Semiclassical Hybrid Approach to Condensed Phase Molecular Dynamics: Application to the I$_2$Kr$_{17}$ Cluster

Max Buchholz,*,‡ Christoph-Marian Goletz,† Frank Grossmann,‡ Burkhard Schmidt,‡ Jan Heyda,§ and Pavel Jungwirth¶

†Institut für Theoretische Physik, Technische Universität Dresden, 01062 Dresden, Germany
‡Institut für Mathematik, Freie Universität Berlin, Arnimallee 6, 14195 Berlin, Germany
§Institute for Soft Matter and Functional Materials, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
¶Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nam. 2, 16610 Prague 6, Czech Republic

ABSTRACT: We study the vibrational decoherence dynamics of an iodine molecule in a finite krypton cluster comprising the first solvation shell. A normal mode analysis allows us to successively increase the complexity of the description. For the ground state dynamics, comparison with experimental matrix results shows that already four degrees of freedom are sufficient to capture the main decoherence mechanism. For electronically excited iodine, we model the vibrational dynamics of initial Schrödinger cat-like states by the semiclassical hybrid dynamics [Grossmann, F. J. Chem. Phys. 2006, 125, 014111] and full quantum calculations, where available. Good agreement of the results is found for a reduced model with three degrees of freedom. We find non-Gaussian distortions of the bath density matrix, which is a necessary condition, if Schrödinger cat-like states in the bath are to be identified. However, in contrast to the experiment [Segale, D.; et al. J. Chem. Phys. 2005, 122, 111104], we observe only incoherent superpositions of bath vibrational states.

I. INTRODUCTION

Molecular dynamics in condensed phases can often be modeled in terms of a quantum system that interacts with many surrounding bath degrees of freedom (DOFs), thereby typically experiencing rapid decoherence. In prototypical experiments in the field, the environment consists of rare gas clusters/solids/liquids.¹⁻⁵ One way to describe such systems is by mixed quantum-classical approaches that have been designed to treat part of the DOFs on a classical level to make dynamical calculations feasible. The time-resolved coherent anti-Stokes Raman spectroscopy (TRCARS) experiments by the Aukarian group on the ground state iodine molecule in a krypton matrix,⁶ for example, have recently been modeled and, using a mixed quantum-classical Liouville method, two groups have been able to reach very good agreement with experimentally observed decay rates.⁵,⁶ For a recent text book on quantum-classical methods and an extensive list of references, see refs 5 and 7. The questions of how to correctly interface quantum with classical dynamics, how to determine the initial conditions for the classical DOFs, and how to devise efficient numerical solvers,⁸,⁹ nevertheless, leave room for a lot of debate.

Alternative approaches are based on the quantum mechanical propagator, which allows us to start the dynamics using the true quantum initial conditions and in its original form treats the dynamics of all DOFs on equal footing, although the dynamical ingredients for all DOFs are solely the solutions of Hamilton’s equations. These so-called semiclassical initial value representation (IVR) methods have experienced a renaissance in the 1990s, especially in the field of theoretical (chemical) physics of atomic and molecular systems.¹⁰⁻¹² One of the most prominent semiclassical IVR methods was inspired by work of Heller,¹³ finely devised by Herman and Kluk,¹⁴ and studied in detail by Kay.¹⁵,¹⁶ In principle this so-called Herman–Kluk (HK) propagator is the first term in a series representation of the full quantum propagator and by calculating higher order terms even deep tunneling may be described in terms of real-valued trajectories.¹⁷,¹⁸ In general, however, even the semiclassical IVR method is plagued by the fact that an exceedingly large number of trajectories may be needed to converge the oscillating, possibly rapidly increasing integrand appearing in the propagator expression. Therefore, even simpler expressions have been looked for. One of them is the thawed Gaussian wave packet dynamics (TGWD)¹⁹ of Heller. This method is based on the...
propagation of a single Gaussian with time-dependent width ("thawed"), in contrast to the fixed width ("frozen") Gaussians of the HK propagator. It has been shown that the TGWD is in fact an approximation to the HK propagator if applied to a Gaussian initial state.20,21 Another, alternative way is to use different levels of approximation to the prefactor in the Herman—Kluk propagator.13,22

The TGWD is a single trajectory method and therefore does not depend on sampling of initial conditions. For at most harmonic potential, TGWD results are exact. Thus this method might be very well suited for the description of weakly coupled environmental DOFs, whose dynamics is expected to take place near the potential minimum, where a harmonic approximation is justified. In this spirit a recently developed method23 combines the advantages of the semiclassical IVR multitrajectory Herman—Kluk (HK)14 method with Heller’s single-trajectory (TGWD)19 approach to apply it to typical system-bath type of situations. This semiclassical hybrid dynamics (SCHD)1 has later been extended to the density matrix level of description25 and including finite temperatures.26 These developments make the method ideally suited to be applied to a study of the decoherence dynamics of I2 in a finite krypton matrix as studied experimentally in the group of Apkarian.4 As far as possible, we will compare the semiclassical hybrid results with full quantum calculations as well as experimental results.

The paper is organized as follows: In section II the semiclassical hybrid method is reviewed. In section III we give the details of our pseudo normal mode description of I2 in a krypton cluster, where we restrict the level of description of the matrix to the first solvation shell. In section IV we show full quantum results for the decoherence dynamics in the electronic ground state and compare them with experimental results. Section V deals with excited state dynamics and SCHD results are compared with full quantum ones. Our final conclusions are presented in section VI.

