yj(x) = hyi(x), yj(x)i = dij.

As before, I is the countable index set for the eigendecomposition
to allow for both, finite I = {1, . . . , M} and infinite I = {1, . . . , •}
numbers of eigenvector/eigenvalue pairs. In both case the elements
are considered to be ordered by the decreasing modulus of the eigen-
value.

Assuming that we have access to arbitrary projections, one can re-
cover the eigenvalues of the transition operator T from the original
jump process Xt if the observation is projected onto an eigenfunction
yi(x). For an arbitrary projection x the autocorrelation acf[·] of x(xt)
for a trajectory xt of length L is an expectation hit over the time t and
can be written as
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acf[x(xt)](t) = hx(xt)x(xt+t

)it2[0,L�t]

= (L� t)-1
Z L�t

0
dt x(xt)x(xt+t

)

and we extend the product x(xt)x(xt+t

) by two integrals of unity that
yield

x(xt)x(xt+t

) =
ZZ

W2
da db d(a� xt)d(b� xt+t

) x(xt)x(xt+t

)

=
ZZ

W2
da db d(a� xt)d(b� xt+t

) x(a)x(b).

If we now define the estimated correlation density for transitions be-
tween a, b 2 W, similar to the estimated correlation for discrete time
series, as

ĉ
t

(a, b | L) = (L� t)-1
Z L�t

0
d(a� xt)d(b� xt+t

)

= P(xt+t

= b | xt = a)

we can rewrite the autocorrelation in terms of transitions between all
possible projected values in the full state space W by

acf[x(xt)](t) =
ZZ

W2
da db ĉ

t

(a, b | L) x(a)x(b).

If the time series is infinitely long (l ! •, i. e. , we can estimate
without statistical uncertainty) the estimated correlation density ĉ

t

converges to the true correlation density

lim
L!•

ĉ
t

(a, b | L) = c
t

(a, b)

and we find that in this limit the autocorrelation is equally repre-
sented by an estimation over time

acf[x(xt)](t) = hx(xt)x(xt+t

)it2R+

= hx(a) c
t

(a, b) x(b)ia,b2W

as well as an estimation over all possible transitions hia,b2W. If we
now have an intermediate experimental observation y and our pro-
jection only depends on the observed trajectory yt we can use the
same argument and derive

acf[x(yt)](t) = hx(yt)x(yt+t

)it2R+

= hx(a) cY
t

(a, b) x(b)ia,b2R

where we have now to use the projected correlation density

cY
t

(a, b) = P(yt+t

= b | yt = a).
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Note, that a Markov model constructed from this observed correla-
tion density will not fulfill the Chapman-Kolmogorov semi-group
property as was explained in chapter 2.4.

Using the expansion for the correlation density c
t

(x, y) in Eq. (5.3.1)
we derive

acf[x(xt)](t) = hx(a) c
t

(a, b) x(b)ia,b2W

= hx(a) Â
i2I

l

t

i p(a)yi(a)p(b)yi(b) x(b)ia,b2W

= Â
i2I

l

t

i hx(a) p(a)yi(a)p(b)yi(b) x(b)ia,b2W

= Â
i2I

l

t

i hx(a), yi(a)ia2Whyi(b), x(b)ib2W

= Â
i2I

l

t

i
�

hx(a), yi(a)ia2W
�2

so that the autocorrelation acf[x(xt)](t) can always be expressed as
a sum of exponential decays which is the origin of the exponential
fitting in classic rate theory. If now the projection x(x) can be chosen
to be an eigenfunction yk we compute

acf[yk(xt)](t) = Â
i2I

l

t

i hyk(a), yi(a)i2

= Â
i2I

l

t

i (dik)
2

= l

t

k (5.3.2)

and recover a single-exponential decay with the original time scale
lk where the orthonormality of the eigenfunctions was used. Thus
we can reconstruct lk by a single-exponential fit to this particular
autocorrelation function.

The necessary exact eigenfunctions are usually only approximately
(if at all) accessible, but the last formulation suggests an expansion of
the projection x into eigenfunctions of the full dynamics

x(x) = Â
i2I
hyi, xiyi(x)

= Â
i2I

qiyi(x)

with qi ⌘ hyi, xi, i 2 I measuring the overlap between the projection
x and exact eigenfunction yi. If the projection is normalized we can
use Parseval’s identity and

1 = hx, xi = Â
i,j2I
hqiyi(x), qjyj(x)i

= Â
i,j2I

qiqjhyi(x), yj(x)i

= Â
i,j2I

qiqjdij

= Â
i2I

q2
i
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follows, so that the vector q ⌘ {qi | i 2 I} is of unit length in the eu-
clidean norm

�

�q
�

�

2 = 1. This q can conveniently be used to measure
the quality of a projection x to approximate a particular eigenfunc-
tion yk: If and only if one single eigenvector yk is present in the
observation then the corresponding qk equals one. Conversely, if the
maximum of q is smaller than one (in particular qk), more than one
eigenvector must be present.

In the following we will assume that any projection x (indepen-
dent of being based on an actual observation or not) used is normal-
ized hx, xi = 1 and chosen to be orthogonal to the stationary process
hx, y1i = 0. Orthogonality can always be achieved by adding a con-
stant function

k = �1 · hx, y1i
to the observed values

hx + k, y1i = hx, y1i+ hk, y1i
= hx, y1i � h1 · hx, y1i, y1i
= hx, y1i � hx, y1ih1, y1i
= hx, y1i � hx, y1i = 0

since the eigenfunction of the stationary process is constant. In this
case the correlation takes the form

acf[x(xt)](t) = Â
i�2

l

t

i q2
i

which implies that the exponential decays in the correlation function
are now determined by two factors:

1. The overlap of the projection with the eigenvectors given by
qi: The closer the maximum of q is to one the more single-
exponential is the auto-correlation. The idea of optimization
and analysis of these q-factors is extensively used in dynamical
fingerprints [139, 6]

2. The time scales li and the chosen lag time t. With increasing
lag time t, more and more exponentials decay to zero as was
explained in chapter 2.2.

Hence, to estimate time scales by a single exponential, one can either
optimize the used observation x to match the corresponding eigen-
function yi or, if only the slowest process is of interest, increase the
lagtime until only this slowest process, given by y2(x), remains.
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5.3.3 Correlation Matrices

The natural generalization of the autocorrelation is to compute cross-
correlations between different observations xi, x j, i, j 2 {1, . . . , n} which
are then defined as

cor[xi(xt) | x j(xt)](t) = hxi(xt)x j(xt+t

)it
= hxi(a) c

t

(a, b) x j(b)ia,b2W

and these cross-correlation functions can be conveniently written as

cor[xi(xt), | x j(xt)](t) = Â
k 6=12I

l

t

k QkiQkj

with
Qij = hyi, x ji

being the matrix of projected eigenvectors Q. We finally define a t-
dependent projected correlation matrix CX(t) that is induced by the
set x = {x1, . . . , xn} of projections by

CX(t) ⌘ cor[x(xt) | x(xt)](t)

= hc
t

(a, b) x(a) x

T(b)ia,b2W (5.3.3)

where the expectation is computed over the outer product x(a) x

T(b)
so that

CX(t)ij = cor[xi(xt) | x j(xt)](t)

holds.

5.3.4 Special Types of Projections

There exists a variety of projections with a special meaning or area of
application, which we want to present in the following. Note, that all
scenarios are in their mathematical treatment fully equivalent while
only the meaning or interpretation of the projection changes.

Crisp Clustering

Ø

Example
Crisp Clustering

High-dimensional (continuous) time series usually need to be reduced
to a finite state space to be analyzed computationally (see chapter 2).
To achieve this, the state space W is projected on a finite number of
macro states. For such a crisp decomposition defined by the subsets
of the full state space wi ⇢ W, i 2 M with mutual exclusive states
wi \wj = ∆, i 6= j the associated projection is given by

xi(x) = ci(x) =

8

<

:

1 if x 2 wi

0 else
(5.3.4)
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which is a simple indicator function for the subsets wi that measure if
state x 2 W belongs to subset wi. The resulting observed correlation
matrix CX(t) now contains the absolute probabilities of transitions
between subsets in the clustered system which we have seen to be
used construct Markov State Models, approximating the observed
dynamics in section 2.5.

A more general approach is to loosen the constraint of mutual exclu-
sivity for the clusters and merely demand, that the complete space is
contained in the decomposition much as in a partition of unity. The
observations x now measure the (non-negative) percentage that a mi-
cro state x 2 W belongs to a given macro state i 2 M, which has to
add up to unity

xi(x) = ci(x) 2 [0, 1], Â
i

ci(x) = 1, 8x 2 W. (5.3.5)

The resulting observed correlation matrix again contains absolute
probabilities to make a transition within this projected system. In
the case of a crisp or fuzzy clustering we may also call the induced
projections ci a clustering.

Linear Combinations of Eigenfunctions (PCCA)

Ø

Example
PCCA Clustering

As discussed extensively in the works by Röblitz, Weber and Deufl-
hard [43] there exists a very special case, where the full dynamics is
projected into a subspace spanned by the m dominant eigenvectors of
the transfer operator or transition matrix. Then the projection error
discussed in chapter 2 vanishes and the projected transition matrix
is again exact in the sense that it evolves the observed projection cor-
rectly. The observation in this case takes the form

xi(x) =
m

Â
j=1

Aijyj(x)

which represent a linear combination A 2 Rm⇥m of the dominant
eigenvectors yi. Note, that these are usually not accessible, or only
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with great numerical effort. We can now compute the observed corre-
lation matrix to be

CX
ij (t) = hxi(xt)x j(xt+t

)i

= h
�

m

Â
k=1

Aikyk(xt)
��

m

Â
l=1

Ajlyl(xt+t

)
�

i

=
m

Â
k,l=1

Aik Ajlhyk(xt)yl(xt+t

)i

=
m

Â
k,l=1

Aik Ajldkllk(t)

=
m

Â
k=1

Aik Ajklk(t)

and find
CX(t) = Adiag(l1, . . . , lm)AT

in matrix notation. Since the (right) eigenvectors yi do not form a
(non-negative) membership, the observations are not strictly positive
as well, as would be desired for the interpretation as a probability
distribution in a Markov model. This can be fixed by using a suitable
linear combination A of the eigenvectors that fulfill the requirements
of a membership/crisp clustering. This is always possible since the
constant vector (i.e. the eigenvector y1) is contained in the projection.
The actual optimization to find such a suitable membership out of
known dominant (right) eigenvectors is called Perron Cluster Cluster
Analysis (PCCA) [43] and it can be proven that this is an optimal pro-
jection in the sense that the in section 2.4 defined projection error in
minimized.

5.4 2-state dynamics

If we assume that the full dynamics can approximately be described
by the transition between only 2 dominant states, we talk about a
2-state system. According to the results from chapter 2 this can be
achieved if there exists a spectral gap between the second and third
eigenvalue of the transition matrix. This, in turn, would allow to
choose a lag time t so that all, except for the slowest process, have
already decayed and the estimation becomes particularly simple. It
can thus serve as an introduction to the general multi-state case.

In the following we explicitly assume, that the full dynamics can
be approximated to some degree by the stationary process and one
further dominant eigenvector y2. We are now interested in the associ-
ated dominant eigenvalue l2 or the rate k2 between the two states A
and B. Since the necessary eigenfunction y2 is not accessible, the au-
tocorrelation in Eq. (5.3.2) cannot be used to estimate the exact time
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scale l2. At best, the observation x is close to the second eigenfunc-
tion and the expansion into eigenfunctions becomes

x(x) = q2y2(x) + Â
i>2
hx, yiiyi

= q2y2(x) + e(x), (5.4.1)

where the true eigenfunction y2 enters with coefficient q2 while the
remaining eigenfunctions contribute to the error e(x). The autocorre-
lation now evaluates to

l̃2(t) = hx(xt)x(xt+t

)i
= al

t

2 + Â
i>2

q2
i l

t

i (5.4.2)

and yields some approximation l̃2(t) to the exact eigenvalue, which
depends on a ⌘ q2

2. For better comparison with existing methods, we
will use rates

ki = �t

-1 ln(li)

instead of eigenvalues in this section and find

exp(�tk̂2) = l̃2(t) = a exp(�tk2) + Â
i>2

q2
i exp(�tki) (5.4.3)

for the estimated rate k̂. For t � k

�1
3 , which can easily be achieved

for clear 2-state processes where k2 ⌧ k3, the sum on the right hand
side disappears

hx(xt)x(xt+t

)i ⇡ a e�k2t (5.4.4)

and the autocorrelation is approximately single-exponential with an
amplitude given by a.

5.4.1 Best reaction coordinate

Under the constraint that only a specified experimental order parame-
ter y is observable the question remains, what the best possible choice
for the observable x̂(y(x)) is? Following Eq. (5.4.3), the optimal choice
x̂ is the one which maximizes the parameter a, as this will minimize
the systematic error for the proposed estimation scheme. We are thus
seeking the solution of

x̂ = arg max
x

a(x) (5.4.5)

or equivalently

x̂ = arg max
x

l̃2(t; x)

= arg max
x

hx(xt)x(xt+t

)i
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subject to the normalizations that hx, xi = 1 and hx, 1i = 0. Here,
arg max

x

a denotes the function that maximizes a over the space of
functions x(y(x)) that are usually induced by the experimental ob-
servable y(x). If the optimal eigenfunction x̂ is supposed to be ap-
proximated by a linear combination

x̂(y) ⇡
n

Â
i=1

cigi(y)

with coefficients ci over a set of n basis functions,

G = {g1(y), . . . , gn(y)},

then the optimal observable x̂ = arg max
x

a(x) can be approximated
on G using the Ritz method [140]. Since the optimization still depends
on the given observable y, which can be regarded as the experimental
reaction coordinate, so will the actual maximal value of a. If we recall
that the a measures how single-exponential the projection is this can
be used to investigate the quality of the observation.

