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Abstract. Rare event simulation and estimation for systems in equilibrium are
among the most challenging topics in molecular dynamics. As was shown by
Jarzynski and others, nonequilibrium forcing can theoretically be used to obtain
equilibrium rare event statistics. The advantage seems to be that the external
force can speed up the sampling of the rare events by biasing the equilibrium
distribution towards a distribution under which the rare events are no longer
rare. Yet algorithmic methods based on Jarzynski’s and related results often fail
to be efficient because they are based on sampling in path space. We present a
new method that replaces the path sampling problem by minimization of a cross-
entropy-like functional which boils down to finding the optimal nonequilibrium
forcing. We show how to solve the related optimization problem in an efficient
way by using an iterative strategy based on milestoning.
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1. Introduction

Molecular dynamics (MD) simulations allow the analysis and understanding of the
dynamical behaviour of molecular systems. However realistic simulations on timescales
beyond microseconds are still infeasible even on the most powerful general purpose
computers, which renders the MD-based analysis of many biological equilibrium processes,
that are often rare compared to the characteristic timescale of the system and hence require
prohibitively long simulations, impossible. The hallmark of these rare events is that the
average waiting time between the events is orders of magnitude longer than the timescale
of the switching event itself. Thus rare event simulation and estimation are among the
most challenging topics in molecular dynamics.

The molecular dynamics literature on rare event simulations is rich. Since direct
numerical equilibrium simulation is infeasible, all available techniques try to sample from
the rare event statistics by biasing the system in one way or the other. Roughly speaking,
we can distinguish between two major classes of sampling techniques: class A consists
of splitting methods that decompose state space, but are still essentially based on an
equilibrium distribution, whereas methods from class B proceed by driving the system
under consideration into a nonequilibrium regime that changes the rare events statistics.
For a general overview of Monte Carlo methods for rare events in other application fields,
we refer to the textbook [2].

The list of methods in class A range from reaction-coordinate-based techniques via
path-space oriented techniques to approaches based on interface sampling or generalized
dynamics. Reaction-coordinate-based techniques consider the marginal of the equilibrium
distribution in some low-dimensional collective variables like in direct free energy
calculations [4]; they suffer from the fact that appropriate reaction coordinates are often
not available. Path-space oriented techniques approximate the most important reaction
paths that govern the rare event statistics either by sampling a distribution of reactive
paths, such as in transition path sampling (TPS) [9, 3], or by optimizing an appropriate
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path functional, such as in the string method [13]; they become problematic if the path-
space distribution is multi-modal or generally too complex (e.g., involving bifurcations).
Interface sampling techniques such as milestoning [14] or forward flux sampling (FFS) [1]
place a set of suitably chosen interfaces in state space between the initial and final state and
use them to follow the transition of the system in an iterative manner using equilibrium
trajectories that connect neighbouring interfaces. The idea of generalized dynamics such
as hyperdynamics [39], metadynamics [24], conformational flooding [17], or the adaptive
biasing force (ABF) method [7] is to bias the system on-the-fly (e.g., by filling in certain
energy wells in which the system got trapped during a simulation) so as to enhance rare
transitions between metastable states. Although seemingly different, generalized dynamics
belong to class A, in that they only alter the underlying equilibrium distribution along
a predefined set of low-dimensional collective variables. Although these methods have
proven to be very efficient, they require that the interesting processes can be described
by a few collective coordinates that have to be known in advance.