II. SEMICLASSICAL HYBRID DYNAMICS

We first review the semiclassical hybrid approach21 used in this paper. To this end, we start by sketching the semiclassical IV of Herman and Kluk14 and its relation to TGWD.19 The combination of these two methods leads to the SCHD, which has been generalized for reduced density matrix dynamics in ref 25.

A. Herman—Kluk Propagator. A quantum mechanical wave function Ψ(x,t) at time t for a system with N DOFs x ∈ ℝN can be obtained by applying the quantum mechanical propagator to the initial wave function Ψ(x,0) according to

$$\Psi(x,t) = \int d^N \Psi(x,t; x',0) \Psi(x,0)$$

A semiclassical approximation to the propagator based on multiple frozen Gaussians was developed by Herman and Kluk,14 building on previous work by Heller.15 The corresponding propagator is given by

$$K^{HK}(x,t; x',0) = \int d^N q d^N p \Psi_s(q,p) \times \frac{1}{\sqrt{\text{det}[h(q,p,t)]}} e^{iS/h}(q,p)$$

Its main ingredients are normalized Gaussian wave packets (GWP) in position representation

$$\langle x \mid g_s(q,p) \rangle = \left(\frac{\text{det}(\gamma)}{\pi^N} \right)^{1/4} \exp \left\{ - \frac{1}{2} (x - q)^T \gamma(x - q) + \frac{i}{\hbar} h^T \gamma(x - q) \right\}$$

with a constant, real, positive definite, and diagonal width parameter matrix γ. The integration in (2) is performed over phase space points which serve as initial conditions of classical trajectories (p_1 = p(q,p,t), q_1 = q(q,p,t)). Furthermore, classical mechanics comes into play via the classical action

$$S = S(q,p,t) = \int_0^t L \, dt'$$

with the Lagrangian $L = T - V$.

The matrix in the determinantal prefactor, which goes back to the original work of Herman and Kluk, is given in a slightly generalized form by27,28

$$h(q,p,t) = \frac{1}{2} \left(m_{11} + \gamma m_{22} \gamma^{-1} - i \hbar \gamma m_{21} + \frac{i}{\hbar} m_{33} \gamma^{-1} \right)$$

It ensures the propagator’s unitarity in the stationary phase sense29 and consists of elements of the so-called monodromy (or stability) matrix,

$$M = \begin{pmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{pmatrix} = \begin{pmatrix} \frac{\partial \rho}{\partial x} & \frac{\partial \rho}{\partial p} \\ \frac{\partial \rho}{\partial q} & \frac{\partial \rho}{\partial \gamma} \end{pmatrix}$$

This matrix describes the time evolution of small deviations in the initial conditions and can be obtained by solving linearized Hamilton equations for the deviations.

B. Density Matrix Formulation. In density formalism the general solution of the Liouville—von Neumann (LvN) equation

$$\rho(x,t; x',0) = K(x,t; x',0) \rho(x',x'';0)$$

applies the propagator twice. Because we are interested in the dynamics of a particular DOF, the appropriate quantity to consider henceforth is the reduced density matrix, focusing only on the explicit dynamics of the system of interest (SOI).

To find the appropriate semiclassical expression, we use eq 7 together with eq 2, subdividing the position coordinate vector into a SOI and a bath part, x ≡ (s,b). Then the partial trace over all bath DOFs is performed, finally yielding a semiclassical expression for the corresponding reduced density matrix

$$\rho_s(s,s'; t) = \int d^N p d^N q d^N p' d^N q' \frac{1}{\sqrt{\text{det}[h_s(q,p',t)]}} \left| h_s(q,p,t) \right|^2$$

with the initial density operator $\rho(0)$ and the width parameter matrix divided into system and bath related submatrices γ_s and...
Although the integration over phase space is usually performed subvectors for the system and the environmental DOFs. Also, the labels “S” and “B” denote the subvectors of the system and the environmental DOFs. The integration over phase space is usually performed by a Monte Carlo procedure, the computational effort for the calculation of the 4N-dimensional integral in eq 8 is still formidable.

C. Thawed Gaussian Wave Packet Dynamics. We now briefly sketch the relation of the TGWD introduced by Heller to the HK approximation. To this end we note that, if the initial wave function in eq 1 is a Gaussian wave packet, a distinct advantage of the HK propagator comes into play by expanding the exponent up to second order around the center of the initial Gaussian wave packet for a subset of Nhk DOFs and performing the corresponding phase space integral analytically. The respective DOFs are hence approximated to the level of TGWD, whereas Nhk = N − Nbg DOFs are retained on the level of HK. Subsequently, we trace over all bath DOFs and finally obtain an expression for the reduced density matrix contribution (here for 1D SOI, as will be the case in section V).

The expression consists of the Nbh × Nbh matrix

\[\mathbf{H} = - (\mathbf{K}_{bb} + \mathbf{K}'_{bb} - \gamma_B) \]

and the symmetric 2 × 2 matrix

\[\mathbf{A} = \begin{pmatrix} \Lambda_{11} & \Lambda_{12} \\ \Lambda_{21} & \Lambda_{22} \end{pmatrix} \]

We emphasize that, in contrast to the HK expression (2), this expression is given in terms of just one single trajectory with initial conditions according to the mean position of the initial Gaussian. The Gaussian form of the wave packet is retained throughout the propagation, only the position and the width change in time. In addition, it is exact for potentials being at most quadratic. However, due to the additional approximation which was applied to obtain eq 10, the TGWD is obviously less accurate than the HK approximation.