5.4.2 Reaction coordinate quality (RCQ)

Evaluating how well a given putative reaction coordinate captures
complex dynamical behavior is of great general interest. Previous
studies have proposed ways to measure the Reaction Coordinate Qual-
ity (RCQ) that are based on comparing the observed dynamics to
specific dynamical models or testing the ability of the observable
to model the committor or splitting probability between two chosen
end-states A and B [141]. These metrics are either only valid for spe-
cific models of dynamics or themselves require a sufficiently good
separation of A and B by definition, restricting their applicability to
observables with rather good RCQs.

The pre-factor a in Eq. (5.4.4) is a measure between 0 and 1 quantify-
ing how good a reaction coordinate the observation function x(y(x))
is, and, as will be shown later by virtue of Eqs. (5.5.2) and (5.5.3),
how large the error in our rate estimate can be. This RCQ a can be
estimated by an exponential fit to the autocorrelation function (5.4.4)
of the observation function x employed. For the best possible choice
x = x̂ (Eq. (5.4.5)), we denote this pre-factor â, where â = a(x̂) � a(x),
i.e. â is the best possible (maximal) RCQ of the observable used under
a given experimental observation y(x). Thus, we propose â as a gen-
eral measure for the quality of the reaction coordinate for the later
discussed classes of estimators that are based on fits to the autocorre-
lation.

This RCQ is as general as possible, as it makes no assumptions
about the class of dynamics in the observed coordinate, and does
not depend on any subjective choices such as the choice of two reac-
tion end-states A and B in terms of the observable y. Through the
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derivation above it has also been shown that â measures the fraction
of amplitude by which the slowest process is observable, which is
exactly the property one would expect from a measure of the RCQ: â

is 1 for a perfect reaction coordinate and 0 if the slowest process is
exactly orthogonal to the observable.

For completeness one should note, that the newly defined a is di-
rectly related to the projection error d2 of the second eigenvector de-
fined in Eq. (2.4.5) in section 2.4.3 by

a = 1� d

2
2 = 1�Â

i>2
q2

i

as it must since the RCQ a measures the overlap of the observation x

with the second eigenvector y2.

5.5 estimation

5.5.1 Single-t rate estimators

Many 2-state rate estimators can be shown to effectively calculate
autocorrelation functions of some function x at a single value of t,
and transforming it into a rate estimate by virtue of Eq. (5.4.4). We call
these estimators single-t estimators. Ignoring statistical uncertainties,
they yield a rate estimate of the form

k̂2 ⌘ �t

-1 ln l̃2(t) (5.5.1)

= �t

-1 ln

 

al

t

2 + Â
i>2

q2
i l

t

i

!

= k2 � t

-1 ln

 

a + Â
i>2

q2
i exp(�t(ki � k2))

!

.

From Âi q2
i = 1 and ki � k2, it follows that k̂2 � k2, i.e. the estimated

rate k̂2 always overestimates the true rate k2. In general the systematic
error in the rate Dk2 = k̂2 � k2 can be bounded from above by

Dk2  t

-1 ln a

-1

as is proven in the appendix C.3.When the system is characterized by
a time scale gap k3 � k2, the error becomes

k̂2 � k2 / t

-1 ln a

-1 (5.5.2)

which is dominated by a relatively slow t

-1-decay in the lag time
(see Figure 5.2 for a 2-state example). It will be shown below that
methods that estimate rates from counting the number of transitions
across a dividing surface, such as Markov state models, are single-t
estimators and are thus subject to the error given by Eq. (5.5.2).

The systematic error of single-t estimators results from the fact that
Eq. (5.5.1) effectively attempts to fit the tail of a multi-exponential
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decay l̃2(t) by a single-exponential with the additional constraint
l̃2(0) = 1. Unfortunately, the ability to improve these estimators by
simply increasing t is limited because the statistical uncertainty of
estimating Eq. (5.4.4) quickly grows in t [142].

5.5.2 Multi-t rate estimators

To avoid the slow convergence with t of the error given by Eq. (5.5.2),
it is advisable to estimate the rate by evaluating the autocorrelation
function l̃2(t) at multiple values of t. This can be done e.g. by per-
forming an exponential fit to the tail of the l̃2(t) or its time integral,
thus avoiding the constraint l̃2(0) = 1 [130, 135]. The estimation er-
ror Dk2 depends on the specific algorithm used to fit l̃2(t). Using
a simple least-squares procedure at the equally spaced time points
t < 2 · t < ... < m · t (see appendix C.3), we obtain again an overes-
timation of the true rate, k̂2 � k2, and the systematic estimation error
of k̂2 can be now bounded by

0  Dk2 
(m + 1)

m
(t̄ � t1)
Var(t)

ln
✓

1 +
(1� a)

a

e�t1(k3�k2)
◆

(5.5.3)

< const · t

-1 (1� a)
a

e�t1(k3�k2) (5.5.4)

Asymptotically, multi-t estimators converge to the true rate exponen-
tially in t instead of the slow t

-1-convergence of single-t estimators
(compare to Eq. (5.5.2)). Note, that the systematic error of a multi-t
estimate thus decays much faster in t than its statistical error that
decays by t

-1 [142]. Moreover, the convergence rate of Eq. (5.5.3) is
given by the gap k3� k2. Thus, multi-t estimators as well as single-t-
estimators are better the larger the time scale separation between the
slowest and the other relaxation rates in the system is.

5.5.3 Existing 2-State Estimators

MSM based estimators

MSMs can be understood as a way of implicitly performing rate esti-
mates via discretizing state space into small substates. Let us consider
that a MSM is obtained by finely discretizing the observed space U into
crisp subsets Yi ⇢ U and estimating a transition matrix T(t) amongst
these subsets as laid out in chapter 2. It can then be shown [143] that
the second eigenvector

T(t)c = l2c

of this transition matrix solves the optimization problem in Eq. (5.4.5)
and thus provides the best possible reaction coordinate/projection,
x(y), under any given observable y that are constant on each sub-
set Yi.
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It has been suggested [53] to use the second implied time scale

t̂2 = �t/ ln(l̂2(t))

as an estimate for the system’s slowest relaxation time scale which
correspond to the inverse relaxation rate k̂2 (see section 2.2). There-
fore the MSM rate estimate is described by Eq. (5.5.1) with the choice
x ⇡ y2. A sufficiently fine MSM thus serves an optimal single-t rate
estimator as it uses the maximum RCQ â for observables that are be-
ing discretized. However, when these observables have a poor RCQ â

since they are poorly separating the slowly-converting states, there is
a substantial rate estimator error according to Eq. (5.5.2) that decays
slowly with t

�1. This explains the slow convergence of implied time
scales shown in recent MSM studies [53, 62, 52, 51, 1] (see Figure 5.2
for an example).

Estimators using dividing surfaces

Most rate theories operate by defining a single dividing surface on
the observable space U which splits the state space into reactant A
and product B. Calling

hA(y) =

8

<

:

1 if y 2 A ⇢ U

0 if y 2 B ⇢ U

the indicator function which is 1 for set A and 0 for set B, one may
define the normalized fluctuation autocorrelation function of state A
[144]

hỹ2(yt)ỹ2(yt+t

)i =
hhA(yt)hA(yt+t

)i � hhA(yt)i2

hhA(yt)i � hhA(yt)i2
(5.5.5)

In the light of our theory, Eq. (5.5.5) can also be interpreted as an
autocorrelation function for the special choice

x

divide(y(x)) =
hA(y(x))� pA
q

pA � p

2
A

where
pA =

Z

y�1(A)
dx p(x)

is the stationary probability of state A. Following Eq. (5.5.1), the
procedure of splitting the observed state space into two sets and es-
timating the transition rate from the second eigenvalue of the 2-state
transition matrix [133] results in a single-t estimate of

k̂

divide
2 ⇡ k2 � t

-1 ln
hhA, y2i � pA

1� pA
(5.5.6)



5.5 estimation 113

albeit with a deteriorated RCA of

a

divide =
hhA, y2i � pA

1� pA
 â (5.5.7)

This estimator is effectively a 2-state Markov model estimate (see
Ref. [133] for an analysis) and the best possible dividing surface
can be chosen by maximizing a, or equivalently by minimizing k̃2
(Eq. 5.5.1). This leads to an optimal approximation of y2 by two con-
stant functions and is identical to a 2-state MSM. However, it is sub-
optimal compared to the general MSM estimator that uses more states
and thus a finer partition of state space and the error still decays with
t

-1 according to Eq. (5.5.1).

Signal autocorrelation estimate

Another common choice is to calculate the normalized autocorrela-
tion function of the observed signal itself

l̂2 = hxsignal(yt)x

signal(yt+t

)i =
hytyt+t

i � hyti2
hy2

t i � hyti2
(5.5.8)

that uses
x

signal(y) =
y� hyti

q

hy2
t i � hyti2

which is the identity of y, scaled and shifted to be properly normal-
ized as in section 5.3.1. Like the dividing surface estimate, direct
evaluation of this autocorrelation function via Eq. (5.5.1) leads to a
single-t estimate of k2 that converges with t

�1 as

k̂

signal
2 ⇡ k2 � t

-1 ln
hy, y2i � hytih1, y2i

q

hy2
t i � hyti2

(5.5.9)

⇡ k2 � t

-1 ln
hy, y2i

q

hy2
t i � hyti2

. (5.5.10)

The RCQ takes the form

a

signal =
hy, y2i

q

hy2
t i � hyti2

 â. (5.5.11)

which equals one if and only if y = y2.

Exponential-fitting estimators

Exponential-fitting estimators usually employ an exponential fit to
autocorrelation functions of the form in Eq. 5.4.4 or, in order to in-
crease numerical robustness, to their integral [135]. This can be done
using different choices of x(y(x)) such as a step function arising from
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a dividing surface, or the normalized signal itself. Figure 5.2 shows
the performance of the exponential-fitting estimators on different pro-
jected dynamics.

Exponential fitting estimators are multi-t-estimators whose system-
atic estimation error is given by Eq. 5.5.3. This error involves the pre-
factor (1� a)/a, indicating that for short lag times t a choice x ⇡ x̂

(where a is maximized) obtained from an MSM on a fine discretization
of the experimental y coordinate provides the optimal result.

5.5.4 Multi-state estimation

We have demonstrated and discussed throughout this thesis that MSMs
have become a popular tool in the modeling of stochastic dynamics
from molecular simulations [35, 59, 1, 53, 52]. While these MSMs pro-
vide an effective way to describe the dominant transitions, the anal-
ysis of correlations functions provides a way to reconstruct the time
scales of process. As we have seen in the 2-state case, multi-t-estima-
tions that use the information from more than one lag time provide a
better rate of convergence. These ideas are the basis to estimate key
properties of the multi-state MSM from correlations which we will do
in the following.

As it is in general not possible to construct a Markov model for
the evolution of an observation yt, the time scales in such a MSM can
only be approximately equal the time scales of the original process
Xt. If our goal is to describe the evolution of projections then Markov
models are not the right choice. Although it is, from a mathematical
point of view, desirable to have a Markov model at hand because
it allows to apply a wide variety of analysis methods (see chapter 2),
one can get better estimation results when discarding the requirement
of the Markov property and resorting to estimations from correlation
matrices.

We now try to reconstruct the exact projected eigenvectors and the
correct time scales, respectively, from an (almost) arbitrary observed
time series yt. For this we need to be aware of the following:

1. We are only operating optimally at lagtimes t > tf ast where we
choose tf ast as large as necessary to ensure that all processes,
which we declare to be too fast to be of interest, have decayed.
This is a strong assumption but many systems show a separa-
tion of time scales into a few slow/interesting and a continuum
of fast/negligible processes [15, 16, 17, 18, 19, 20, 21]. If this
is not fulfilled, the method will still work but with a reduced
rate of convergence. This is similar to a small gap in multi-t
estimation in the 2-state case.

2. The projection x is non-redundant in the dominant processes,
i. e. the overlap of the projected space with the subspace of



5.5 estimation 115

slow processes as given in Q must be non-zero. It is enough
to demand that the projections of the n dominant eigenvec-
tors Q[·,i], i 2 {1, . . . , n} can be considered linearly indepen-
dent within the numerical uncertainty. Experiments are often
designed to only access a single or a small subset of the dom-
inant processes. In this case we need to reduce the space of
dominant processes to the ones visible by the experimental ob-
servation yt. For the remainder we assume, that the observa-
tions/experiments are able to resolve all slowest processes of
interest.

3. The projection is stationary over time, ∂txi(y(x)) = 0, which is
a crucial point that can be difficult to ensure in experimental
setups. This time-dependent systematic error is sometimes re-
ferred to as drift. In this cases the method will not fail but our
error estimations are not correct. If this systematic error is small
enough it may be treated well enough within the statistical un-
certainty.

Using a set of observations x we can compute the correlation matri-
ces CX(t) as defined in Eq. (5.3.3). We will now assume, that the lag
time t is chosen large enough, so that only a finite m dominant pro-
cesses yi, i 2 {1, . . . , m} w M are present and the correlation density
can be well-approximated by

c
t

(x, y) ⇡ Â
i2M

l

t

i p(x)yi(x)p(y)yi(y).

If we define a reduced matrix Q of only the dominant projected eigen-
vectors onto the observations by

Qij ⌘ hyi, x ji, i 2 {1, . . . , m}, j 2 {1, . . . , m}

and a reduced diagonal matrix of dominant time scales L by

Lii(t) = li(t), i 2 {1, . . . , m},

the correlation matrices CX(t) takes the simple form

CX(t) ⌘ cor[x(xt) | x(xt)](t)

⇡ Â
k2M

lk(t)hx, ykihyk, xi

= QTL(t)Q (5.5.12)

and the aim is to reconstruct L and eventually also Q from a given
set of observation correlation matrices CX(t). Even if the assump-
tion of large enough lag times t is not fulfilled this definition is still
reasonable as an approximation if we want the properties of the m
dominant processes, which we assume in analogy to Eq. 5.5.1 in the
2-state case.



116 estimation from experimental time series

Once we have found a scheme to reconstruct Q and L we still need
to answer, how good the estimation will be in comparison to the
real dominant dynamics? The important difference compared to the
construction of a discrete and reduced MSMs from the full dynamics
(see section 2.4) is, that we are not imposing a MSMs anymore. We
will first deal with the problem of reconstruction and address ways
to estimate the approximation error by neglecting influences from fast
relaxation processes later.