Class B consists of methods based on the Jarzynski and Crooks formulae [21, 5]
that relate the equilibrium Helmholtz free energy to the nonequilibrium work exerted
under external forcing. Instances of nonequilibrium simulations that mimic experiments
on controlling and manipulating single molecules (see, e.g., [33, 28]) are single-molecule
pulling [19], steered molecular dynamics [36] or bridge sampling [29], to mention just a few.
The corresponding path functionals have the form of cumulant-generating functions for
the exerted work [23, 26], which poses immense challenges to Monte Carlo simulations and
limits the usability of the formulae in practice. Roughly speaking, the usability is limited
by the fact that the likelihood ratio between equilibrium and nonequilibrium trajectories
is highly degenerate, for the overwhelming majority of nonequilibrium forcings generate
trajectories that have almost zero weight with respect to the equilibrium distribution that
is relevant for the rare event; cf also the discussion in [27]. Nevertheless the underlying
idea is appealing and a cleverly designed external force may speed up the sampling of the
rare events by biasing the equilibrium distribution of the system towards a distribution
under which the rare events are no longer rare, while giving numerical estimators that are
useful in terms of variance and convergence properties.

The method presented in this paper belongs to the latter class, but shares some
ideas with ideas from class A. It takes up the idea that external forcings can speed up
the rare event but avoids sampling issues related to nonequilibrium processes. Instead it
uses optimal nonequilibrium forcing in connection with splitting methods such as FFS or
milestoning, in the sense that the new method uses interfaces to follow the transition of
an optimally driven system where the external forcing that drives the system from one
interface to the next results in a considerable speed up compared to FFS or milestoning.
Specifically, the new method replaces the path sampling problem using an exponential
change of measure that can be explicitly computed by minimizing a cross-entropy-like
functional, which then yields the optimal forcing. Although the minimization involves
solving an optimal control problem, the numerical effort can be drastically reduced when
the minimization is done in a clever way; one reason is that the path functional becomes
linear after the change of measure whereas it was exponential in the original cumulant-
generating function.

Transformations based on an exponential change of measures have a rich tradition
in the (risk-sensitive) optimal control literature [20, 6, 16] and the theory of large
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deviations [15, 40], and are regularly rediscovered—mostly aiming at turning certain
optimal control problems into linearly solvable sampling problems [22, 38, 12]; cf also [37,
32]. Here we pursue the reversed strategy and turn a difficult rare event estimation
problem into an optimal control problem that can be solved by minimizing a suitable
functional. Thus the basic outline of the new method is: iteratively determine the optimal
nonequilibrium forcing by an optimization procedure based on milestoning ideas that
avoid path-space sampling and compute the equilibrium rare event statistics from the
optimal nonequilibrium forcing.

Besides introducing the new method, the purpose of this article is to explain the
basic ideas of how to use optimal control for the estimation and simulation of rare
events. Therefore we present only the simplest possible scenario (a particle following
an overdamped Langevin dynamics in a conservative force field), without paying too
much attention to complete generality or mathematical rigour. The first issue in section 2
then is to introduce the variational characterization of (generalized) free energy and the
exponential change of measures that are the basis of our optimal control approach. The
precise formulation of the optimal control problem, a stochastic control problem with
quadratic control costs and an indefinite time horizon, is given in section 3. In section 4
we describe the numerical method for computing the optimal control, based on an inexact
gradient descent in connection with a milestoning algorithm, and apply it to the controlled
first passage between metastable sets. We briefly summarize the results in section 5 and
sketch possible generalizations that have been omitted for the sake of brevity.

2. A variational characterization of free energy

We consider a particle with position X; € R" at time ¢ > 0 which moves in an energy
landscape V:R™ — R according to the equation

dX, = —VV(X,)dt + v2¢ dB,, Xo = 2. (2.1)

Here B, denotes standard n-dimensional Brownian motion, and € > 0 is the temperature of
the system. Under mild conditions on the energy landscape function V' we have ergodicity,
and the law of X; converges to a unique equilibrium distribution with density

o(z) = 2 expl— WV (@), 7= / exp(—e V(@) d.

We assume throughout that the temperature is small, relative to the largest energy
barriers, i.e., € € AVy.. As a consequence, the relaxation of the dynamics towards
equilibrium is dominated by the rare transitions over the largest energy barriers.