D. Semiclassical Hybrid Dynamics. Based on the HK method and the TGWD, the SCHD for the density matrix propagation can now be presented. We start by assuming that the initial density operator can be factorized into

\[\hat{\rho}_S(0) = \xi^2 \sum \alpha \alpha' \hat{\rho}_{\alpha,\alpha'} \]

where each contribution

\[\xi^2 \sum \alpha \alpha' \hat{\rho}_{\alpha,\alpha'} \]

is an outer product of two N-dimensional Gaussians generally located at two different phase space points labeled with the indices α and α′.

The expression consists of the Nbh × Nbh matrix

\[\mathbf{H} = - (\mathbf{K}_{bb} + \mathbf{K}'_{bb} - \gamma_B) \]

and the symmetric 2 × 2 matrix

\[\mathbf{A} = \begin{pmatrix} \Lambda_{11} & \Lambda_{12} \\ \Lambda_{21} & \Lambda_{22} \end{pmatrix} \]

Furthermore, it contains the 2-dimensional vector

\[\sigma = \begin{pmatrix} \sigma_1 \\ \sigma_2 \end{pmatrix} = \begin{pmatrix} \mathbf{K}_{bb} \mathbf{H}^{-1} \mathbf{d} - 2 \mathbf{K}_{bb} \mathbf{q}_{\alpha,\alpha' \beta} + \frac{i}{\hbar} \eta_{\alpha,\alpha'} \beta \\ \mathbf{K}_{bb} \mathbf{H}^{-1} \mathbf{d} - 2 \mathbf{K}_{bb} \mathbf{q}_{\alpha',\beta} - \frac{i}{\hbar} \eta_{\alpha',\beta} \end{pmatrix} \]

containing the vector

\[\mathbf{d} = (\gamma_B - 2 \mathbf{K}_{bb} \mathbf{d}) \mathbf{q}_{\alpha,\alpha' \beta} + (\gamma_B - 2 \mathbf{K}_{bb} \mathbf{d}) \mathbf{q}_{\alpha',\beta} + \frac{i}{\hbar} (\mathbf{p}_{\alpha,\beta} - \mathbf{p}_{\alpha',\beta}) \]
The last abbreviation is the scalar
\[
\hbar = -\left(\begin{array}{c}
\frac{1}{2} \gamma_{\theta} - \frac{2K_{BB}}{2} + \frac{i}{\hbar} p_{\theta,\beta}^T \nabla q_{\theta,\beta}
\end{array}\right) + \frac{i}{\hbar} p_{\theta,\beta}^T \nabla q_{\theta,\beta} + \frac{1}{4} d^T H^{-1} d
\]
(17)

Again “S” and “B” denote the SOI and the bath subvectors or submatrices, respectively. Further abbreviations in eq 12 are the symmetric 2\(N_k^S\) \(\times 2N_k^B\) matrix
\[
A = \left(\begin{array}{c}
\gamma_{\theta}^{-1} + \frac{i}{\hbar} m_{211}^T \frac{i}{\hbar} m_{11}^T
\end{array}\right)
\]
(18)

with the matrices
\[
\tilde{u} = \tilde{m}_{11}^T + \frac{i}{\hbar} \tilde{m}_{211}
\]
\[
\tilde{v} = \tilde{m}_{12}^T + \frac{i}{\hbar} \tilde{m}_{122}
\]
(19)

where \(\tilde{m}_n\) are now \(N \times N_k^B\) matrices consisting of the derivatives with respect to variables carrying the label “tg” only. On the other hand, the label “hk” denotes the DOFs that are excluded from this expansion. The matrices in eqs 18 and 19 and their complex conjugate, which depend on the other half of the double phase space, also determine the symmetric matrices
\[
K \equiv \frac{1}{4} [u^T \tilde{v}^T] A^{-1} [u^T \tilde{v}^T]^T
\]
\[
K' \equiv \frac{1}{4} [(\tilde{u}^* u)^T (\tilde{v}^* v)] (A^*)^{-1} [(\tilde{u}^* u)^T (\tilde{v}^* v)]^T
\]
(20)

whose submatrices \(K_{SS}\), \(K_{SB}\), and \(K_{BB}\), which are also included in eq 12, couple the different classes of DOFs (system and bath).

We stress that in contrast to the full HK reduced density matrix expression in eq 8, the present one (eq 12) is just a \(4N_k^S\), dimensional phase space integral. Also, the dynamics of the bath DOFs is still fully included in this expression. The SCHD expression in eq 12 is the method of choice for the numerical computations in section V.

III. MODEL OF THE I\(_2\)KR\(_{17}\) CLUSTER

In this work we will apply the semiclassical scheme just outlined to study the dynamics of the iodine molecule in a krypton matrix that has been investigated quite extensively in the Apkarian group.\(^{24,22,33−36}\) Where applicable, semiclassical results will be compared with full quantum dynamics. Although the experiments are carried out in a cryogenic matrix environment, for the numerical treatment presented here we reduce the krypton environment to the first microsolvation shell. This cluster model comprises 17 Kr atoms that are arranged as a double-icosahedron surrounding the I\(_2\) molecule (Figure 1). In terms of symmetry, this cluster belongs to the \(D_{5h}\) point group, which is different from the experimentally realized matrix symmetry. Apart from being numerically easier to handle than a matrix model, there is also a fundamental difference of the cluster model considered here: Energy transfer from the vibrating I\(_2\) molecule to the two rare gas atoms residing on the 5-fold symmetry axis can cause the latter ones to dissociate from the cluster which in principle could lead to the emergence of an observable directly related to the system-bath coupling studied here.