The following theorem proofs that in the absence of statistical un-
certainty and in the ideal case of only m dominant processes being
present, it is possible to exactly reconstruct Q and L from two ob-
servations CX(t1) and CX(t2) at given lagtimes t1 and t2 using a
Generalized Eigenvalue Problem (GEVP).

Theorem 2. Let yt := y(xt) be an observation of a Markov process xt which
can be approximated by a set of m eigenvector/eigenvalue pairs {yi, li} for
lag times t > t

min and x(y) a set of m observations. Then, if the matrix

Q : Qij = hyi, x ji, i, j 2 {1, . . . , m}

is invertible and the eigenvalues li are not degenerate, the matrix Q and the
time scales

L(t) ⌘ diag(l1(t), . . . , lm(t))

of the Markov process xt can be reconstructed from the solutions U and ri
of the GEVP

CX(t1)ui = CX(t2)riui

with any two correlation matrices, CX(t1), CX(t2) 2 Rm⇥m at two different
lagtimes t

min < t1 < t2. The solutions are related by

li = r

(t1�t2)
-1

i

and
Q = U-1

with the matrix U ⌘ {u1, . . . , um} and normalized that

uiCX(t2)uj = dij li(t2)

holds.

Proof. First, we note, that CX(t1) and CX(t2) are real and symmetric,
thus hermitian, and also positive definite, which follows directly from
Eq. (5.5.12). Now, the GEVP condition

CX(t1)U� CX(t2)Udiag(r1, . . . , rm)

is rewritten using the explicit form for CX(t) in Eq. (5.5.12) which
yields

QTL(t1)QU�QTL(t2)QUdiag(r1, . . . , rm).
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Any non-singular matrix, i.e. also Q, can be used as a congruence
transformation (in the real-valued case) and using the replacement

L! QTLQ

yields the simplified GEVP

L(t1)V�L(t2)Vdiag(r1, . . . , rm)

with a new set of generalized eigenvector V or just

diag(r1, . . . , rm) = V-1L(t1 � t2)V. (5.5.13)

From hermitian and positive-definite follows [145] that both GEVP
share the same generalized eigenvalues and that the eigenvectors of
the simplified GEVP V are related to the original ones by

U = Q-1V.

In this simplified case the eigenvalues are simply given by

ri = l

(t2�t1)
i

which can be solved for li with

li = r

1/(t1�t2)
i

which proofs the first part of the theorem. A more constructive ap-
proach is to use that the m roots of the polynomial

det(C(t1)� rC(t2)) = 0

are exactly the generalized eigenvalues ri [145]. Using the congru-
ence transformation and the explicit form of L we find the same so-
lution as given above.

To retrieve the matrix of observed eigenfunctions Q we first show
that the proposed normalization

uiCX(t2)uj = dij li(t2)

can always be achieved since (1) for the generalized eigendecomposi-
tion of symmetric (hermitian) matrices and non degenerate general-
ized eigenvalues [145] follows that

uiCX(t2)uj = 0, i 6= j

holds and (2) an arbitrary eigenvector ũi can be normalized by

ui = ũi

q

li(t2)/ũT
i CX(t2)ũi.

From the simplified GEVP in Eq. (5.5.13) we directly find the matrix
of eigenvectors V = Id to be the identity matrix, which leads to a
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possible matrix of eigenvectors given by Û = Q-1Id = Q-1, which is
unique up to a normalization if the eigenvalues are non-degenerate.
The normalization at lag time t2 immediately ensures that the choice
of U is unique and that

UTCX(t2)U = L(t2)

holds, which is equivalent to

CX(t2) = U-TL(t2)U-1. (5.5.14)

Using the Generalized Eigenvalue Problem (GEVP) formulation

CX(t1)U = CX(t2)Udiag(r1, . . . , rm)

= CX(t2)UL(t1 � t2)

in Eq. (5.5.14) we derive

CX(t1) = U-TL(t2)U-1UL(t1 � t2)U-1

= U-TL(t2)L(t1 � t2)U-1

= U-TL(t1)U-1

so that the uniquely determined Q = U-1 and L under the given nor-
malization will correctly reconstruct CX(t1) and CX(t2). Henceforth
Q and L must be the correct unique parametrization of the initial
Markov process Xt.

With this theorem we have shown that under the given simplifica-
tions, especially of large enough lag times t and absence of statistical
uncertainty, we can reconstruct the dominant time scales and the pro-
jections of eigenvectors under almost any set of observations. This
idea will be the basis for the multi-state multi-lag time estimation
which we call spectral estimation.

5.5.5 Optimizational Approach

Proven, that the estimation works for an arbitrary choice of two lag-
times, still, in the presence of statistical uncertainty the results of
these estimations will not agree. Instead of relying on the minimal
requirement of data to fit the model parameters, the problem can also
be stated as an optimization problem where more than only two dif-
ferent correlation matrices CX(t) are used to find the parameters Q
and L

�

Q̂, L̂
 

= argmin
Q,L

Â
t2{tmin,tmax}

�

�

�

QTL(t)Q� CX(t)
�

�

�

.

This is the extension of multi-t-estimation in the 2-state case in sec-
tion 5.5 to more than two states.
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Recalling that different dominant processes are observable at dif-
ferent time scale regions (see Figure 2.3) we need to be concerned
that the number of present processes should not change in the op-
timization if we want all processes to be treated equally important.
If e.g. the range of lag times is extended into a region, where only
the stationary process is present, than fitting will be dominated by
the stationary process. To compensate for this problem an iterative
scheme might be a solution: Use the optimization on a large range
of lag times, and estimate all processes and keep only the dominant
one. Repeat the optimization on a smaller time scale range and keep
the already estimated process vectors and time scales fixed. This way
the maximal range for the estimation of each process can be used
provided that the time scale ranges are chosen carefully! The opti-
mization approach has to be investigated further and is subject of
current research.

5.6 sensitivity analysis

In real world applications we need to take into account that we base
our model on finite data. This means, that the observations we use to
estimate the time scales from can only be approximately correct, even
if an experimental setup would be able to measure without error. This
problem might be serious since we have not yet excluded the possibil-
ity that even very small deviations in the observed correlations might
lead to large errors in the estimated variables. We can address the
problem of uncontrolled errors by using the fact that both Q and L

are continuous functions of the two observations C(t1) and C(t1) so
that given a specific error bound for the estimated variables there
exists also a bound on the correlation functions to ensure this qual-
ity. We proceed with an sensitivity analysis as we have done before
in chapter 3 for the committor. To analyze the asymptotic behavior
of the Generalized Eigenvalue Problem (GEVP) we proceed with the
derivation as outlined in [146]:

Lemma 3. Generalized Eigenvalue Sensitivity If the two (symmetric)
observation correlation matrices A(q) := C(t1; q) and B(q) := C(t1; q)
are depending on a scalar parameter q and r and y solve the Generalized
Eigenvalue Problem (GEVP)

(A� rB) y = 0
yTBy = 1

then the linear sensitivity ∂

q

r is related to A, B, l and y by

∂r

∂q

= yT
✓

∂A
∂q

� r

∂B
∂q

◆

y.
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If A or B depend on more then one parameter these will be computed inde-
pendently and then be added up. The case that A and B depend on different
variables can be treated in the same way.

We can in addition prove a similar lemma for the process vectors qi
which are related to the eigenvectors by a simple inversion. We write
a simple lemma and proof

Lemma 4. Process Vector Sensitivity If the two (symmetric) observation
correlation matrices A(q) := C(t1; q) and B(q) := C(t1; q) are depend-
ing on a scalar parameter q and r and y solve the Generalized Eigenvalue
Problem (GEVP)

(A� rB) y = 0
yTBy = 1

or more generally for the full set of generalized eigenvalues given by the
diagonal matrix of generalized eigenvalues L and the matrix of column-wise
generalized eigenvectors Y

YT(A�LB)Y = 0
YTBY = Id

then the generalized eigenvector sensitivity ∂

q

y is related to A, B, r and y
by

∂y
∂q

= � (A� rB)�
✓

∂A
∂q

� r

∂B
∂q

◆

y� 1
2

✓

yT ∂B
∂q

y
◆

y.

where
(A� rB)� := Y [L� rId]+ YT

is the generalized symmetric inverse with [·]+ representing the Moore-Penrose
inverse which can in this case be written as

[L� rId]+ = diag

0

@

8

<

:

ri 6= r r

�1

else 0

1

A .

The proofs can be found in appendix C.1.
Using Lemma 3 and the results from Theorem 2 we find for the

relative sensitivity of estimated eigenvalues that

∂

q

l

l

= (t2 � t1)
�1yT

✓

r

-1 ∂CX(t2)
∂q

� ∂CX(t1)
∂q

◆

y

holds which implies that the statistical sensitivity decreases with larger
lag time differences.
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5.7 spectral estimation

Having laid out a theoretical basis we will now propose a scheme to
apply the new spectral estimation to an observed (experimental) time
series yt.

1. Decide on a number of processes n you wish to analyze (analyze
spectrum, etc.). This can be done by using the ideas from the
spectral decomposition of a Markov model (see chapter 2) or by
experience.

2. Discretize the observed time series/trajectory yt 2 R into a
larger number m � n of micro bins (e.g. 100). This discretiza-
tion will induce the basis G(y) for functions that are constant
on each of the m micro bins.

3. Construct a Markov model using the correlation matrix CG(t)
which is derived from the projection onto the basis G(y) by

TG ⌘ (PG)
-1CG(t)

with PG = diag(p

G
1 , . . . , p

G
n ) being the diagonal matrix of the

projected stationary distribution.

4. Compute the matrix of the n dominant right eigenvectors A 2
Rm⇥n (in columns) and eigenvalues L 2 Rn⇥n defined by

TGA = ALG

at some lag time t where all relevant processes are assumed to
be observable. The construction of a reversible transition matrix
TG assures, that the right eigenvectors of TG will be orthogonal
w.r.t. the observed stationary distribution p

G of the Markov
model. Note, that up to now this is the same procedure used to
compute Implied Time Scale (ITS)

ti = �1/ log(l

G
i ).

5. Using a projection induced by the right eigenvectors

xi =
m

Â
j=1

Ajigj(y), n 2 {1, . . . , n}

compute the correlation matrices

CX
ij(t) = cor(xi(yt), x j(yt+t

))

= ATCG(t)A

for a number of lagtimes t 2 L, tmin < t < tmax.
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6. Optimize the matrix of projected eigenvectors Q and the matrix
of eigenvalues

L(t) ⌘ diag(l

t

1 = 1, l

t

2 , . . . , l

t

n)

to minimize
�

Q̂, L̂
 

= argmin
Q,L

Â
t2L

�

�

�

QTL(t)Q� CX(t)
�

�

�

(5.7.1)

to get the final approximation of the original eigenvalues of the
hidden process Xt.
Alternatively, in the case of only two lagtimes t1 and t2, the
problem can be solved directly using a GEVP solver for hermi-
tian matrices and the normalization from Theorem 2 to compute
Q and L.

7. Repeat from step 5 with variations in the range {tmin, tmax} of
lagtimes used or from step 2 which different numbers of domi-
nant processes n.

For a simplified graphical illustration see left side of Figure 5.9.

5.8 examples

5.8.1 2-state example in 2D

For a demonstration of the improved convergence of multi-t-estima-
tors in the in the 2-state case we computed a 10,000,000 step test
trajectory in a simple 2D energy landscape for a diffusional process
(details can be found in appendix D). Figure 5.2 shows the estimation
results for two different multi-t-estimators and a MSM-based single-
t-estimators that effectively computes the slowest ITS. Depending
on the projection angle (left column) the MSM based estimation con-
verges much slower than the spectral estimation. Even in the case
where both states almost totally overlap the multi-t-estimators pro-
vide a quite good estimation, although the susceptibility to statisti-
cal fluctuations increases. Finally, â can also be determined by the
spectral estimation procedure in the 2-state case. Figure 5.2 shows
estimates of the RCQ a of different projected dynamics using differ-
ent rate estimators and we recover the fact that the projection onto
an approximate eigenvector (red) provides better RCQ than using a
dividing surface (blue).

5.8.2 4-state example in 1D

For a proof of concept of the multi-state case we use the same 4-state
example previously introduced in chapter 2 (see Figure 2.1 and ap-
pendix D for details) and try to estimate the correct time scales from
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Figure 5.2 – 2-state rate estimation example. Comparison of the performance in the 2-state case
for a 10,000,000 step test trajectory. Columns: Angle of projection of 2D dynamics. For details
see appendix D). The greater the angle, the more difficult it is to separate both metastable states
in the observation. (left column) projection of 2D dynamics, (middle column) estimated reaction
coordinate quality a, (right column) time scale estimation. (red) Estimation from Projection onto
2nd eigenvector. (blue) Estimation from projection using a dividing surface. (black) Estimation
from 2nd eigenvalue of the transition matrix estimated the given lagtime t. Even in the case where
both states almost totally overlap the rate estimation is quite good, while the implied time scale
Implied Time Scale approach fails.
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a set of 5 different projections onto 4-states. We assume no statistical
error which is equivalent to the assumption that the used observation
correlation matrices were estimated from an infinitely long trajectory.
Our estimation is solely based on the projected correlation matrices
CX(t) given at various lagtimes t. Figure 5.3 shows the results for all
5 projections comparing the estimations using the new method and
the implied time scales obtained from a MSM constructed from the
projected dynamics.

The first row presents an illustration of the projection with the four
grey shaded functions corresponding to the four projection functions
xi while the colored regions are the projection of the stationary distri-
bution onto these four states. This indicates where in the energy land-
scape the projections are located, how reasonable they correspond to
the metastable regions and how well they are separated.

The second row presents the 4 dominant eigenfunctions projected
onto the observables and the colored regions depict the projection
error, which indicate that especially the good crisp clustering (col
1) and the PCCA projection (col 3) are good choices in reducing the
projection error.