Let W be a random variable that depends on the sample paths (X;)o<i<r up to a
stopping time 7. We will call W work in the following. Given some continuous function
f:R" — R, we suppose that it can be expressed as'

W= /Tf(Xt)dt. (2.2)

! The following considerations below are not at all limited to systems of the form (2.1) and path functionals like
(2.2) and can be easily generalized to, e.g., non-gradient systems with multiplicative and/or degenerate noise or
observables f that are explicitly time dependent.

doi:10.1088/1742-5468/2012/11/P11004 4
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Let us further denote by P the probability measure on the space of continuous
trajectories that is generated by the Brownian motion in (2.1), and let E*[-] = E[-| X, = ]
be the expectation with respect to P, i.e., the average over all realizations of X; starting
at Xo = x. We call the quantity

F(z) = —elog E®[exp(—W/e)] (2.3)
the (conditional) free energy of W with respect to P.

Remark 1. Clearly, the functions and the expectation on the right-hand side of (2.3)
do not commute, and it follows by Jensen’s inequality that F'(z) < E*[IW], in accordance
with the second law of thermodynamics. But F' encodes information about the cumulants
of the work W (assuming they exist), namely,

1
F(z) = B W]+ B (W - E*[W])? + - -.
€
Remark 2. The similarity between (2.3) and Jarzynski’s formula [21] is no coincidence.
If 7 =T is a deterministic stopping time and W is the nonequilibrium work done on a
system during a transition between two equilibrium states E; and Es, then F(E;) equals
the equilibrium free energy difference between E; and Fj.

The phrases ‘work’ for the quantity W defined in (2.2) and ‘free energy’ for F' as of
(2.3) are just used to relate to Jarzynski’s formula. The framework is much more general
as the following example will show.

Guiding example. One example, of which we will consider variants below, is the first hitting
time of a subset of state space. To this end let S C R™ be a set and define

T =inf{t > 0: X; € S}
to be the first time at which X; hits S. Choosing the constant function f = o in (2.2),
the free energy

F,(x) = —elog E*[exp(—oT/€)]

considered as a function of ¢ is the scaled cumulant-generating function of 7 when X, is
started at Xy = . In particular, we can compute the mean first hitting time by
dF,
€
do

= E®[7].

o=0

2.1. Relative entropy and change of measures

The strict convexity of the exponential function implies that equality F'(x) = E*[W] is
only attained if W is P-almost surely constant; one such case is the adiabatic limit

= lim — (Xy)
Tt T / J(X0)
We will restore (2.3) to an expression that becomes linear in W after a suitable change

of measure. To this end let ) denote a probability measure on the space of continuous
trajectories that is absolutely continuous with respect to P (i.e., ¢ = dQ/dP exists). We

doi:10.1088/1742-5468/2012/11/P11004 )
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define the relative entropy of () with respect to P as

1Q1P)= [ 1g(57) de (2.4)

(This is also called the Kullback—Leibler divergence.) We declare that I(Q || P) = oo if @
is not absolutely continuous with respect to P. Then, by Jensen’s inequality,
F(z) = —elog E*[exp(—W/e)]
= —clog Ejlexp(—=W/e —log ¢)]
<BYW]+el(Q | P) (25)
where we have used the notation Eg[-] to denote the expectation with respect to Q). The
last inequality that appears in the literature in various forms as second-law-like identity or

generalized Jarzynski inequality (cf [35, 18]) suggests that the free energy and the relative
entropy are related by a Legendre-type transformation, namely,

P(a) = inf (W] +€1(Q || P)}

and a result in [6] implies that the infimum exists and is attained when @ runs over all
path measures that are absolutely continuous with respect to P. By the strict convexity of
the exponential function, the latter implies that W + elog ¢ is (Q-almost surely constant.

The idea of the approach sketched below then is to represent () in terms of suitable
(parametric) control variables and minimize the right-hand side of (2.5) over all admissible
controls.