A. Model Potentials. In our treatment of the system, all atom–atom interactions between the iodine as well as the krypton atoms of the first solvation shell have to be accounted for. For reasons of simplicity, the full potential is approximated as a sum over all pair potentials
\[
V = \sum_{j \neq k=1}^{N} V_{kj}
\]
(21)

where \(N_k = 19\) is the total number of atoms and the capital letters are atom indices. Three kinds of pair potentials have to be considered, depending on the kind of atoms that interact. All potential parameters given in Table 1 are taken from ref 22, with one typographical error corrected according to ref 33. We will be considering adiabatic dynamics on a single electronic surface of I\(_2\) in the following. Then the I–I interaction (each atom has a mass of \(m_i = 231323\) \(m_e\)) is described by the Morse potential.

<table>
<thead>
<tr>
<th>interaction</th>
<th>(D \ [E_h])</th>
<th>(\sigma \ [a_0^{-1}])</th>
<th>(R_0 \ [a_0])</th>
</tr>
</thead>
<tbody>
<tr>
<td>I–I (X state)</td>
<td>0.057</td>
<td>0.99</td>
<td>5.0</td>
</tr>
<tr>
<td>I–I (B state)</td>
<td>0.021</td>
<td>0.98</td>
<td>5.7</td>
</tr>
<tr>
<td>I–Kr (Σ)</td>
<td>0.0013</td>
<td>0.79</td>
<td>2.1</td>
</tr>
<tr>
<td>I–Kr (Π)</td>
<td>0.00057</td>
<td>0.81</td>
<td>8.1</td>
</tr>
</tbody>
</table>

Table 1. Parameters of the Model Potentials for the I\(_2\)Kr\(_{17}\) Cluster

Figure 1. Normal modes of I\(_2\)Kr\(_{17}\) with the highest symmetry, where the modes shown in (b)–(d) have the strongest coupling to the I\(_2\) mode in (a). I atoms are depicted in orange; Kr atoms are blue. The red lines show the direction of atom displacements for the respective normal coordinate.
\[V_{l-1} = D_{l-1} \{ 1 - \exp[-\alpha_{l-1}(R_{l-1} - R_{l-1, e})] \}^2 - D_{l-1} \]

(22)

Below we will start with the dynamics on the electronic ground state, i.e., the X state. The corresponding period in the harmonic approximation of the potential is about 150 fs. For the dynamics after electronic excitation of the I₂ the Morse parameters for its electronic B state are taken. In that case, the period in the harmonic approximation is about 258 fs.

Regarding the I₂–Kr interaction, we use a DIM-type (diatomics in molecules\(^{37,38}\)) superposition of \(\Sigma \) and \(\Pi \) potentials for the I₂–Kr interaction

\[V_{l-Kr} = \cos^2(\theta_l) V_2(\mathbf{R}_{l(1)-Kr}) + \sin^2(\theta_l) V_{\Pi}(\mathbf{R}_{l(1)-Kr}) \]

\[+ \cos^2(\theta_2) V_2(\mathbf{R}_{l(2)-Kr}) + \sin^2(\theta_2) V_{\Pi}(\mathbf{R}_{l(2)-Kr}) \]

(23)

for ground state iodine, and

\[V_{l-Kr} = \frac{1}{2} [V_2(\mathbf{R}_{l(1)-Kr}) + V_{\Pi}(\mathbf{R}_{l(1)-Kr})] \]

\[+ \frac{1}{2} [V_2(\mathbf{R}_{l(2)-Kr}) + V_{\Pi}(\mathbf{R}_{l(2)-Kr})] \]

(24)

for electronically excited iodine, where the index \(I(K) \) denotes the \(K \)th iodine atom and \(\theta_k \) is the angle between iodine molecular axis and the vector joining \(K \)th iodine and krypton atom. Both potentials can be modeled by the Morse potential, as well as by a Lennard-Jones potential.\(^{5}\) Here, we use Morse potentials for both \(\Sigma \) and \(\Pi \) contribution.

Finally, the Kr–Kr interaction is of van der Waals type, which is here approximated by the Lennard-Jones potential

\[V_{ij} = 4\epsilon \sigma^6 \left(\left(\frac{\sigma}{R_{ij}} \right)^6 - 1 \right) \]

(25)

The parameter \(\epsilon \) is the well depth of the potential (similar to \(D \) in the Morse oscillator) and \(\sigma \) is the root of the potential. The mass of a Kr atom is \(m_{Kr} = 152757 \ m_e \).

B. Normal Mode Analysis. After geometry optimization, the \(I_3Kr_{17} \) cluster emerges with \(D_{i3} \) symmetry as described at the beginning of section III. The minimum energy of –0.1034 \(E_h \) is close to the sum of 1–I interaction, 20 I–Kr and 45 Kr–Kr nearest neighbor interactions, which is –0.09915 \(E_h \). For the numerical treatment of the \(I_3Kr_{17} \) cluster, we introduce normal coordinates \(Q_i \) that are related to (mass-weighted) Cartesian displacement coordinates \(q_k \) via a linear transformation

\[Q_j = \sum_k a_{jk} \hat{q}_k \]

\[\hat{q}_k = \sqrt{m_k} \Delta x_k \]

(26)

with \(m_k \) the mass of the atom that is associated with the \(k \)th DOF and where \((a)_{jk} \) is the matrix of the eigenvectors of the Hessian matrix of the potential energy function\(^{99}\) from eq 21 for the electronic X state of \(I_3 \) (we note that, although the normal modes are determined with respect to the X state, the dynamics studied later will take place either on the X or on the B surface). More precisely, the normal modes introduced here are actually "pseudo"-normal modes, because all mixed second derivatives containing derivatives with respect to the position of an I or axial Kr atom in the Hessian matrix were neglected. This was done to obtain pure I₁ and Kr₂ symmetric stretching modes, which allows for dissociation of the two outer Kr atoms while leaving the remaining cluster intact.