Row three shows the presence gi of a process which we define as

gi(t) = li(t)· k Xyi k2

= li(t)· k (Id� X?)yi k2

= li(t) · (1� d

2
i ),

the squared length of the i-th eigenvector projected by X in Eq. ((2.4.3))
into the space spanned by all observables weighted with the eigen-
value l(t) at lag time t. This value is a measure of how much a
certain process (the eigenvector/eigenvalue pair) is present in the ob-
servation at a certain lagtime. If gi(t) is small than the process has
disappeared and cannot be reconstructed from the observation. The
presence gi is directly related to the projection error di defined in
Eq. (2.4.5). This is consistent with the two possibilities to reduce the
appearance of a certain process, either increase the lagtime or choose
a projection orthogonal to the relevant eigenvector yi(x).

In the case of a membership projection (defined in Eq. (5.3.5)), i.e. a
projection that contains the constant projection1, the projection error
for the stationary distribution is zero, d1 = 0, and it can be shown
that g1 = l1(t) = 1. The relevance plots (row 3) can hence be used
to displays the range of time scales where a process is present gi(t) >
g

min in the observation. The left grey-shaded region refers to the time
scales, where

max
i>4

gi > g

min = 10�4

and thus any of the considered fast processes is present. Respectively,
the right gray-shaded regions refer to the parts where not all domi-
nant processes are present gi < g

min, i  4. Depending on the projec-
tion the range extends in both directions, especially the eigenvector
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based projections (PCCA in column 3) has no fast processes present
and is thus perfect even for small time scales.

Finally the estimated time scales ti (row 5) and their relative er-
rors (row 4) are presented. The dashed lines refer to the spectral
estimation, while the continuous lines are estimated using implied
time scales from a projected MSM. The results are shown versus an
implied time scale. Since spectral estimation uses two lagtimes, so
that the estimated value is given at the higher lag time t2 while the
first lag time is chosen to be t1 = t2/2. In principle one could ob-
tain even better results when increasing t1 towards t2. Nevertheless,
the method provides excellent improvements over the MSM approach.
Close to time scales where the fast processes have vanished, the er-
ror reduces almost to zero. This is in agreement with the results
from Theorem 2. Also, the time scales are never overestimated which
happens for non-membership projections in the MSM case, since the
stationary process mixes with the other processes. Lastly and most
importantly the method provides always better estimations even for
small lag times compared to the MSM-based estimation. As soon as
the fast processes have decayed (white region) the estimation error
almost vanishes. The diagonal crossing gray region refers to the time
scales not accessible due to numerical machine precision of the used
eigenvalue solver. Assuming that the smallest non-zero computed
eigenvalue (or the root of the polynomial) is e then the smallest pos-
sible implied time scale computation at a discrete lagtime multiple of
k will lead to

tmin(k) = � k
log(e)

which gives with a precision of e ⇡ 3 · 10�18 roughly

tmin(k) = 0.0249 k

and explains the linear cut-off behavior observed in some cases for
large t estimations.

5.9 application to optical tweezer experiments

5.9.1 Experimental Setup

As an experimental proof of concept we are analyzing a set of time
series that have been recorded using a constant trap position (equi-
librium) optical tweezer experiment of a 56-base ssRNA hairpin, the
schematic set up of which is shown in Figure [5.4] (see appendix D.2
and [147] for details).

This experiment provides us with a set of trajectories that measure
the force exerted on an attached bead inside a laser trap with approx-
imately harmonic potential and thus indirectly track the end-to-end
distance of the hairpin. Thus the data collected is a projection of the
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internal full dynamics of the ssRNA hairpin onto a one-dimensional
observable. which allows to us to apply the new method of spectral
estimation to predict time scales of relaxation processes that affect
this specific observable. We expect that these will be the processes
that affect the end-to-end distance of the probed molecule.

5.9.2 Time scale Estimation

The estimation procedure described in section 5.7 was applied to a set
of six time series which were recorded in an optical tweezer experi-
ment from a single hairpin. Each time series was observed at room
temperature (T = 293 K) and in equilibrium (after an equilibration
phase) from a single unique RNA fiber with only various changed
total trap extension. Refer to appendix D.2 and the corresponding
publication [147] for details about the experimental setup. The six
resulting time series, as displayed in Figure 5.5, were sampled for
60 s at a time resolution of 0.020 ms (corresponding to a sampling
frequency of 50 kHz) giving a series of 3 · 106 time points in a range
between 120 nm and 165 nm for the relative bead displacement. Ac-
tually recorded were forces which have then been converted to bead
displacements relative to the trap center using Eq. 5.10.1. Each time
series was binned into a set of 50 equally spaced states over the full
range of observed data points in the particular time series to achieve
a comparable spatial resolution. Afterwards transition matrices were
estimated at the native sampling lagtime of t0 = 0.02 ms and the first
5 eigenvectors ŷi were computed to be used as a basis for the used
observation x. All time series were projected onto this 5 observations
x1, . . . , x5. Then, two times a set of correlation matrices CX(t) were
computed for 20 lag times in a range of

t 2 {10t0, . . . , 200t0} = {0.2ms, . . . , 4.0ms},

the first one using all 5 eigenvectors, x

5 = {ŷ1, . . . , ŷ5}, and the sec-
ond one only the 4 dominant ones, x

4 = {ŷ1, . . . , ŷ4}.
From these 2 ⇥ 20 correlation matrices the time scales for the 6

tweezer positions were computed using the spectral estimation method
in section 5.7 by the optimization of Eq. 5.7.1 to reduce statistical in-
fluences. Here, a set of various lag time ranges L was used to feed
the optimization: Changing the start of the range, over which the op-
timization was run, between t

min 2 {10t0, . . . , 170t0} while keeping
the end of the range fixed at t

max = 200t0. The step size was also
varied and set to Dt 2 {2, 4, 5, 8, 10} · t0. This procedure led to a to-
tal of 2⇥ 85 optimizations in which the number of used correlation
matrices varied between 4 and 96.

To execute the actual optimization of Eq. 5.7.1, the build-in mini-
mization algorithm from Mathematica [148] (command FindMinimum)
was used with the maximum number of iterations increased to 2000
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Figure 5.4 – Experimental Optical Tweezer Setup. (a) The 56-base ssRNA
hairpin (only schematic) is connected by two 558bp-dsDNA handles to two
beads, one fixed and the other kept inside an optical laser trap. By moving
the trap and the fixed bead apart, a strain is exerted onto the hairpin with
an increasing force alleviating unfolding. The fluctuations of the bead in
the approximately harmonic potential of the laser trap is measured and
recorded. (b) Same as the above, but with correct relative sizes. Refer to
appendix D.2 for experimental details.
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Figure 5.5 – Experimental traces Experimentally measured fluctuations in the bead position (rel-
ative to the trap center) computed from the traced forces in the optical tweezer experiment for
6 selected different total trap extensions. The index on the left indicates the trace in the original
experiment for reference (see appendix D.2 and Ref. [147]). All traces were recorded from the
same hairpin for 60 s at a sampling frequency of 50 kHz resulting in 3 · 106 time points per trace.
Depending on the tweezer position the stationary distribution shows a clear two state separation.

(option MaxIterations). The algorithm reports if it has converged
within the standard accuracy, which was set to half the number of dig-
its of the used machine precision – in the present case about ⇠ 10�8.
Only if this was the case the estimated time scales were kept for later
analysis.

The results of this time scale estimation are presented in Figure 5.6,
where the thick lines indicate the median over all valid estimations
and the colored areas refer to the 25%/75% quantile regions. Both
estimations, for four (x4) and five (x5) projection functions, provide
a smooth estimate and agree well, although the 5-state estimation
seems to provide slightly slower timescales compared to the 4-state
case. A possible explanation is that to resolve the 5th slowest process
the lower end t

min of the range of lagtimes L had to be in a range
where this process is still present. If t

min is too large the optimiza-
tion effectively tries to fit 5 processes where only 4 are present and
does not converge. Hence, the lag time ranges L with high t

min are
excluded from the estimation and thus the systematical error induced
by the presence of fast processes might be stronger in this case.

5.10 theoretical rna model

To get a more detailed picture of the dynamics, it would be useful
to associate the relaxation processes that were found using spectral
estimation to actual structural rearrangement in the RNA hairpin. For
this we employ a phenomenological energy model of a RNA hairpin
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Figure 5.6 – Estimated time scales vs (estimated) total trap extension for
6 selected experimental traces. Shown are estimations for four x

4 (solid
lines) and five x

5 (dashed lines) projection functions. Colors indicate the
actual time scale ordered from slow to fast: slowest t2 (red), t3 (yellow), t4
(green), t5 (blue). The thick lines indicate the median over all estimations
with 25%/75% quantile regions indicated by colored areas.

that is being subject to the force probe experiments analyzed here. In
the following we will review the necessary model components.

5.10.1 RNA configurations

We decided to use the stable RNA structures predicted from the Vi-
enna RNA Web Service[149]. This project, which is publicly available
as a web service, allows, using sophisticated empirical forcefields, to
compute possible configurations of RNA chains with their relative
potential energies. In the present case the ssRNA strain is a p21ab
RNA Hairpin which can be represented by a sequence of 56 single
RNA bases as given in Figure [5.7].

Various RNA configurations are possible due to a multitude of possi-
ble ways of pairing the bases by bonds (see Figure 5.7 for some exam-
ples). To limit the number of conformations, the model assumes that
a configuration is solely determined by the specification of these bond
pairings and, in addition, that the configuration can be drawn on a
2D plane without twists and crossings (topological order zero)[149].
This allows to represent a configuration conveniently by a sequence
of characters consisting of parenthesis (indicating a bond) and dots
(indicating bases without connection) (see Figure [5.7]). To retrieve
the set of possible RNA configurations we used the RNAsubopt com-
mand

RNAsubopt -d2 --noLP -s -e 40 < seq.inp > rna.out
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Figure 5.7 – Classification of structures of the p21ab RNA Hairpin. The upper table lists the
structure in the form used by the Vienna RNA Web Service to express the position of bonds
between RNA bases. xrna denotes the free end to end distance in terms of bases relevant for the
trap setting. The energy Urna on the right lists the range of energies occurring in the model at the
fixed end-to-end distance in kcal mol-1. The energies are normalized to be zero for the completely
unfolded state (V). All configurations are manually lumped into 5 groups (I-V) depending on
the end-to-end distance indicating folded (I) to unfolded (V) - see Tab. 5.2 for definition. The
schematic representations at the bottom show the lowest energy configuration within each group
as vertex-free planer structures which are marked with an arrow in the table above.
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which was set to use a cut-off of 40 kcal mol-1 above the minimum
free energy and the sequence of the RNA hairpin seq.inp of

ACA GGC AGU CGU GGG GUA GAG UUU CAA AGG GGA CUC UGA

ACC AUG ACU UGC CGC AA.

In our case a total of 6,087,011 configurations between�30.1 kcal mol-1

and +9.9 kcal mol-1 were predicted.
Assuming a canonical ensemble of configurations the relative prob-

ability to observe a specific configuration c is given by the Boltzman-
Distribution related to the energy Urna

c representing the internal bonds
by

pc(b) µ exp(�bUrna
c )

where b is again the inverse temperature in units of the Boltzman con-
stant kB. Here, the system is coupled to optically trapped polystyrene
beads with double-stranded DNA (dsDNA) handles that are used to
change these probabilities according to a specific trap setting.

What effectively happens is that applying a pulling force tilts the
energy landscape towards configurations that have a larger end-to-
end distance xrna. To treat the effects of the different experiment
components (e.g. trap, handles, hairpin) onto xrna correctly we have
calculated the energy dependency for all these components separately.
To keep things comparable and avoid errors, the same units for all
constants will being used; we decided for kcal mol-1 for energies and
nm for distances. We will assume that energy is conserved and can
travel freely between different components and that the energy of the
system components can be described well enough by a single extension
number x, thus, assuming that all part are aligned in a straight line.

5.10.2 The optical trap

The trap is assumed to be harmonic (i. e. linear increase of the force
with increasing bead displacement in the trap) which allows us to
compute the displacement of the center of the optically trapped bead
from the trap center from the measured force on the bead, xtrp, once
the trap spring constant has been determined. In the following sec-
tions we will exclusively use distances/displacements instead of the
actual measured forces. This approximation is only valid within a
certain range of forces which are met in this case. Exceeding this
range, the force of the trap reaches a saturation region and the forces
remain almost constant with increasing displacement xtrp from the
equilibrium. Since the forces exerted here are small enough for the
system to remain in the harmonic region we model the energy of the
trap by

Utrp(xtrp) = 1/2kTrap(xtrp)2 (5.10.1)

where we assume a force constant of

kTrap = 0.096 pN/nm
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which equals
kTrap = 0.014 kcal mol-1/(nm)2.

The force constant was initially set to a value given from the experi-
ment and later slightly optimized to match the observed traces best
(see appendix D.2 for details).

5.10.3 The dsDNA Handles

The handles resemble a much more complicated behavior and can
be modeled by a polymer chain model [150]. An approximation of
the force needed to pull on such a polymer chain in the case of high
forces is given by a non-closed form

bLp · F(xhdl) =
1

4(1� xhdl/L0 + F(xhdl)/Ey)2

� 1/4 + xhdl/L0 � F(xhdl)/Ey

with additional bond-stretching corrections. Here Lp = 45 nm refers
to a typical persistence length of the dsDNA chain [151] and L0 is the
contour length, the total length of the backbone. In the present case,
handles of 558 base pairs are used with a typical length per base pair
of 0.34 nm, leading to a contour length of

L0 = 189.7 nm

per DNA chain and finally, for the Young modulus Ey for phosphodi-
ester bond stretching a typical value of

Ey = 1000 pN

is assumed [150]. The functional form is solved for the force and
integrated using

Uhd(xhdl) =
Z xhdl

0
dx F(x)

to get an approximation of the energy needed to pull the dsDNA to
a certain length xhdl.

5.10.4 Probability Functions

We assume that the energy in the system can be exchanged between
the different parts so that the total energy is given by the sum of its
compartments

Utot = Utrp(xtrp) + Uhd(xhdl(1)) + Uhd(xhdl(2)) + Urna
c
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and using a canonical ensemble with fixed average energy, the prob-
ability for the observation of a certain configuration is then given by
the Boltzman distribution

pc(xtrp | b, xhdl(1), xhdl(2)) µ exp(�bUtot)

µ exp(�bUtrp(xtrp)) exp(�bUrna
c )⇥

⇥ exp(�b(Uhd(xhdl(1)) + Uhd(xhdl(2)))).