3. An optimal control problem

The aim of this section is to derive necessary and sufficient conditions for the optimal
change of measure that turns (2.5) into an equality. To this end we follow ideas by Fleming
and co-workers [15, 10] and consider the exponential cost functional:

U(z) = E [eXp / H(X ] : (3.1)

For a stopping time 7 that is the first hitting time of a set S C R", the Feynman—Kac
formula [31] implies that v solves the elliptic boundary value problem

€L¢ = f’@b, ¢|8S = 17 (32)

where
L=eV?-VV.-V (3.3)

is the infinitesimal generator of X;, defined on a suitable subspace of L?(R"). We want
to transform the boundary value problem (3.2) into an equation for the unknown control
variable in (2.5). For this we proceed in two steps.

Step 1. We can safely assume that 7 is almost surely finite. As a consequence, the function
¥ in (3.1) admits a formal representation of the form

b = exp(~ F/e).
doi:10.1088/1742—5468/2012/11/P11004 6
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We seek an equation for the free energy F'. By chain rule, it follows that
cexp(F/e)Lexp(—F/e) = —LF + |[VF?,
which entails that (3.2) is equivalent to
LF —|VF?+ f =0, Flas = 0. (3.4)

The last equation is known as the Hamilton-Jacobi-Bellman (HJB) equation of optimal
control [16]; its solution is called wvalue function or optimal cost-to-go.

Step 2. To reveal the stochastic optimal control problem that corresponds to the HJB
equation (3.4), we first note that

—|VF? = Zre%{\/ic VE + 3’}
from which we recognize that (3.4) is equivalent to

min {L(e)F +g(z,¢)} =0, Flos =0, (3:5)
with the shorthand forms

g(z,¢) = f(z) + glcf*
and

L(c)=eV?+ (V2 - VV) - V.

Equation (3.5) is the Hamilton—Jacobi-Bellman equation of the following optimal control
problem that should be compared to the right-hand side of (2.5): minimize

() = E [ /0 ' g(Xt,ut)dt} (3.6)

over an admissible set U of control laws v with values in R"™ and subject to the tilted
dynamics

dX, = (V2u, — VV(X,)) dt + V2e dB,. (3.7)

That is, the expectation in (3.6) has to be taken with respect to the path measure @
generated by the dynamics given by (3.7).

Remark 3. The dynamics that generates the new path measure () is again of gradient
form if w = u* is the optimal Markovian feedback control, i.e. when @ = Q(u*). As a
consequence, the optimally controlled process satisfies detailed balance [26]. Indeed, since
(3.6) is quadratic and (3.7) is affine in the control, the minimizer

c*(x) = argmin, {L(c)F + g(z,¢c)}

in (3.5) is unique (provided that F is sufficiently smooth). The optimal feedback law is
then given by uf = —v/2VF(X,) and gives rise to the tilted dynamics

dX; = —VG(X,)dt + V2edB;,, X, eR"\ S,
with the tilted potential
G(z) =V (x)+2F(x).

doi:10.1088/1742-5468/2012/11/P11004 7
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Guiding example, cont’d. In some cases it is helpful to pursue a reverse strategy and
transform the nonlinear HJB equations of an optimal control problem into a linear
equation that may be easier to solve (cf [22, 38]).

Consider a Brownian particle under a microscope with a moveable object holder. Let
D C R? denote the microscope’s focal disc, X; € R? the particle position at time t > 0,
relative to the position of the object holder, and u; the motor force. The control task is
to move the object holder such that the particle stays in the focus as long as possible.
Hence the control objective is the maximization of the mean first exit time from D, which
amounts to minimizing the cost functional

I(u)=E {—7‘4—%/ |ut|2dt} :
0
subject to

dX; = vV2u, dt + V2¢dB,.
Let

uelU

F(z) = minE” |:—7' + %/ ]ut|2dt} ,
0
be the value function (free energy) of the problem and

U(z) = E[exp(r/e)].
Then the linear boundary value problem for 1) = exp(—F'/¢) is a Helmholtz equation with
Dirichlet boundary conditions,

€2v2¢+,¢}:07 ¢|8D = 17

which can be solved by standard means.