In this work, we construct a reduced model comprising only four out of five totally symmetric (i.e., \(A_g \) representation of the \(D_{i3} \) point group) normal modes of the \(I_3Kr_{17} \) system. In addition to the two symmetric stretching modes of the four axial atoms, the remaining three totally symmetric modes are referred to as "hourglass", "rugby ball", and "balloon" mode. In Figure 1 these krypton normal modes as well as the I₁ mode are sketched. Among the Kr ("bath") modes, the axial Kr stretching is most strongly coupled to the \(I_3 \) (SOI) mode. The balloon mode has a considerably weaker coupling than the other totally symmetric normal modes. It will therefore be omitted in the following. Figure 2 shows 1D potential cuts along the four most important normal modes. Because we are using ground state normal coordinates for our calculations of electronically excited iodine, potential minima of all normal coordinates are in general shifted away from zero in that case as can be seen most clearly for the I₁ stretch coordinate in Figure 2a. It should also be noted that the Kr stretch mode \(Q_3 \) is the only one that has a dissociative limit in its potential. All other normal modes \(Q_i \) correspond to atom displacements such that both negative and positive values of \(Q_i \) result in some atoms approaching each other. The axial iodine vibration \(Q_1 \), for example, has a potential cut with Morse like form; for \(Q_2 > 800 \ a_0 \sqrt{m_i} \), however, the iodine molecule starts interacting with the axial Kr atoms which prevents it from dissociating.

With this model at hand, we have reduced the complexity of the 19-atomic system with 51 internal (vibrational) DOFs in a way that (quantum) dynamical calculations are feasible, where the complexity can be gradually enhanced by adding more and more normal modes, thereby creating a hierarchy of models. In passing we note that some of the normal modes considered here closely resemble those obtained for dihalogens in a rare gas matrix.\(^{38}\)

IV. NUMERICAL RESULTS FOR GROUND STATE DYNAMICS

With the atomic interactions defined, we are now in a position to perform dynamical simulations for the system of interest.
To justify our hierarchical model, we will first compare our numerical rates for the loss of vibrational coherence on the electronic ground state of I₂ with the temperature dependent experimental ones,⁷ as has been done previously using mixed quantum-classical approaches.⁸ All full quantum results in this and the next section have been obtained with the split-operator method (SPO)⁹ as implemented in the WavePacket software.¹⁰

A. Quantities of Interest and Initial States. We use two different measures for decoherence. On the one hand, the purity

\[P(t) = \text{tr}(\rho^2(t)) \]

(27)

describes the degree of pure state content of a system, taking values between 1 and 1/n, where n is the number of states taking part in the dynamics.¹² On the other hand, the coherence \(\Pi_{ij}(t) \) between two vibrational eigenstates \(|k⟩ \) and \(|l⟩ \) of a system is defined as\ª,\`¹³

\[\Pi_{ij}(t) = |\rho_{ij}(t)| \]

(28)

where \(\rho_{ij}(t) \) is the matrix element \(\rho_{ij}(t) = ⟨kl|\hat{ρ}_S(t)|lj⟩ \). Our initial state is assumed to be a product state

\[|Ψ⟩ = |Ψ_S⟩|Ψ_B⟩ \]

(29)

of system \(|Ψ_S⟩ \) and bath part \(|Ψ_B⟩ \) with

\[|Ψ_B⟩ = \prod_{n=1}^{N} |ψ_{B,n}⟩ \]

(30)

where the number of bath modes \(N \) is at most 3 for the quantum mechanical calculations. In the system DOF (I₂ stretching mode), the initial state is a superposition state, consisting of either two Gaussians or two numerically calculated vibrational eigenstates of I₂ in the rigid Kr cage. The coherence of two initial vibrational eigenstates is investigated to achieve results that can be compared with the experimental ones⁴ as well as with results from earlier theoretical works.²⁰ As in the previous works, the initial superposition comprises the vibrational ground state \(|0⟩ \) and a vibrationally excited eigenstate \(|n⟩ \).

The purity of two initial GWPs is considered in particular to be used in the next section for the SCHD. For that method, GWPs are an ideal initial state due to their straightforward sampling, and the purity, depending on the reduced density matrix only, is an easily accessible quantity of interest. For that case, the initial Schrödinger catlike state of the system is

\[|Ψ_S⟩ = |Ψ_{cat}⟩ = \frac{1}{\sqrt{2}} (|0⟩ + |n⟩) \]

(31)

Both Gaussians are centered at \(Q_0 = 0 \), i.e., at the potential minimum. The initial momenta are chosen to be \(P_{1,α} = 0 \) and \(P_{1,α'} \neq 0 \) such that one Gaussian is in the vibrational ground state and the energy of the other one corresponds to the energy of the nth excited eigenstate. The width parameter of both Gaussians corresponds to the width of the ground state of the harmonic approximation or equivalently to the eigenfrequency of the I₂ stretching mode: \(γ_1 = 22.29 \text{ a}_0^{-2} \).

To observe decoherence effects without zero-point energy modifications,⁴³ we have to treat finite temperature baths. This requirement determines the initial states of all bath DOFs. For the full quantum case, a finite temperature bath can be simulated by a thermal average over a sufficiently large number of independent wave packet calculations according to

\[\frac{d}{dt} \hat{ρ}(t) = \sum_n e^{-βk_n} [\hat{H} \hat{ρ}_n(t)] \]

(32)

where \(\hat{H} \) and \(\hat{H}_B \) are total and bath Hamiltonian, respectively. Equation 32 is a solution of the Liouville equation only for vanishing system-bath coupling \(\hat{H}_{SB} = 0 \), which we assume to be approximately fulfilled. Also, we assume the potentials of the bath modes close to \(Q_{ij} = 0 \) (\(i = 2, \ldots, 4 \)) to be sufficiently harmonic that the initial bath states can be chosen as eigenstates of harmonic oscillators with frequencies corresponding to the eigenvalues found in the normal-mode analysis.