To remove the dependence on the two different handle distances we
use that both lengths are related

xhdl ⌘ xhdl(1) + xhdl(2) = xtot � xtrp � xrna
c

and integrate over all possible combinations with fixed total handle
extension xhdl. To simplify the notation, an effective handle energy
Ueff is introduced, defined as

exp(�bUeff(xhdl)) ⌘
Z xhdl

0
dx exp(�b(Uhd(x) + Uhd(xhdl � x)))

leading to

pc(xtrp | b, xtot) µ exp(�bUtrp(xtrp)) exp(�bUrna
c )⇥

⇥ exp(�b(Ueff(xtot � xtrp � xrna
c ))).

For the final total probability to find the bead in the trap at a certain
position xtrp w.r.t. a given total trap distance of xtot, summing over
all possible configurations c yields

p(xtrp | xtot) µ Â
c

exp(�bUtrp(xtrp)) exp(�bUrna
c )⇥

⇥ exp(�b(Ueff(xtot � xtrp � xrna
c ))).

The last expression can be simplified further if a fixed temperature
is assumed: Using that the end-to-end distance given in the number
of unpaired bases nc for conformation index c can take only finitely
many different values nc 2 nRNA ⇢ {0, . . . , 56} we can define an
energy function

exp(�bUdst
n (n)) ⌘Â

c
exp(�bUrna

c )d(n� nc)

that is end-to-end distance n dependent. This allows to simplify the
solution to

p(xtrp | xtot) µ Â
n2nRNA

exp(�bUdst
n (n)) exp(�bUtrp(xtrp))⇥

⇥ exp(�b(Ueff(xtot � xtrp � xrna(n)))), (5.10.2)

which is finally a sum over all possible end-to-end distances nRNA and
not over the exponentially growing number of configurations. For the
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Figure 5.8 – Equilibrium Predictions of the RNA Model for different total trap positions (dashed
lines/gray). The Model shows the expected qualitative behavior for the relative bead displacement:
Increasing the total trap-distance (trap position) also increases the strain on the RNA hairpin. At
xtot > 515 nm the unfolded states (red) appear and until xtot < 530 nm also the native confor-
mations (blue) are present. Shown are only positions that match a certain experimental trajectory
(identification on top). Histograms computed from the experimental traces (solid lines/yellow)
used to match the total trap distance xtot. The numbers/ids on top refer to the original numbering
in the tweezer experiment (e.g. 3x08 is trace no. 3 and trap setting no. 8 - see appendix D.2 for
details).

end-to-end distance function xrna(n) we used propotionality factor of
0.34 nm/base. By precomputing Udst

n (b), the probability p(xtrp | xtot)
can be computed quickly even for very large sets of configurations.
For practical purposes, the sum in Udst

n (b) is again approximated by
all configurations with

Urna
c d(n� nc) � min

c
Urna

c d(n� nc)� DU

which effectively removes all configurations being a factor of e�DU

less probable than the most likely configuration for a given end-to-
end distance n. Setting DU = 10 kcal mol-1 leaves a remaining 17,272

configurations.

5.10.5 Predicted bead position histograms

Using the RNA model we predicted stationary probabilities p(xtrp |
xtot) to observe a certain trap dislocation xtrp given a specific total
trap extension xtot at room temperature 293 K. Figure 5.8 shows the
analytical results as gray shaded regions with dashed lines and the
matching histograms from the 6 experimental traces in yellow with
solid lines. The trace-specific total trap extensions xtrp have been
fitted manually to match the experimental prediction best and in a
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Trace ID 3x02 3x07 3x08 3x10 3x11 3x13

xtot [nm] w/o beads 508.2 521.2 524.0 528.8 531.3 538.3

xtot [nm] with beads 3,158.2 3,171.2 3,174.0 3,178.8 3,181.3 3,188.3

Table 5.1 – Estimated total trap extensions Estimated total trap extensions xtot for each of the 10

recorded traces. The distance is given without the additional two bead radii of 2650 nm in total as
it will be done in the calculations. The trace ids match the experimental setup and refer to traces
recorded from fiber no. 3 (see appendix (D.2)).

range between 505 nm and 540 nm either folded and/or unfolded
structures are present. See Table 5.1 and Figure 5.8 for exact numbers.

With increasing total distance xtot both, the folded and unfolded
structures, move towards higher bead dislocations xtrp, which is ex-
pected and is due to the weak trap constant kTrap. Increasing the
pulling force will mainly move the bead in the trap in the same di-
rection until the opposing force is large enough to cause the hair-
pin to unfold. Therefore the unfolded and thus more extended state
corresponds to a lower bead displacement from the trap center xtrp.
To improve the agreement between experimental histograms and the
model prediction we manually reduced the trap constant from an
initially experiment-derived guessed value of

kTrap = 0.100 pN/nm

by 4% to the finally used value of

kTrap = 0.096 pN/nm

until the shape of both histograms matched best. All other model
constants were kept as the typical values given in the previous sec-
tions. Considering that only a single parameter had to be adjusted
the agreement between model and experiment is very good. We ex-
pect that here is still room for improvement to adjust all parameters
to get even better results.

5.11 reconciling force probe experiment and rna model

So far we only compared the stationary probability distribution of
bead dislocations p(xtrp | xtot) and we want to proceed with the fol-
lowing dynamical analysis as illustrated in Figure 5.9: Starting from
the previously estimated total trap extension xtot for a specific trace
the introduced model can predict the stationary bead dislocation sep-
arately for RNA configurations that exhibit a certain end-to-end dis-
tance xtrp using Eq. 5.10.2. Without any simplification the 56-bases
of the RNA hairpin can have 57 different end-to-end distances (0 to
56) which we grouped into 5 clusters to reduce the complexity of the
model. To define the clustering we examined all 57 end-to-end dis-
tances in Eq. 5.10.2 and computed their relative contribution to the
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Figure 5.9 – Schematic analysis of relaxation processes using experimental estimations (middle),
theoretical predictions (right) and the relation to spectral estimation (left). On the experimental
side a MSM is generated from the trajectory and dominant eigenvectors are computed that are
used for spectral estimation and as indicators for the dynamics in the system. On the theoretical
side the total extension xtot is estimated that allows then to predict the probability distribution for
this extension. From this the 5 dominant groups (I,. . .,V) of end-to-end distances are computed
which form the basis for the matching onto the dynamics encoded in the eigenvectors from the
experimental part. Together with spectral estimation these three parts together allow an estimation
of the time scales for each relaxation process and the associated structural changes between the
configurational groups (I-V). See Figures 5.10, (5.11) and 5.6 for final estimation results.
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a)

xrna [bases] max contrib.

56 98,99%
9 90,94%
18 6,43%
11 3,66%
16 2,68%

xrna [bases] max contrib.

40 0,47%
20 0,17%
38 0,15%
50 0,10%

rest <0,10%

b)
group I II III IV V

xrna [bases] {9,11} {16,18,20} {38,40} {50} {56}

Table 5.2 – Definition of the 5 relevant end-to-end distance groups used
in the theoretical model for the dynamical analysis. a) Maximal relative
contribution to the total distribution of predicted bead displacements xtrp

from RNA configurations with a distinct end-to-end distance given in the
number of free bases (see Figure 5.7 for an example). b) Definition of the 5
relevant end-to-end distance groups based upon the results in Tab. a). All
configurations with a maximal relative contribution of more than 0.1% were
used and distances of 2 or less bases were considered indistinguishable and
hence put in the same cluster.

stationary distribution over a range of xtot 2 [505 nm, 540 nm]. We
then selected all end-to-end distances that contributed at some xtot at
least 0.1% to the total displacement distribution p(xtrp | xtot) when
a binning into 50 states was used. This left 9 relevant end-to-end
distances out of the 57 possible ones.

The 5 groups were finally chosen under the assumption that dif-
ferences of 2 bases or less are indistinguishable due to the resolution
of the experiment, which resulted in 5 groups that are indicated by
roman numerals and are ordered with increasing end-to-end distance
from (I) folded to (V) unfolded. See Tab. 5.2 for concrete numbers and
Figure 5.7 for a list for the dominant configurations for each of the 5

groups. These five subgroups cover at least 99.69% of the total prob-
ability in the bead displacement distributions, which we consider to
be a good approximation of the full 57 end-to-end distances model.

The next step is to compute a basis pBasis
i (xtrp | xtot) for the distri-

bution based on the five subgroups

pBasis
i (xtrp | xtot) µ Â

n2group(i)
exp(�bUdst

n (b)) exp(�bUtrp(xtrp))⇥

⇥ exp(�b(Ueff(xtot � xtrp � xrna))),

with group(i) containing only the distances of subgroup i (see Tab. 5.2,
b). From now on we will assume that the stationary probability dis-
tribution of relative bead positions found in the experiment as well as
the dynamics of all relaxation processes (i.e. the eigenfunctions) can



5.11 reconciling force probe experiment and rna model 139

be approximated by a linear combination of these five basis functions.
Note, that due to the nature of the physical setup the basis functions
move and change shape with increasing total trap extension xtot. Ex-
pressed in a more illustrative way, we explicitly assume now that the
dominant dynamics can be expressed as transitions between the five
subgroups of end-to-end distances.

To compute the eigenfunctions that express the direction of the re-
laxation processes we constructed a MSM using the native (sampling)
lagtime t = t0 = 0.020 ms. These functions have been used before
as the projection in the spectral estimation procedure and are now
considered an approximation to the correct projected eigenfunctions.
In principle we could now use the Q matrix to correct for the fact
that the estimated eigenfunctions ŷi are by construction orthogonal,
while the actual projected eigenfunctions are not. In this analysis
we did not include this additional correction since we had no robust
method to combine the results from the different estimations into a
single estimate. This is an important point that needs to be investi-
gated further.

What we would finally like to show is, that the experimentally ob-
served dynamics of the dominant relaxation processes – the ones con-
tained in the dominant eigenvectors ŷi – can be expressed in terms of
a basis that is derived from the dominant structures of the theoretical
RNA model. In this case we can argue that we can actually assign
structural changes to experimental relaxation process provided that
our model is a good approximation to the real dynamics (see Fig-
ure 5.9 bottom).

For the actual comparison, the basis functions pBasis
i were fitted

to the 4 dominant (left) eigenvectors ŷi using a least-squares fit us-
ing an algorithm from Mathematica (command FindMinimum). As
seen in Figure 5.10, the agreement between the experimental distri-
butions/eigenvectors (solid) and the linear combination using the ba-
sis functions pBasis

i (dashed) are visually quite good, especially for
the stationary distribution and the two slowest processes. We should
note, that in principle using a sufficiently large set of basis functions
any function can be fitted arbitrarily well. In our case we wanted to
approximate 4 eigenfunctions that have been discretized at 50 spatial
points by a set of 5 basis functions that are solely computed from a
theoretical model. No further optimization of these basis functions
apart from a linear recombination was made and hence the argument
of over-fitting does not hold here. The agreement for process number
4 (green) is less accurate and seems to involve additional states. In-
deed, the matching can be improved by adding the next relevant con-
figurations w.r.t. to end-to-end distance following the above scheme.

Figure 5.11 shows the amplitudes of the fitted basis functions and
hence the actual linear combination of basis functions used in the
dynamical analysis. The aim is to see if the structure of the eigen-



140 estimation from experimental time series

vectors in the theoretical basis is similar among different traces and
if we can assign a structural change to the different relaxation pro-
cesses. All processes show the same structure (positive/negative re-
gions) for each trace suggesting that the assignment of a relaxation
process to a time scale is the same between the different traces. The
four traces is the middle (marked with a gray bar) show a clear 2-state
histogram and we expect the dominant processes to be more distinct
there compared to the traces where only a single state is observed
(trace 3x02 and 3x13). The plot further illustrates that the slowest
process (red) can be interpreted as a transition between the native
(Group I) and the unfolded configurations (Group V). The 3rd eigen-
vector (yellow) involves transitions between the intermediate states
(Group II-IV) and the fastest dominant process, Eigenvector 4 (green),
finally represents transitions within each macro state (Groups I+II
and Groups IV+V) of the visually apparent (2-state) nature of the
hairpin dynamics. This ordering of time scales of processes is what
would be expected for a simple folding mechanism: The fast pro-
cesses (l4) are within the macro (visible) states while the transition
between macrostates is slower (l2).

5.12 summary and discussion

In the first part of this chapter we have presented a new approach to
estimate time scales and the corresponding projected eigenvectors of
an underlying Markov Model from very low-dimensional projected
time series. The method requires information from observations col-
lected at at least two different lag times utilizing ideas from a gener-
alized eigensystem decomposition and can partially circumvent the
projection error present in MSM time scale estimations. This places
the method in the group of multi-t estimators with improved conver-
gence properties.

A basic sensitivity and error analysis was conducted that showed a
slightly higher sensitivity to the initial correlations compared to the
MSM estimation due to the dependence on more initial values which
should be reduced by optimization strategies incorporating observa-
tions from more than the minimal required number of two different
lag times. The question of robustness against statistical fluctuations
is still a major point in the ongoing investigation. We assume that a
scheme, starting with an estimation of only the slowest process and
iteratively increasing the number of processes while keeping the al-
ready estimated ones fixed, might improve stability. This would also
allow to optimally incorporate the different lag time regions where a
process is observable.

From a theoretical point of view, another possible solution would
be to reformulate the spectral estimation in terms of a variational
principle with a suitable target function that takes a minimum once
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Figure 5.10 – Approximation of eigenvectors estimations for various experimental traces indi-
cated by the trace id on the left. The gray bar indicates traces that show a clear 2-state histogram
and are therefore expected to show more dynamical interaction. Solid lines refer to the MSM
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an optimal solution/projection has been found. This would be simi-
lar to the Ritz method that can give the optimal projection provided
that the projections are chosen to be orthogonal. In the ideal case we
would like to find a target function that is independent of the orthog-
onality and uses in addition correlations matrices at multiple points
in time to reduce perturbations from statistical uncertainties.