4. Greedy milestoning algorithm

At first sight it seems that we have not gained much, for we have transformed the original
path sampling problem into a complicated nonlinear optimal control problem. However
the optimal control formulation opens up other options for the numerical treatment of the
rare event sampling in terms of a minimization problem. Another advantage is that it is
relatively easy to construct unbiased estimators of the control functional, avoiding both
bias and variance issues when estimating exponential observables such as (2.3).
Discretization. Together with the information that the optimal Markov control is of
feedback form, our minimization problem (3.6) and (3.7) takes the form

F(z) = min Ej [/ g( Xy, uy) dt}
utzc(Xt) 0

with @) denoting the path measure generated by the dynamics given by (3.7). We discretize
this optimization problem by choosing a finite-dimensional ansatz space for the space of
admissable feedback functions c: we choose sufficiently smooth and integrable vector fields
bj:R" — R", j=1,...,m, so that

c(x) = ajb(x),  a; €R,
=1

doi:10.1088/1742-5468/2012/11/P11004 8
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or, respectively, we choose scalar ansatz function v;: R — R, j =1,...,m, so that
m
F(z) = Zajvj(x), b; = —V2Vu;.
j=1

The minimization problem then amounts to minimizing the cost functional

) =Eq | [ (r0X)+1 ) s (41)

Z aj(s)bj (Xs>

over the unknown coefficients a = (ay, . .., a,,) where @ = Q(a), the path measure of the
controlled diffusion (3.7) also depends on the coefficients; for the moment we remain
with the imprecise statement that the measure () has a density ¢(-;a) with respect to a
(fictitious) uniform measure on the space of all continuous paths in R”, which is a function
of the unknown coefficients?. .

Gradient descent. We minimize the cost functional I(a) by a doing a gradient descent in
the coefficient vector a = (ay, ..., a,). Specifically, we iterate the map

a™ =g — 0, VI(aD),

where 7 is the iteration index and («;);>; is a bounded sequence of stepsizes for the gradient
search. For instance, we can do a line search in the descent direction and determine «;
so that it satisfies the Wolfe condition [30]. Details of the iteration that is based on an
Euler—-Maruyama discretization of the path measure () will be given below in the appendix.
The overall algorithm thus has the following steps:

e Choose scalar-valued ansatz functions v; with support in the interesting region of state
space and related vector fields b; = —\/§ij.

e Choose initial coefficients a(®) = (a§0)) such that the free energy or value function
> ajv;() fills up the main wells in the energy landscape V.
e Iterate the following steps in ¢, starting with ¢ = 0, until a prescribed termination
criterion is satisfied: 3
(1) Sample the path measure Q = Q(a”) and evaluate VI(a¥) (see formula (A.4) in
the appendix).

(2) Perform a gradient descent a1 = a® — o, VI(a®).

Remark 4. The gradient search algorithm can be regarded as a variant of the cross-
entropy method that is a relatively new Monte Carlo technique for the sampling of rare
events which goes back to Rubinstein and others [34]. It is based on the idea that an
optimal change of measure can be found by minimizing the Kullback—Leibler divergence
(2.4) over a family of probability measures () in terms of the tilting parameter c¢. Compared
to equilibrium rare event simulation algorithms used in molecular dynamics, using the
optimal change of measure has the advantage that the likelihood ratio dQ/dP stays of
order one, while rare events under the original dynamics (here: diffusion in an energy

2 More precisely, Q = Q2 is the probability to find paths (Xs)o<s<r in a small tube around a smooth curve
v :[0,T] = R, ie., Q3(7) = P(|| Xs —v(s) |[< 6 | Xo = x). By the Girsanov theorem, Q, = lims_.oQJ has a
density ¢ = exp(—S(7)) with respect to the Gaussian measure induced by the Brownian motion By = x + v/2€Bs,
where S() is the Onsager-Machlup functional [11].