B. Coherence for Different Numbers of Bath Modes. First, we consider an initial superposition of ground and excited vibrational eigenstate in the system DOF

\[|Ψ_S(0)⟩ = \frac{1}{\sqrt{2}} (|0⟩ + |n⟩) \]

(33)

with corresponding initial reduced density matrix

\[\hat{ρ}_S(0) = \frac{1}{2} ⟨0|0⟩ + ⟨0|n⟩ + ⟨n|0⟩ + ⟨n|n⟩ \]

(34)

making the initial coherence \(\Pi_{0n}(0) = l⟨0|n⟩(0)|n⟩ = 0.5 \). For a start, we choose \(T = 45 \text{ K} \) and \(n = 20 \) to get a significant loss of coherence on a short time scale.

Our cluster approach allows for a hierarchy of models, adding one bath DOF at a time. The first bath mode to be added is the vibration of the two axial Kr atoms along the iodine molecular axis, described by normal coordinate \(Q_2 \). It has the strongest coupling to the system in the sense that the decay of vibrational coherence is faster than in any other 2D calculation. As can be seen from the results of full quantum calculations displayed in Figure 3a, \(\Pi_{0n}(t) \) shows oscillatory behavior as well as

![Figure 3](image-url)

Figure 3. Coherence decay of I₂ vibration for different number of bath DOFs at \(T = 45 \text{ K} \) (full quantum results). (a) One bath mode: axial Kr. (b) Two bath modes: axial Kr and hourglass. (c) Three bath modes: axial Kr, hourglass and rugby ball. The dashed line shows the exponential fit for the decay of \(\Pi_{0n}(t) \).
Figure 1d) is taken into account, the decay is very much enhanced and the oscillation period doubles, as shown in Figure 3c. This strong change might be due to the fact that axial Kr stretch with 1102 fs and hourglass with 1144 fs have similar oscillation periods, whereas rugby ball mode with 1513 fs is clearly off-resonant. As expected, the number of bath modes is crucial for the decoherence dynamics of the system. In the following, we will show results from 4D full quantum calculations only.

C. Comparison with Experimental Results. Figure 4 shows the coherence from calculations starting from a superposition of vibrational ground and excited state with \(n = 10 \) and \(n = 20 \), respectively. The qualitative behavior is the same as in the experiment. Higher bath temperatures result in faster loss of coherence. It also becomes clear that the energy of the excited eigenstates has a strong influence on the dynamics: a superposition with a high-lying excited eigenstate undergoes fast decoherence. Fitting the peaks in the graphs from Figure 4 with the experimentally expected quantitative behavior \(\Pi_{\text{ex}}(t) \sim e^{-\Gamma \text{ref}} \) as shown in Figure 3c, rates \(\Gamma_{\text{ref}} \) for the loss of vibrational coherence can be extracted and compared with the fits to experimental data (Table 2). In spite of our model comprising

<table>
<thead>
<tr>
<th>(T / K)</th>
<th>45</th>
<th>20</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Gamma_{\text{ref}}) (ps(^{-1}))</td>
<td>0.100</td>
<td>0.34</td>
<td>0.040</td>
</tr>
<tr>
<td>(\Gamma_{\text{fit}}) (ps(^{-1}))</td>
<td>0.053</td>
<td>0.18</td>
<td>0.025</td>
</tr>
</tbody>
</table>

values between 0 and 1) and purity are shown for three different setups. The qualitative evolutions are identical, with both quantities undergoing exponential decay. However, decay rates are not the same. The same holds for the limit for \(t \to \infty \) of both quantities, as illustrated especially in Figure 5c. Due to both quantities displaying the same qualitative behavior, it can be concluded that the loss of vibrational coherence corresponds to a loss of quantum character of the system DOF in general. Therefore, we will use the purity as the computationally easier measure for decoherence henceforth.

The influence of the form of the initial wave packet can be seen in Figure 6, in which either Schrödinger catlike states, i.e., superpositions of two GWP according to eq 31, or superpositions of two eigenstates as before are used as initial states. In the case of GWP, one Gaussian is chosen to be identical to the ground vibrational eigenstate, and the other one is placed in the superpositions of two GWPs according to eq 31, or super-

Figure 2. Comparison of decoherence rates \(\Gamma_{\text{ex}} \) from fits to experiments with our 4D full quantum calculations.

Figure 3. Purity \(P(t) \) (solid) and vibrational coherence \(2\Pi_{\text{ex}}(t) \) (dashed) of \(I_2 \) DOF for (a) \(n = 10 \), \(T = 20 \) K, (b) \(n = 15 \), \(T = 10 \) K, and (c) \(n = 20 \), \(T = 45 \) K from full quantum calculations.