In a second step, the method was applied to the artificial 4-state
system that was introduced in chapter 2. The results show much im-
proved convergence to the correct time scales compared to ITS from
MSM. Especially, once the fast processes can be neglected, the error
practically vanishes. This was done for a variety of different projec-
tions which differ significantly only in their convergence behavior in
the lag time region where the fast processes are still present. This is
in accordance with the theoretical findings that the method is exact
in the slow time scale region while it still depends on the choice of
projections if the lag time t is chosen too small. For projections that
eliminate the the fast processes the estimation is exact over the full
range of lag times as it is used e.g. in PCCA. Thus, as long as statis-
tical uncertainties are not an issue this method provides much faster
convergence to the true time scales compared to the construction of a
MSM and compute Implied Time Scale from it. Hence, we expect that
spectral estimation can be a replacement to the implied time scales
estimation that is widely used as being explained in chapter 2.4.3.

In the third part, the effectiveness of the new method was demon-
strated on experimental time series from an optical tweezer exper-
iment of a 56-base ssRNA hairpin. We successfully estimated time
scales for the four dominant processes that showed a consistent change
of the estimated time scales over a set of six independently collected
time series ranging from the totally closed to the fully extended state.
So far the estimations were done for a variety of different sets of lag
times using the presented optimization scheme which allowed a qual-
itative analysis of the variance that is caused by the statistical influ-
ences. Under the influence of statistical uncertainty the optimization
suffered from convergence problems which needs to be addressed in
further investigations. The previous idea of an iterative and lag time
dependent estimation might increase the chances of convergence but
also a more robust optimization implementation is necessary. Better
initial estimation parameters might also improve the estimation and
reduce the necessary number of iterations.

Since we base the estimation on correlation functions, it is reason-
able to use methods that assure a good convergence for the correla-
tions as well. One way to improve this is to use dynamical reweight-
ing [4, 3] as we demonstrated in chapter 4. This might actually prove
to be a powerful combination since dynamical reweighting can re-
duce the statistical uncertainty which is so far the crucial point in the
spectral estimation.
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In the last part, we related the experimental findings to conforma-
tional changes in the structure of the RNA hairpin. For this a compu-
tational model for a RNA hairpin in an optical trap was build upon
the RNA structure prediction from the Vienna RNA model web ser-
vice. The model was based solely on physical considerations and al-
lowed very good predictions of the stationary distributions observed
in the experimental time series. The necessary parameters were taken
to be widely accepted averages and only the trap constant for the har-
monic laser trap had to be adjusted by a reduction of 4%, which
seemed necessary for the model to reproduce the observation. The
matching is excellent for the closed states and differ slightly in the
transition region and the open states. This might be due to an in-
crease of non-harmonicity in the force of the trap with increasing to-
tal trap distance. Also, we expect that the RNA structure prediction
was optimized to predict the low-energy states correctly and thus
the variation in the higher energy states could be a trade-off of the
simplicity of the model. We also have to take into account that the
trajectory might not be converged although in this case we would ex-
pect to miss certain conformations instead of potentially high energy
states being overpopulated. Nevertheless the agreement between the
theoretical model and the experimental observations is better than we
had expected.

The RNA model was used to connect the structural information
present in the theoretical model to the dynamics in the experimental
time series. For this we estimated five relevant groups of configura-
tions that were clustered by their end-to-end distance. The contribu-
tion of these groups to the distribution of bead displacements was
used to find a set of five basis functions. This basis was assumed to
be the building blocks of the dominant dynamics, i.e. the slow re-
laxations processes move between these five subgroups of configura-
tions. It was then mapped onto the eigenfunctions from a MSM model
that was estimated at the native sampling lag time which finally al-
lowed for an intuitive interpretation of the relaxation processes.

The agreements were very good for the four dominant (including
the stationary) processes with minor deviations in the folded part of
the fastest of these processes. The particular combination of relax-
ation processes suggests a slow transition between the two apparent
macro states that a visible in the histogram with few intermediates
(similar to a 2-state folder), while the faster processes describe transi-
tions within the groups of folded or unfolded states. We assume that
our choice of five basis groups is not fine enough and thus responsi-
ble for the insufficient good approximation in the fast processes. A
more thorough investigation and especially an application to traces
with lower noise should provide more insight into this matter. In
conclusion, the presented connection between the experimental data
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and the RNA model can give additional insight into the observed
processes and their internal dynamics.





6
S U M M A RY & O U T L O O K

state-of-the-art

Recapitulating the content of the introduction and theory chapter 2

we realize that the theory of Markov models – in their ability to pro-
vide means to describe the relevant dynamics of biomolecules – has
matured into a well-developed and widely used theory. There exists
the broad mathematical foundation from Markov processes, rigorous
error bounds, and construction strategies that can be proven to be
optimal under certain conditions. Aside from the theory, there is a
variety of successful applications ranging from the construction of
Markov State Model (MSM) for simple and well-studied test cases [65]
up to the construction of models that allow to span time scales much
larger than the actual simulation time possible for peptides of that
size [35]. Thus, it is possible to robustly generate MSMs from simula-
tions, validate their predictions and compute a variety of important
key properties from it.

Acknowledging this development, we have not yet paid the nec-
essary attention to the question of how to obtain the information
needed to parametrize our models to the required accuracy. It turns
out that for systems of relevant sizes the sampling problem poses the
main issue, i.e. the exponential growth of state space with increasing
system size and the existence of high barriers slow down the explo-
ration in the state space. Hence, for large systems, the necessary
simulation time exceeds what is computationally affordable or even
possible. Here, an important question comes up, aside from the obvi-
ous ways to improve the existing methods: Can MSMs provide a way
to speed up the discovery of the relevant phase space parts compared
to what is possible from a single long simulation? This problem was
one of the original issues that were to be addressed by the application
of MSMs. Concretely, we would like to know whether the locality of
the conditional jump probabilities in the transition matrix can be used
to formulate a strategy that will reduce the simulation time for molec-
ular dynamics simulation by providing means to patch information
from several short trajectories into an improved model. It was already
successfully demonstrated that this is possible to artificially increase

147
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the affordable simulation time to estimate the equilibrium ensemble
for a medium-sized peptide [35].

enhanced sampling using short trajectories

The prospect that Markov models could help to circumvent or miti-
gate the sampling problem by utilizing a large set of short trajectories
starting from different conformations conventionally only rarely vis-
ited in equilibrium, raises the question of how the relevant starting
conformations can be found. This question is not specific to Markov
model analyses, and it is likely that in this stage biased sampling
methods such as meta-dynamics [152], conformational flooding [153],
umbrella sampling [154], targeted Molecular Dynamics (MD) [155],
replica-exchange MD [113], or pathway methods [46] will be useful
to generate an initial exploration of conformation space from which
short equilibrium simulations can then be launched. Once the rele-
vant conformations have been found and a good discretization has
been obtained, it is clear that the uncertainty estimates of the Mar-
kov model can be exploited in order to pick starting points of subse-
quent simulations so as to adaptively reduce the uncertainty in the
parametrization of the Markov model. Using data of a parallel tem-
pering simulation this was already demonstrated [114] and this work
has extended this idea in chapter 4 to the combined usage of simu-
lations from multiple ensembles. Still, these models require manual
intervention such as the decision for a suitable discretization or the
number of dominant processes. The next step to an automated ex-
ploring of state space has yet to be achieved and the methods and
findings presented in chapter 2 and 4 can contribute to the necessary
basis for this.

steps towards adaptive sampling strategies

We realize that the fast and robust parametrization of the Markov
model is the missing key problem, and not the optimization and
computational steps once a Markov model has been generated. As-
suming that both of this parts function reliably, then – at least the-
oretically – the available computational resources could be chosen
to maximize the convergence rate of some user specified observable
property instead of the goal to explore the full state space as fast
as possible. One could for example choose to estimate a specific
eigenvalue-eigenvector pair to a certain accuracy as fast as possible
while neglecting all parts of the configurational space that are not
important in this case.

For such a scheme to work, reliable error estimations for these prop-
erties are indispensable. One often used property is the committor
since it provides an optimal reaction coordinate and is a basis for
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Transition Path Theory (TPT). In chapter 3 we have derived algebraic
expressions for the necessary variation in the committor. A second
even more used key property is the set of dominant relaxation time
scales of the system, the estimation of which is one of the major ob-
jectives. As we have demonstrated in chapter 5 there exist ways to cir-
cumvent the projection error for some of these properties that allows
for an increased accuracy of estimation. This has not yet been used in
the context of Markov models but it might represent a replacement
for the much used Implied Time Scale (ITS) of MSMs and can improve
the convergence speed of future adaptive sampling schemes. This
will of course take time, since not only the mathematical foundations
need to be developed but also an integration into existing simula-
tion frameworks need to be achieved. Still, the basis exists and the
necessary steps towards enhanced sampling are already being devel-
oped [127, 60, 61].

bridging the gap between simulation and experiment

The origin of most simulations is that the implications drawn from it
are in some sense a mirror of reality and can provide a more detailed
insight into the dynamics of systems that are not or only partially
accessible by other, experimental or theoretical, means. Hence, simu-
lations can be seen as an in-between of theory and experiment. While
the sampling problem still bounds the accessible time scales in sim-
ulation from above, there exists a converse lower bound to the times
that can be investigated experimentally. An overlap and hence a di-
rect comparison of simulation and experiment is thus rarely possible,
especially in biologically relevant cases. Since we base our Markov
state models on simulations rather than theoretical considerations, it
is desirable to derive a connection between the properties of Mar-
kov models and the observations from experiments. Here, the results
from chapter 5 can help to improve estimations and thus serve as
a bridge between experimental estimations and the thoroughly in-
vestigated Markov models from simulations and therefore eventually
contribute to their direct comparison.

applications for other kinetic models

The type of Markov models investigated here, i.e., transition matrix
based kinetics models between discrete state partitions of configura-
tion space, must be viewed as one aspect within a family of confor-
mation dynamics approaches. Rate matrix or Master equation models
[44, 73, 74] are very close in spirit, and we have mentioned connec-
tions to these models (see section 2.3), making most of our present
results available to these models as well. Recently, an alternative ap-
proach [44] has been proposed to obtain coarse-grained Markov or
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Master equation models based on a non-complete partition of state
space that avoids to finely discretize the transition region. It is shown
in [78] that the presented analyses of the discretization error can be
applied to this approach as well, only that here the eigenfunctions on
the non-resolved parts of state space are effectively replaced by an
interpolation based on committor functions between core sets[108].
Generating Markov or Master equation models based on rate models
from an exploration of the stationary points of the energy landscape
is an approach that has great tradition [40] and has been particularly
successful in the analysis of Lennard-Jones or water clusters [156, 40].
These models are not concerned with the same estimation problems
as the present Markov models, as they are built from rate-theory
based estimates (such as transition state theory) of state-to-state tran-
sition rates between the stationary points of the energy landscape,
and not from trajectory statistics. However, they necessarily share the
same concerns of making a discretization error by aggregating points
of continuous state space into discrete model states. In a wider sense,
approaches that use MD to parametrize effective stochastic equations,
such as Langevin dynamics [91, 157, 158], also induce models of the
ensemble dynamics, such as Fokker-Planck type models. These en-
semble dynamics models generally share the advantages of Markov
models over traditional MD analyses that have been discussed in the
introduction. The specific advantage of Markov models is that they
are on one hand asymptotically exact both in terms of discretization
and estimator quality (see Sec. 2.4 and 2.6), and on the other hand
very simply compared to models that in some way include memory.
In addition, the concept of projected Markov models from chapter 5

provides an alternative view on the virtual memory introduced by
projections.

As MSMs allow the whole arsenal of Markov chain theory to be
readily accessed, the functional relationship between Markov models
and most interesting molecular properties or observables has been
worked out already [60, 58, 35, 43, 55, 63], and often has a simple
and straightforwardly interpretable form. Given these advantages
we expect that the popularity of Markov or similar models for the
modeling of molecular kinetics will keep increasing. As we have
demonstrated, the simulation and estimation capabilities of Markov
State Model have developed greatly until now and will also make a
relevant contribution to the understanding of molecular kinetics in
the future.
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To simplify the readability, all symbols commonly used throughout
the thesis are listed in Tab. A.1 and Tab. A.2. Any deviations from
this are mentioned and repeated where necessary or helpful. Orna-
ments (hats, dagger, etc.) associated with symbols mostly refer to
specific attributes listed in Tab. A.3 and a summary about notational
style is given in Tab. A.4. To shorten the notation (especially for lin-
ear algebra) and ensure a better readability a few abbreviations and
conventions have proven helpful:

1. Indices of vectors and matrices start with one.

2. Indices for vectors, matrices and higher order object are indexed
with subscript Tij.

3. If the notation is long or ambiguous, []-brackets are used to
indicate the use of indices, e.g. T[i,x(t)].

4. If indices are used superscript they are always in brackets to
distinguish them from the power operation, e.g. xk vs. x[k].

5. A set can be used as an index, indicating, that the object is
reduced to a sub-object containing only the given indices, e.g.
T[{1,2,3},{1,2,3}] would be the sub-matrix taking the first three
rows and columns, q[A] indicate the vector q restricted to the
entries listed in set A.

6. Sets are indicated in curly {}-brackets, e.g. A = {1, 3, 4, 8}.

7. A colon : (as used in Matlab) can be used to shorten ranges of
indices, e.g. T[{1,2,3},{1,2,3}] = T[1:3,1:3].

8. A dot · refers to all entries in an index, this way a row or a
column can be selected, e.g. T[i,·] refers to the i-th row of the
matrix, while T[·,j] is the j-th column. Both objects are consid-
ered a (column) vector now and are treated as such.