doi:10.1088/1742-5468/2012/11/P11004 9


http://dx.doi.org/10.1088/1742-5468/2012/11/P11004

Efficient rare event simulation by optimal nonequilibrium forcing

Figure 1. Illustration of nesting of sets for the milestoning iteration.

landscape V') are no longer rare under the forced dynamics (3.7). As a consequence,
sampling the path measure () is significantly more efficient than sampling the original
path measure P, since the trajectories to be sampled from () are much shorter on average
(i.e., the expected hitting time is considerably shorter).

Milestoning algorithm. For problems with a large state space or for strongly metastable
systems, the above algorithm may still be inefficient since sampling the path measure ()
may involve many rather long trajectories. In this case the computation can be broken
down to transitions between neighbouring interfaces as in milestoning [14] or in FFS [1].
We explain the basic steps of this procedure: let

Fle) = min B [ /0 " (X (X)) ds}

denote the semi-discretized value function of the problem, with the shorthand

Zajbj(l’)

Suppose that S = Sy is the set of interest and 7 = 79 is the first hitting time of Sy; we now
choose nested sets or milestones Sy C Sy C Sy C ... (cf figure 1). We first compute F' in
S1\ 5o by finding the optimal control policy ¢ in S;\ Sp. That is, our ansatz functions in the
above gradient descent algorithm only have to be non-vanishing in S; \ Sp. In particular
this gives F' on 057, the outer boundary of S \ Sp. We can repeat the same algorithm in
the set Sy \ Si; then letting x € Sy \ Sy and letting 71 denote the first entry time into S,
we have

gz, c(r)) = of(x)+3

1 B

Pla) =iy | [ 306X ds + FX)
a 0

where X, € 951 C 51\ Sy for which F has ‘been computed in the previous step. By

iterating the algorithm we eventually obtain £’ on all set boundaries 0S;, i = 0,1,2,....

Thus, the milestoning iteration can be implemented as an outer loop which contains the

above gradient descent algorithm in every one of its iterations.

doi:10.1088/1742-5468/2012/11/P11004 10
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2.5y
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X

Figure 2. Skew double-well potential V.

Remark 5. The milestoning variant of the gradient descent algorithm only requires the
computation of an ensemble of short trajectories of the controlled system (3.7). Here
‘short’ means that they are orders of magnitude shorter than those in typical path-space
sampling algorithms such as TPS, and equilibrium milestoning or FF'S.

4.1. Guiding example: computing the mean first passage time

We consider the uncontrolled dynamics (2.1) with the one-dimensional potential shown
in figure 2. Suppose we are interested in computing the mean first passage time to the set
S = [-1.1,—1] in terms of the free energy (2.3). Let

T =inf{t > 0: X; € 0S}.

be the first hitting time of S, consider the constant function f = o, and the scaled moment-
generating function

to(x) = E¥[exp (—o7/€)],

considered as a function of o. The quantity of interest is the mean first passage time of
the uncontrolled dynamics,
s

— E*
| =l

for e = 0.5.

In order to obtain a reference solution with high accuracy we first compute v, by
discretizing the elliptic boundary value problem (3.2) based on a standard finite element
discretization on a fine grid. This is possible because the state space dimension in this
guiding example is small but will not be possible in realistically high dimensions. The
resulting reference solution for E*[7] is shown in the left panel of figure 3, along with the
associated free energy Fi(z) = —elogi,(x) in the right panel.