C. Comparison with Experimental Results. Figure 4 shows the coherence from calculations starting from a superposition of vibrational ground and excited state with \(n = 10 \) and \(n = 20 \), respectively. The qualitative behavior is the same as in the experiment. Higher bath temperatures result in faster loss of coherence. It also becomes clear that the energy of the excited eigenstates has a strong influence on the dynamics: a superposition with a high-lying excited eigenstate undergoes fast decoherence. Fitting the peaks in the graphs from Figure 4 with the experimentally expected quantitative behavior \(\Pi_{\text{ex}}(t) \sim e^{-\Gamma \text{ref}} \) as shown in Figure 3c, rates \(\Gamma_{\text{ref}} \) for the loss of vibrational coherence can be extracted and compared with the fits to experimental data (Table 2). In spite of our model comprising

Table 2. Comparison of Decoherence Rates \(\Gamma_{\text{ex}} \) from Fits to Experiments with Our 4D Full Quantum Calculations

<table>
<thead>
<tr>
<th>(T / K)</th>
<th>45</th>
<th>20</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Gamma_{\text{ref}}) (ps(^{-1}))</td>
<td>0.100</td>
<td>0.34</td>
<td>0.040</td>
</tr>
<tr>
<td>(\Gamma_{\text{fit}}) (ps(^{-1}))</td>
<td>0.053</td>
<td>0.18</td>
<td>0.025</td>
</tr>
</tbody>
</table>
heights, pointing to similar bath dynamics. The smaller oscillations on top of the eigenstate purity are due to the more sophisticated form of the highly excited eigenstate when compared with a simple GWP. The loss of quantum characteristics is mainly dominated by the initial energy rather than by its detailed form.

V. NUMERICAL RESULTS FOR EXCITED STATE DYNAMICS

In intriguing experiments on excited state dynamics of the Aplarian group2 the generation of vibrational Schrödinger cat-like states in the Kr bath has been postulated. In the remainder of this paper we therefore concentrate on describing the dynamics of an initial cat state of the I\textsubscript{2} evolving on the electronic B surface. Now we are interested in the qualitative behavior only and therefore restrict ourselves to the case $T = 0$. For this purpose, we choose an arbitrary superposition of two Gaussians

$$\psi_{\text{cat}} = \frac{1}{\sqrt{2}} \left(1 + e^{-\left((Q_{1b} - Q_{1w})^2 \right)/4} \right) \left(\psi_a + \psi_b \right)$$

(35)

where one Gaussian is centered at the minimum of the B state at $Q_{1a} = 204.1 a_0 (m_1)^{1/2}$ and the other Gaussian at the repulsive side of the potential at $Q_{1b} = 22.63 a_0 (m_1)^{1/2}$. Both Gaussians start at zero initial momentum, thus having energies that correspond to energies of vibrational ground and 20th excited state, respectively. For both SCHD and SPO, the time step was 1 fs.

The corresponding purities are plotted in Figure 8. For Q_4, also not starting at the potential energy minimum, these bath modes require a higher number of grid points, as well. In the examples below, 128, 512, 64, and 128 grid points have been used for Q_1, Q_2, Q_3, and Q_4, respectively. For both SCHD and SPO, the time step was 1 fs.

A. Three Normal Modes: Comparison of SCHD with Full Quantum Results. In this section, we compare three-dimensional SCHD results with full quantum ones. First, the I_2, Kr\textsubscript{2}, and hourglass modes are considered, for which the purities are shown in Figure 7 on a time scale in the order of 12 vibrational periods of I_2 in the B state. Within the SCHD treatment, the I_2 mode Q_1 is treated on the level of the HK approximation as well as the Kr\textsubscript{2} stretching mode Q_2, because its coupling to the I_2 mode is the strongest compared with all other normal modes. In contrast, we exploit the relatively weak coupling of the hourglass mode Q_4 by treating this DOF on the level of TGWD. We find that the agreement between the purities is very good, even for the hourglass mode, which is treated with a crude approximation than the other modes. The largest deviation becomes manifest in the I_2 mode at larger times, where the SCHD result is below the full quantum one. However, up to this deviation, the quantum results are well reproduced by SCHD. We note that for this system the deviation of the norm from unity is maximally 10% at larger times in the SCHD.

Next, the hourglass mode Q_4 is replaced by the rugby ball mode Q_5. The corresponding purities are plotted in Figure 8.
Here the agreement of the SCHD with quantum results in all three modes is even better than in the previous case, except for times above \(t = 2300 \text{ fs} \), where the SCHD result for all modes is above the quantum one. Also, the norm deviates from unity by less than 15% at larger times. We note in passing that for all SCHD results the necessary number of sampled trajectories is \(10^5 \), which is reasonable considering the eight-dimensional phase space integral and the length of the time scale.

The excellent agreement of the purities in the hourglass and rugby ball mode is surprising, the more so as both modes are treated on the level of an approximation in which the corresponding (reduced) density was assumed to retain its Gaussian form. On the other hand, one might assume that in the full quantum treatment the initial Gaussian shape of the reduced density is distorted after a few periods due to the anharmonicity of the potential energy surfaces. To shed light on this seemingly contradictory issue, we investigate the time evolution of the reduced density in the hourglass and rugby ball mode in more detail.

To this end, a snapshot of the SCHD Wigner function \(W(s,\tilde{p}_A) = \frac{1}{\pi \hbar} \int ds' d\tilde{p}'_A (s, \tilde{p}'_A) e^{i s \tilde{p}'_A / \hbar} \) is plotted in Figure 9 for the hourglass mode at \(t = 1320 \text{ fs} \), which is after about five \(I_2 \) periods. A direct SCHD expression for the hourglass and rugby ball mode is shown in Figure 10 at time \(t = 1800 \text{ fs} \). The quantum result is very well reproduced by the SCHD and apparently its shape is different from the shape of a minimum uncertainty wave packet or a superposition of two of them.