9. The indices are always taken last, after inversion, the transpose,
etc. , e.g. TT

[i,·] is the i-th row of the transposed of T as a vector

10. If an equation is split into multiple lines, a multiplication is
indicated using ⇥
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Symbol Element Meaning

W x 2 W state space

t lag time, time resolution of the model.

x xt, xk 2 W time series in W continuous in t, discrete in k

pt pt(x) 2 R+ continuous (in state space) probability density.

p
t

p
t

(x, y) 2 R+ transition probability density

Q(t) propagator for lagtime t

T(t) transfer operator for lagtime t

P reweighting operator for dual elements in L2
p

li li 2 [�1, 1] eigenvalues

p p(x) 2 R+ stationary density

yi yi(x) 2 R eigenfunctions of T (t)

fi fi(x) 2 R density-weighted eigenfunctions of T (t)

d(·) d(x 2 A) 2 {0, 1} indicator function, equals 1 if x 2 A and 0 else

ci ci(x) 2 [0, 1] degree of membership of x to discrete state i

xi x(x) 2 R value of state x of observable/projection i

Table A.1 – Commonly used symbols throughout the thesis

Symbol Elements Name

T(t) Tij(t) 2 [0, 1] transition matrix of conditional jump probabilities
C(t) Cij(t) 2 R correlation matrix/matrix of absolute jump probabilities
p(t) pi(t) 2 [0, 1] probability distribution

P Pii 2 [0, 1] diagonal matrix of probabilities Pii ⌘ pi

R ri matrix of right eigenvectors ri in columns of T
L li matrix of left eigenvectors li in columns of T

L(t) Lii 2 [�1, 1] diagonal matrix of eigenvalues li of T
X Xij 2 [0, 1] matrix of projection/membership functions ci(x) in columns

CX CX
ij 2 R observation Correlation Matrix

Q Qij 2 R projected left eigenvector matrix
Z(t) Zij 2 R+ transition count matrix (row-dominant)

Table A.2 – Transition Matrix Notation Symbols used for discrete time, discrete state space Mar-
kov State Model (MSM)



notation and symbols 153

Ornament Name Meaning

x̂ hat estimated values
x̄ bar mean value, e.g. ensemble average

AT upper T transpose of a matrix
A-1 upper -1 inverse of a matrix
A-T upper -T inverse transposed of a matrix
A† upper dagger adjoint operator (w.r.t. the invariant measure)

Table A.3 – Symbol ornaments as used in the thesis.

Notation Name Style

x, y, z scalar (continuous) lower-case, italics
a, b, x, z vector lower-case, bold
X, C, T matrices upper-case, bold

i, j, k, l, n, m integer indices/variables
N, M, T, b global parameters

W, N, R, A, B sets script
A, Q, P operators upper-case, non-italics

h f , gi :=
R

dx p(x) f (x)g(y) scalar product (continuous)

ha, bi = Âi pi ai bi scalar product (discrete)

Table A.4 – Notation Symbols used for general types of mathematical objects





B
M U LT I E N S E M B L E E S T I M AT I O N

b.1 efficient solution of the self-consistent equations

for canonical distribution of hamiltonian trajec-
tories

For the case of a canonical distribution of Hamiltonian trajectories,
the normalization constants Ẑk or alternatively the dimensionless free
energies f̂i ⌘ � ln Ẑi are defined through a set of K coupled nonlinear
equations

f̂i = � ln
N

Â
n=1

 

K

Â
k=1

Nk exp[ f̂k � (bk � bi)E[n]]

!-1

(B.1.1)

where all symbols as defined as for Eq. (4.2.3). Any numerically sta-
ble method for solving a set of coupled nonlinear equations can, in
principle, be used to obtain the f̂i. A scheme for solving a more gen-
eral form of these equations by self-consistent iteration or Newton-
Raphson is described in Appendix C of [120].

Because of the structure of this specific case, we can rapidly obtain
a close initial guess for the f̂i by using a form inspired by the weighted
histogram analysis method (WHAM) [118]. By instead constructing
M bins in the total energy E spanning a range (Emin, Emax), we can
approximate Eq. (B.1.1) with a sum over histograms (as in Eqs. 19–20

of [118]):

f̂ [j+1]
i = � ln

M

Â
m=1

Hm

"

K

Â
k=1

Nk exp[ f̂ [j]
k � (bk � bi)Em

#�1

where Hm denotes the number of samples En falling in histogram bin
m, and Em represents the energy at the midpoint of that bin. For the
number of bins, typically, a value of M ⇡ 100 can be used. Since
Eq. (B.1.1) is linear in the Ẑk, the f̂k are unique up to an additive
constant and we can fix one value, say f1, by subtracting off the com-
puted value of f (j+1)

1 after each iteration in order to avoid numerical
drift.
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After the initial guess has been reached, self-consistent iteration
can rapidly refine the free energies to the desired tolerance while
eliminating the bias arising from the use of histograms:

f̂ [j+1]
i = � ln

N

Â
n=1

 

K

Â
k=1

Nk exp[ f̂ [j]
k � (bk � bi)En]

!-1

Again, we fix f̂1 = 0 and terminate iterations when a relative toler-
ance

r = max
i=2,...,K

| f̂ [j+1]
i � f̂ [j]

i |/| f̂ [j]
i |

is less than some given tolerance that ensures the computed expecta-
tions of properties of interest are no longer changing. We find that
r < 10�7 is often a safe choice.

Cautions observed in Appendix C of [120] regarding sums of loga-
rithms and numerical over/underflow in the evaluation of exponen-
tials should be observed in implementation of this, or any, algorithm
for obtaining the f̂i.

b.2 proof that modified pt protocol samples from canon-
ical stationary distribution

Corollary 5. Here, we prove that the modified PT protocol described in
Section 4.2.2 samples from the canonical stationary distribution at all tem-
peratures.

Proof. Define stationary distributions for momenta p and coordinates
q in Cartesian space R3N at inverse temperature b:

pp(p|b) = [P(b)]�1 e�bT(p) ; P(b) =
Z

dp exp(�bT(p))

pq(q|b) = [Q(b)]�1 e�bU(q) ; Q(b) =
Z

dq exp(�bU(q))

where T(p) denotes the kinetic energy and U(q) the potential energy
function. Suppose we have two replicas whose current phase space
points are denoted by z1 = (q1, p1) and z2 = (q2, p2), initially at
equilibrium at their respective inverse temperatures b1 and b2, such
that

p1 ⇠ pp(p1|b1) ; q1 ⇠ pq(q1|b1)

p2 ⇠ pp(p2|b2) ; q2 ⇠ pq(q2|b2).

We now consider what happens to the distributions of z1 and z2 after
an exchange attempt. Define “post-exchange attempt” coordinates
and momenta for inverse temperature b1:

q01  

8

<

:

q1 with prob. 1� q(q1, q2|b1, b2) (rejected)

q2 with prob. q(q1, q2|b1, b2) (accepted)

p01 ⇠ pp(p01|b1) (velocity randomization)
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where the exchange acceptance probability q(q1, q2|b1, b2) is given
by

q(q1, q2|b1, b2) =

min{1, exp[�b1U(q2)� b2U(q1) + b1U(q1) + b2U(q2)}

We now compute the distribution of q01, the configuration supposedly
at temperature b1 after the exchange attempt:

r1(q01) =
Z

dq2 [1� q(q01, q2|b1, b2)] pq(q01|b1) pq(q2|b2)

+
Z

dq2 q(q2, q01|b1, b2) pq(q2|b1) pq(q01|b2)

=
Z

dq2 [1�min{1, e�b1U(q2) e�b2U(q01) e+b1U(q01) e+b2U(q2)}]⇥

⇥ e�b1U(q01)

Q(b1)
e�b2U(q2)

Q(b2)

+
Z

dq2 min{1, e�b1U(q01) e�b2U(q2) e+b1U(q2) e+b2U(q01)}⇥

⇥ e�b1U(q2)

Q(b1)
e�b2U(q01)

Q(b2)

=
e�b1U(q01)

Q(b1)

�
Z

dq2 min

(

e�b1U(q01)

Q(b1)
e�b2U(q2)

Q(b2)
,

e�b1U(q2)

Q(b1)
e�b2U(q01)

Q(b2)

)

+
Z

dq2 min

(

e�b1U(q2)

Q(b1)
e�b2U(q01)

Q(b2)
,

e�b1U(q01)

Q(b1)
e�b2U(q2)

Q(b2)

)

= pq(q01|b1)

Therefore, after the exchange attempt, the new configuration q01 is still
at equilibrium at inverse temperature b1 (A similar series of steps can
be applied for the temperature b2). Redrawing the momentum from
the Maxwell-Boltzmann distribution at inverse temperature b1 will,
of course, not change the equilibrium distribution, and can be shown
to only support the canonical distribution at inverse temperature b1,
and no other stationary distribution [67]. Evolution by Hamiltonian
dynamics for any length of time does not alter the stationary canoni-
cal distribution [159]. Therefore, the proposed protocol samples from
the canonical distribution at the desired temperatures, provided suf-
ficient time is allowed for equilibration.

b.3 convergence of transition probabilities in bayesian

methods

The convergence of transition probabilities from the Bayesian sam-
pling methods is presented in Figure B.1 for various temperatures.
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Figure B.1 – Confidence Levels of Transition Matrix Sampling 95% confidence intervals of
Transition probabilities sampled by the transition matrix estimation (upper plot) (TE) and rate
matrix estimation (lower plot) (RE) versus number of drawn samples. Color indicates performance
by temperature. Blue: 302 K, Yellow: 426 K, Red: 600 K. After about 5 000 samples the confidence
intervals stabilize suggesting reasonably well sampled transition probabilities.
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c.1 sensitivity derivations

Here we present the proofs to the lemmata 3 and 4:

Lemma 3. Generalized Eigenvalue Sensitivity If the two (symmetric)
observation correlation matrices A(q) := C(t1; q) and B(q) := C(t1; q)
are depending on a scalar parameter q and l and y solve the generalized
eigensystem problem

(A� lB) y = 0
yTBy = 1

then the linear sensitivity ∂

q

l is related to A, B, l and y by

∂l

∂q

= yT
✓

∂A
∂q

� l

∂B
∂q

◆

y.

If A or B depend on more then one parameter these will just be added up.
The case that A and B depend on different variables can be simplified by
setting the appropriate derivatives to zero.

Proof. We differentiate the equation from the lemma by q to get

∂A
∂q

y + A
∂y
∂q

� lB
∂y
∂q

� l

∂B
∂q

y� ∂l

∂q

By = 0

and collecting terms yields

(A� lB)
∂y
∂q

= �
✓

∂A
∂q

� l

∂B
∂q

◆

y +
∂l

∂q

By. (C.1.1)

Premultiplication with yT leads to

yT (A� lB)
∂y
∂q

= �yT
✓

∂A
∂q

� l

∂B
∂q

◆

y +
∂l

∂q

yTBy.

and since we can rewrite the initial assumption as

(A� lB)y = 0
, yT(AT � lBT) = 0
, yT(A� lB) = 0
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we can again simplify and the final solution takes the form

∂l

∂q

= yT
✓

∂A
∂q

� l

∂B
∂q

◆

y.

The extension to multiple dependent variables is obvious.

We can in addition proof a similar lemma for the process vectors qi
which are related to the eigenvectors by a simple inversion. We write
a simple lemma and proof

Lemma 4. Process Vector Sensitivity If the two (symmetric) observation
correlation matrices A(q) := C(t1; q) and B(q) := C(t1; q) are depend-
ing on a scalar parameter q and l and y solve the generalized eigensystem
problem

(A� lB) y = 0
yTBy = 1

or more generally for the full set of generalized eigenvalues given by the
diagonal matrix of generalized eigenvalues L and the matrix of column-wise
generalized eigenvectors Y

YT(A�LB)Y = 0
YTBY = Id (C.1.2)

then the linear sensitivity ∂

q

y is related to A, B, l and y by

∂l

∂q

= � (A� lB)�
✓

∂A
∂q

� l

∂B
∂q

◆

y� 1
2

✓

yT ∂B
∂q

y
◆

y.

where
(A� lB)� := Y(L� lId)+YT

is the generalized symmetric inverse with ()+ representing the Moore-Penrose
inverse which can in this case be written as

(L� lId)+ = diag

0

@

8

<

:

l

�1
li 6= l

0 else

1

A .

Proof. We start with the assumption that the generalized eigenvector
y is in column s and l = ls and so Y-1y = es where es is the canonical
unit vector with zeros everywhere except at position s. From the
definition of the generalized symmetric inverse it follows that

(L� lId)+es = (ls � l) = 0

and we should note that the generalized symmetric inverse (A �
lB)� fulfills the first two Penrose condition (a weak Inverse of the
multiplicative semigroup of matrices) but not the 3rd ad 4th one,
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stating that (A � lB)�(A � lB) and (A � lB)(A � lB)� are both
hermitian. In fact, using

YTBY = Id, Y-1 = YTB, B = Y-TY-1

we can compute

(A� lB)�(A� lB) = (A� lB)(A� lB)�

= (A� lB)Y(L� lId)+YT

= Y(Id� eseT
s )Y-1

= Id� yyTB

and additionally show that

(A� lB)�By = Y(L� lId)YTBy
= Y(L� lId)+YTY-TY-1y
= Y(L� lId)+Y-1y
= Y(L� lIId)e
= 0 (C.1.3)

Now reuse Eq. (C.1.1) from the previous lemma and premultiply both
sides by (A� lA)� to get

(A� lB)� (A� lB)
∂y
∂q

= �(A� lB)�
✓

∂A
∂q

� l

∂B
∂q

◆

y

+(A� lB)�By
∂l

∂q

which can be simplified to

(Id� yyTB)
∂y
∂q

= �(A� lB)�
✓

∂A
∂q

� l

∂B
∂q

◆

y (C.1.4)

using that the last summand vanishes by Eq. (C.1.3). Differentiation
of Eq. (C.1.2) then gives

∂

∂q

⇣

yTBy
⌘

= yT ∂B
∂q

y + 2yTB
∂y
∂q

= 0

which is equivalent to

yTB
∂y
∂q

=
1
2

yT ∂B
∂q

y (C.1.5)

We use Eq. (C.1.4) in Eq. (C.1.5) and finally get

(Id� yyTB)
∂y
∂q

= �(A� lB)�
✓

∂A
∂q

� l

∂B
∂q

◆

y

∂y
∂q

= �(A� lB)�
✓

∂A
∂q

� l

∂B
∂q

◆

y

+
1
2

✓

yT ∂B
∂q

y
◆

y

which proofs the lemma.
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c.2 moore-penrose pseudoinverse

Although the Moore-Penrose pseudoinverse can be defined for arbi-
trary matrices over the complex numbers, we are only interested in
real-valued matrices A 2 Rn⇥m. The Moore-Penrose pseudoinverse
[A]� of A is then defined as matrix fulfilling the following four prop-
erties:

1. A [A]+ A = A

2. [A]+ A [A]+ = [A]+

3. [A]+ A =
�

[A]+ A
�T

4. A [A]+ =
�

A [A]+
�T

This pseudoinverse exists, is unique and can be expressed using a
Singular Value Decomposition (SVD) of

A = USVT

by
[S]+ = V [S]+ UT

where the pseudoinverse of the diagonal matrix S is given by the
inverse diagonal element which are non zero:

[S]+ = diag

0

@

8

<

:

si
-1

si 6= 0

0 si = 0

1

A .