An approximation of the free energy was then computed by the greedy
milestoning /gradient descent algorithm described above that minimizes the cost functional
(4.1) in the coeflicients a = (a4, ..., an). As scalar ansatz functions v; we chose m = 10

doi:10.1088/1742-5468/2012/11/P11004 11
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160

1401
1201

100f

Figure 3. Reference solution for the uncontrolled mean first passage time (left
panel) and the related free energy F, for o = 1 (right panel). Results based on
finite element discretization of (3.2) with high precision.

A 7
3.5} 6
3 5t
X 25t 4
=)
+
> 2r 3
1.5¢ 2
1 1
0.5 - - - - - : - :
-15 -1 -0.5 0 0.5 1 1.5 —9.5 -1 -0.5 0 0.5 1 1.5
X

Figure 4. Optimally tilted potential (left panel) and the first 11 iterates of the
gradient descent (right panel).

Gaussians with width 0.1 whose centres were uniformly spaced in the complement of S.
Once the minimization had converged, the value function (free energy) and the resulting
optimal control law were given by

F= Zajvj(x), c(z) = Z a;b;(z),

with b; = —\/§ij. The result agrees with the reference solution shown in figure 3
(deviations are of the order of the accuracy threshold used in the gradient descent
algorithm). Figure 4 shows the resulting optimally tilted potential G = V + 2F, together
with the first few iteration steps of the gradient search. The mean first passage time of
the tilted system

dX, = —VG(X,)dt + V2edB,, (4.2)

i.e., with V in (2.1) replaced by the new potential G, is shown in figure 5.
As has been outlined above, the algorithm only requires the computation of rather
short trajectories since for all iterative potentials the mean first passage time is orders
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EX(’C) with opt. control

E)1 —0.‘5 O 015 1 1.5
X
Figure 5. Unbiased estimate of the first mean passage time, based on 2000

realizations of (4.2) after Euler discretization. The error bars indicate 95%
confidence intervals that were computed from the estimator’s standard deviation.

of magnitude smaller than for the original dynamics; the mean first passage time of the
optimally tilted potential, e.g., is around 100 times smaller than originally.

5. Conclusions and outlook

We have developed a simulation scheme for rare events that is based on an optimal change
of measure that boils down to a logarithmic transformation of the path functional under
consideration. The measure transformation turns the original exponential path functional
into the functional of an optimal control problem that is linear in the observable and
quadratic in the control variables. Although analytic solutions to the optimal control
problem are available only in simple situations and computing the optimal change
of measure may require to solve a possibly high-dimensional optimal control problem
numerically, there is a considerable speed up coming from (a) the fact that the functional
is linear quadratic and allows for the design of robust unbiased Monte Carlo estimators
and (b) the fact that events that were rare originally are no longer rare under the new
probability measure. The gain in the numerical complexity requires that the optimal
control problem can be solved efficiently, and, with the equivalence between path sampling
and optimal control in hand, we have sketched a numerical algorithm for computing
the optimal control that is based on an easy-to-implement inexact gradient descent that
can be solved rather efficiently using milestoning. The algorithm was tested, computing
the optimal feedback for the controlled passage between metastable sets in a double-
well potential. Even though the numerical example that we presented is tiny on the
scale of typical molecular dynamics applications, we emphasize that the minimization
algorithm is independent of the dimension of the system and hence admits an easy
generalization to more complicated systems; we refer to the rich literature on machine
learning and queuing networks, where various strategies for treating high-dimensional
systems have been developed (e.g., see [8]). Finally we note that all ideas presented
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in this article can be readily extended to more complicated dynamics (e.g., degenerate
diffusions with dissipation) and time-dependent path functionals (e.g., to simulate single-
molecule experiments); it is even possible to consider situations where the exponential path
functional involves additional control variables, in which case a logarithmic transformation
leads to a game rather than an optimal control problem (cf [25]). Further open issues
are the deterministic limit of the stochastic control problem, the convergence analysis of
the gradient descent and the rigorous analysis of fluctuations in systems under feedback
control (cf [35]).