Thus, the pseudoinverse can be regarded as an inverse acting only on
the image space.

c.3 rate estimation error bounds

This section contains the derivations of the bounds for single and
multi-t estimations using in chapter 5.

c.3.1 Single-t rate estimator

We start with the autocorrelation function of the observable x(x) used
to estimate the dominant rate k̂2 by

k̂2 = �t

-1 ln l̃2(t)

= �t

-1 lnhx(xt)x(xt+t

)i

and make a spectral decomposition that can be written as

k̂2 = �t

-1 ln

 

al2(t) + Â
i>2

q2
i li(t)

!
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or in terms of the exact rates ki by

k̂2 = �t

-1 ln

 

ae�tk2 + Â
i>2

q2
i e�tki

!

.

Separation of the original dominant timescale k2 , yields

k̂2 = �t

-1 ln

 

e�tk2

 

a + Â
i>2

q2
i e�t(ki�k2)

!!

= �t

-1

 

ln e�tk2 + ln(a + Â
i>2

q2
i e�t(ki�k2))

!

= k2 � t

-1 ln(a + Â
i>2

q2
i e�t(ki�k2))

and we get

k̂2 � k2 = Dk2 = �t

-1 ln(a + Â
i>2

q2
i e�t(ki�k2))

= t

-1 ln(a

-1)� ln(1 + Â
i>2

q2
i

a

e�t(ki�k2))

as an expression for the estimation error. Since the second term is
strictly positive this gives

Dk2  t

-1 ln a

-1

as an upper bound so that the error is in general dominated by a
t

-1-dependence. Using ki > k2 for i > 2 and ln(1 + x) < x we can
also find a lower bound expressed by

Dk2 > t

-1 ln a

-1 � a

-1 ln(1 + Â
i>2

(q2
i /a)e�t(k3�k2))

> t

-1 ln a

-1 � a

-1 ln(1 +
1� a

a

e�t(k3�k2))

> t

-1 ln a

-1 � a

-1 1� a

a

e�t(k3�k2).

In the two-state case with ki � k2, i > 2 we find that

Dk2 / t

-1 ln a

-1

c.3.2 Multi-t exponential fitting estimators

We will calculate the systematic error of estimating k2 via an expo-
nential fit to the function:

l̃2 = hx(xt)x(xt+t

)i = hy2, xie�tk2 + Â
i>2
hyi, xie�tki

= ae�tk2 + Â
i>2

q2
i e�tki
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using a set of m lagtimes ti 2 {t1, ..., tm}. This fitting procedure can
for example be done by a least-squares linear fit to the logarithmized
data points

z(t) = lnhx(xt)x(xt+t

)i

= ln

 

ae�tk2 + Â
i>2

q2
i e�tki

!

.

A simple linear regression algorithm can be expressed as

k̂2 =
E[tj]E[z(tj)]�E[tjz(tj)]

Var(t)

=
E[(E[tj]� tj)z(tj)]

Var(t)

=
m-1 Âm

j=1(t̄ � tj)z(tj)

Var(t)

with

t̄ = E[tj] = m-1
m

Â
j=1

tj

and

Var(t) = E[(tj � t̄)2] = m-1
m

Â
j=1

t

2
j � t̄

2.

Using the same transformations as in the single-t case we get

Dk2 = m-1
m

Â
j=1

(t̄ � tj)

Var(t)
ln

 

1 + Â
i>2

(q2
i /a)e�tj(ki�k2)

!

for the estimation error for this particular scheme. This expression
can be bounded from above by keeping only all positive summands
tj < t̄, j  m+  m� 1, using the increasing ordering of lag times tj,
to get

0 < Dk2 <
m+

Â
j=1

(t̄ � tj)

mVar(t)
ln

 

1 + Â
i>2

(q2
i /a)e�tj(ki�k2)

!

,

then replacing all summands by the largest one j = 1 with the result

0 < Dk2 <
m+

m
(t̄ � t1)
Var(t)

ln

 

1 + Â
i>2

(q2
i /a)e�t1(ki�k2)

!

<
m� 1

m
(t̄ � t1)
Var(t)

ln

 

1 + Â
i>2

(q2
i /a)e�t1(ki�k2)

!

where we bounded the number of positive summands m+ by m� 1.
Using again that the rates ki > k2 are ordered we can derive a bound
that only depends on the gap k3 � k2 and the chosen lag times ti
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0 < Dk2 <
m� 1

m
(t̄ � t1)
Var(t)

ln
✓

1 + e�t1(k3�k2) 1� a

a

◆

.

Lastly, using Samuelson’s inequality and (a + b)2 � 2ab we can bound
this by

0 < Dk2 <
(m� 1)2

m(tm � t̄)
ln
✓

1 + e�t1(k3�k2) 1� a

a

◆

without knowledge about the variance. It is important to note that the
error is now dominated by an exponential decay in the gap between
2nd and 3rd timescale k3 � k2 and also decays exponentially in the
minimal lagtime t1. For a! 1 the error vanishes as it must be.

In the special case of two lagtimes t1 and t2 we get

0 < Dk2 <
1
2

(1/2(t1 + t2)� t1)
1/4(t2 + t2)2 ln

✓

1 + e�t1(k3�k2) 1� a

a

◆

< (t2 � t1)
-1 ln

✓

1 + e�t1(k3�k2) 1� a

a

◆

< (t2 � t1)
-1 1� a

a

⇣

e�t1(k3�k2)
⌘

and in particular for t2 = 2t1 = 2t this simplifies to

0 < Dk2 / t

-1 1� a

a

⇣

e�t(k3�k2)
⌘

where we now have an exponential decay in t compared to the t

-1-
dependence in the single-t estimation case. For the case of m lagtimes
that are spaced equidistantly tk = k · t we derive similarly

0 < Dk2 <
m� 1

m
(1/2(m� 1) · t)
1/12(m2 � 1) · t

2 ln
✓

1 + e�t1(k3�k2) 1� a

a

◆

<
m� 1

m
1

1/6(m + 1) · t

ln
✓

1 + e�t1(k3�k2) 1� a

a

◆

< const · t

-1 ln
✓

1 + e�t1(k3�k2) 1� a

a

◆

< const · t

-1 1� a

a

⇣

e�t1(k3�k2)
⌘

where the constant is O(m-1). Finally, the case of a single-t estimation
can be recovered by the choice of t1 = 0 and t2 = t, in which case
we get

0 < Dk2 < t

�1 ln (1 + ((1� a)/a)

< t

�1 ln
1
a

.

Note, that in the absence of statistical uncertainty it is always better
to estimate using the two largest lagtimes tm�1 and tm which we do
not prove here.
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S Y S T E M S S E T U P

d.1 exemplary model systems

The model systems used to illustrate concepts and methods are cho-
sen to mimic a simple diffusion in a potential and are set up in
the following manner: First, a d-dimensional potential function (d 2
{1, 2, 3}) in units of kBT is defined as V(x) with x 2 Rd. This poten-
tial was then evaluated on an equidistant lattice of Nd lattice points in
a selected range [xmin, xmax]d. For reasons of simplicity all models for
d > 1 are kept quadratic or cubic and the lattice points are indexed
by an integer vector k 2 N = {1, . . . , N}d. On this lattice, a simple
jump process was defined, where proposed jumps are only allowed
between direct neighbors

Pjump(i! j) =
1
ni

8

<

:

1 if |i� j| = 1

0 else
,

to mimic the diffusion, e.g. from (x) to {(x � 1), (x + 1)} in the 1-
dimensional case. The normalization ni equals the total number of
neighbors of state i so that

Â
j2N

Pjump(i! j) = 1, 8i

holds. For the construction of a transition matrix, the tuples k are
mapped to a single integer (state) using the one-to-one and onto map-
ping D,

D : k = {k1, . . . , kd} 2 {1, . . . , N}d

7! D(k) = 1 +
d�1

Â
i=0

Ni · (ki � 1) 2 {1, . . . , Nd}

and its inverse D-1,

D-1 : n 2 {1, . . . , Nd} 7! D-1(n)k

= 1 +
⇣j

(n� 1)/N(k�1)
k

mod N
⌘

where we used Vi ⌘ V(D-1(i)) and b·c indicating the floor function.
This allows to construct a discrete state transition matrix

T 2 [0, 1]Nd⇥Nd
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and we choose the transition probabilities between the current state
i = D(i) and a target state j = D(j) to be

Tij = P(D-1(i)! D-1(j))⇥

⇥min{1, exp
�

�(Vi �Vj)
� Pjump(D-1(j)! D-1(i))

Pjump(D-1(i)! D-1(j))
}, i 6= j

and for the diagonal elements

Tii = 1�Â
j 6=i

Tij

in accordance with the Metropolis-Hastings algorithm[160]. This en-
sures the correct transition probabilities also in the case of non-sym-
metric proposal steps that happen in the boundary area and so de-
fines a reversible Markov process which has a stationary distribution
p given by the Boltzmann distribution

pi µ exp(�Vi).

Since the dynamics is Markovian by definition, all Markov model
calculations can be executed exactly, providing an unambiguous ref-
erence for our analysis of Markov models. In order to model meta-
stable potentials, we often use symmetric gaussian potential basins
defined by

B[I, µ, s

2](x) = Ik exp

 

� (x� µ)T(x� µ)
2s

2

!

.

The potentials used in this thesis are then defined as follows:

1. Diffusion in a one-dimensional four-well potential with N =
100 discretization points in the range [�1, 1] (used in chapters 2

and 5)

V(x) = 4
⇣

x8 + 0.8e�80x2
+ 0.2e�80(x�0.5)2

+ 0.5e�40(x+0.5)2
⌘

2. Diffusion in a two-dimensional three-well potential with N2 =
30⇥ 30 discretization points in the range [1, 30]2 (used in chap-
ters 2 and 3)

V(x) = B[2, {15, 15}, 200](x)� B[1.2, {9, 9}, 12.5](x)

�B[0.8, {21, 9}, 12.5)](x)� B[1.0, {13, 21}, 12.5](x)

3. Diffusion in a three-dimensional 5-well potential with N3 =
100⇥ 100⇥ 100 discretization points in the range [�1, 1]2 (used
in chapter 3)

V(x) = Â B[bi/
q

2ps

2
i , µi, s

2
i ](x)
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with parameters

i Sign bi Mean µi Variance s

2
i

1 �1 {0.0, 0.0,�0.2} 0.102

2 �1 {�0.6, 0.2,�0.6} 0.082

3 �1 {�0.6, 0.4, 0.4} 0.082

4 +1 {0.4,�0.6,�0.6} 0.052

5 �1 {�0.6,�0.6,�0.6} 0.052

4. A diffusion in a two-dimensional 2-state model symmetric in
the x2-axis without actual discretization in the range [�4, 4]2

(used in chapter 5)

V(x) = 0.25x4
1 � 2.5x2

1 + 0.5x1 + 0.5x2
2.

This system is only analyzed on 1-dimensional projections at
3 different viewing angles a = {0°, 45°, 72°}, where the angle
is chosen with respect to the x1 coordinate providing the best
possible projection angle at a = 0°. In these three cases a dis-
cretization with N = 40 discretization points in the range [�4, 4]
is used.

d.2 rna hairpin

For the demonstration of the spectral estimation procedure in chap-
ter 5 the method was applied to measurements of a single p5ab RNA
hairpin in an optical trap observed under passive conditions (see Fig-
ure 5.7 for the hairpin structure). We would like to acknowledge
Philip Elms who conducted the data generating experiments at the
Marqusee lab at UC Berkeley the results of which are submitted for
publication [147]. For this reason we will refer to the information
given in the arxiv-preprint in Ref. [133] in the following:

Under the influence of an external biasing (pulling) force, the hair-
pin exhibits an apparent two-state kinetics in the induced transition
from the unfolded (extended) to the folded (compact) state and has
been studied previously in single-molecule force spectroscopy exper-
iments [161, 162, 147]. Recorded was the instantaneous force on the
optically trapped bead along the bead-bead axis, which was then con-
verted to a total bead-to-bead extension using the theory described in
section 5.10.

In the experiment a total of 10 hairpins were observed. For a single
trapped hairpin up to 25 trajectories of 60 s length were recorded at
various total trap extensions using a dual-beam counter-propagating
optical trap [163, 164]. The trap extensions were chosen to go from
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completely unfolded states to only folded and back provided that
the hairpin survived the complete measuring procedure. The high
sampling rate of 50 kHz lead to a total of 3,000,000 data points per
trace and was far above the corner frequency for bead response un-
der the experimental conditions. The data was also subsampled to
a frequency of 1 kHz, which was below the corner frequency of the
bead, so that the bead velocity has decorrelated between sequential
observations due to hydrodynamic interactions [147].

For the present analysis hairpin no. 3 was selected and only the
first 13 traces of the transition from folded to unfolded were taken into
consideration. Out of this set only 6 traces were analyzed: Chosen
were trace no. 2 (completely folded) and no. 13 (completely unfolded)
as extreme cases for comparison as well as all traces that showed a
clear 2-state histogram, trace no. 7-11. Finally trace no. 9 was also
discarded for clearity since it was very similar to trace no. 8 and
provided no further insight into the dynamics. See Figure 5.5 for a
plot of the traces along with their histograms.
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