Appendix. Computational aspects

In order to compute the gradient of (4.1) with respect to the unknown coefficients
a = (ay,...,a,), it is convenient to discretize the path measure Q = Q(a). To this end,
let 0 =ty <ty <--- <ty =7 be aset of time nodes with h =t — ty, where we assume
for the moment that 7 < oo is deterministic. Euler’s method applied to

dX, = (V2e(X,) — VV(X,)) dt + v2edB,
gives
X1 = Xp + h(V26(Xy) = VV (X)) + V2he i

where the 7, are i.i.d. random variables that are normally distributed with mean zero
and unit covariance. Since the 7, are Gaussian, the density of the distribution Qp(a) of
discrete paths (XO, ¢ ~) C R™ conditional on X, = ¢ is readily shown to be

on(To, ..., xn;a) = (Zn(a)) " exp (=Sh(zo, - - ., TN a)) (A.1)

with the discrete action

h = | Tpyr — 2k 2
_ — 2 A2
Sh= e 2 [T V) - Vada (A:2)
and the normalization constant
Zp = / exp (—Sh(zo, ..., xzN;a)) dzy ... doy. (A.3)
R7x---xR™

Computing the gradient of the discretized functional

Zgh X, e )]

]((I XQ

with

gn(z,c(x)) = h | f(z)

+ 31> aibi(x)
J
is now straightforward. Assuming that X, is independent of the control, we have

gy [0, (%5, L0AY]
ga; | &= 0a; T\ 0a; " Zy Oq
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where both g, and 0§y /0a; are evaluated at (zy, c(z)). Specifically,

9gn
aT&,j = hc(:z:k,tk)bj(xk)
9Sn N Nz_:l(xml—xk_i_vv(m ) — V2l ))b(w)
da, G A k k) | 0j(Tk
0Z 5. [OSh
- = —Z1Eg) :
da; " {8%]
Together with the projection property of the conditional expectation this gives
oI, % agh % { ash}
— =E;° + Co) —_— A4
aa,j @n [ 8 & 8aj ’ ( )

where Cg, denotes the covariance operator
Cq,[u,v] = Eq, [w] — Eq,[u]Eq, [v].

Inezact gradient. We are interested in the situation when 7 in (3.6) is a random stopping
time rather than a fixed time; otherwise the optimal control policy would be a function of
time, i.e., u; = ¢(Xy, t). But in case that 7 is a first entry time of a set S C R, this stopping
time 7 = 7(c) will be a function of the control. Hence the derivative of the cost functional
with respect to the unknown control coefficients a; would involve additional derivatives
of 7 or its time-discrete counterpart N.; for example, for the discretized running cost this
would result in an expression like

N.—1 Nr—1 o~
- - 8NT - 8gh

gh Tk, C iUk gh(xNbec(xN-rfl)) + YR

3 a; ;0 da; kzzg da;

In principle the dependence of the stopping time on the control variable can be made
explicit in terms of the solution to an elliptic boundary value problem for 7, yet it is
unclear how terms such as ON;/0a; can be handled numerically efficiently.

In many cases the gradient descent will also converge even though the gradient VI is
not exact, and it turns out that the boundary cost in the last equations is typically small
compared to the accumulated cost. Ignoring the contribution from the boundary terms
in the derivatives hence gives a gradient descent method with inaccurate gradient. In our
numerical example, where f = ¢ is constant, the inexact gradient reads

(9ih % N—1 h3/2 % N-—1 1 N —1
= hE 0 b, — bi(
8a] kz;o c(zy,) J(xk)] 6\/— Qh [Z <U+ > Z Ni+1b5 (T ]
_ [N,—1
= hEgZ Z c(xy)bj(zk)
k=0
h3/2

0

<Ni:1 (a+—| (X1 )) anHb xk]

k=0

6\/_

where N, = [7/h] is the discrete analogue of the first hitting time (here [z] is the nearest
integer larger than z), and we used the fact that b;(X}) and 7,1, are independent.
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