To elucidate this phenomenon, we recall that the DOFs on both levels of approximation, HK and TGWD, are coupled via classical dynamics. While the initial HK phase space points are sampled within the numerical integration, the initial phase space point of a TGWD DOF is fixed at the center of the corresponding initial GWP. However, due to the coupling to the HK DOFs, the trajectories associated with a TGWD DOF vary due to the coupling to the different initial conditions (leading to different histories). Therefore, strictly speaking, the integration over the HK DOFs comes along with an integration over a set of ”thawed Gaussian”-trajectories in the SCHD, and thus the reduced density of a TGWD DOF is not restricted to a Gaussian shape. This confirms our assumption that an approximation on the level of TGWD applied to a DOF which is coupled to other HK DOFs, as in the SCHD, can still be accurate, even if weakly affected by anharmonic dynamics.

B. Four Normal Modes. So far, we have compared three-dimensional SCHD results with full quantum ones and found good agreement. Now we increase the number of DOFs by considering all four of the most important normal modes, i.e., \(I_2 \), \(Kr_2 \), hourglass, and rugby ball. For iodine in the electronic B state, a 4D full quantum treatment with the SPO would be numerically overly expensive, because due to the aforementioned dissociation of the axial Kr atoms, the necessary grid size for a wave function with more than 3 DOFs increases beyond the memory capacity of a standard desktop computer, even if absorbing boundary conditions are applied. In contrast, for the SCHD this is no restriction and thus it can be applied. Again, the phase space sampling within the framework of the numerical integration is performed only for the \(I_2 \) and \(Kr_2 \) modes, whereas the rugby ball and hourglass modes are still treated on the level of TGWD. We note in passing that also in the four-dimensional calculation \(10^5 \) sampling points were used for the Monte Carlo integration.

In Figure 11, the purities obtained with SCHD for each of the considered modes are plotted and compared for the three- and
four-dimensional case. A comparison of the different purities for every normal mode reveals only small differences between results for the four- and three-dimensional case. Particularly, the purities of the cage modes show only slight deviations between the results obtained for different numbers of DOFs. Hence, for the chosen initial state in the I_p we could assume that for a certain cage mode it is almost insignificant, whether or not the other cage mode is considered in the propagation.

Of course, the purity does not give all information about a state. It only reveals information about the “mixedness” of a state. Therefore, to see the influence of an additional normal mode on a subsystem, the Wigner functions of the rugby ball mode are shown in Figure 12 for both the three- and four-dimensional case.

The comparison of both snapshots, taken at the same time $t = 1860$ fs, shows clear differences, especially in the momentum width and also in the position of the maxima. Consequently, we conclude that indeed it is relevant for the dynamics of a cage mode, whether or not another cage mode is considered in the dynamics of the overall system.

C. Comparison with Experimental Results. At last, we shortly compare our results with experimental findings from the Apkarian group, who inferred from their four-wave mixing experiments that a coherent superposition between different vibrational states of the bath is created.2 As can be seen in Figure 9, the initial conditions used for our calculations generate a vibrational superposition in the hourglass bath mode Q_3. However, the superposition is incoherent, which is indicated by the lack of an interference pattern with negative parts between both “packets” in the Wigner function (Heller’s “dangerous cross terms”}). The lack of interference in the bath modes might just be due to the dissociation-induced lack of purity revivals. That is why we have performed calculations for a variety of initial conditions and sets of bath modes to find an initial setup for electronically excited iodine that results in purity revivals as well as coherent superpositions of bath states. Apart from “artificial” initial cat states with arbitrarily chosen positions and momenta according to eq 35 and 31, we also used initial conditions closer to the experiment. For that, we ran 1D full quantum calculations on two coupled electronic surfaces, starting with the cluster at its equilibrium position in the electronic X state and irradiating with two laser pulses with frequencies, delay time, and pulse durations corresponding to ref 2; to provide a superposition of two GWPs in Q_3 as initial condition for our subsequent 2D or 3D calculations on the B state. Some minor oscillations in the system purity have been observed, but the energetic distance between the initial GWPs turned out to be too small to split up the bath Gaussians. With certain “artificial” initial conditions, such purity revivals can be observed, as well. One example is shown in Figure 13, where the wave function was a cat state according to eq 35 with

\[W(s, p) = \frac{1}{\pi \hbar} \int d\zeta \left(s - \zeta \right) e^{2i \zeta s / \hbar} \]

Figure 12. Snapshot of the rugby ball mode SCHD Wigner function at 1860 fs from calculation with three normal modes (a) and four normal modes (b).

Figure 13. Purity of iodine mode from 3D full quantum calculation with Kr stretching and hourglass mode. As seen in the experiment, the purity shows revivals while decaying exponentially.

initial Gaussians centered at 78 $(m_0)_{1/2}$ and 378 $(m_0)_{1/2}$, respectively, corresponding to both Gaussian having the energy of the seventh eigenstate. On the other hand, all calculations with artificial initial states have shown that every time a bath mode splits up into two Gaussians, this superposition is incoherent and the purity of the respective bath mode is at a local minimum, no matter if there are purity revivals in the system or not.

VI. SUMMARY AND OUTLOOK

We have studied the ground as well as excited electronic state dynamics of wave packets for the I_p-Kr$_2$ cluster. A pseudo normal mode analysis has been undertaken to make the dynamics amenable for quantum calculations. As a first central result of this paper, we could show that good agreement with experimental (and previous classical) results can be achieved already with four DOFs, particularly for high initial excitation and low temperature.

Second, in the case of excited state dynamics and for zero temperature, we employed a semiclassical hybrid scheme as quantum calculations become increasingly cumbersome so that four normal modes are beyond the capabilities of standard present-day computers. After finding good agreement between semiclassical and full quantum results for three normal modes, we proceeded to investigate the dynamics of four normal modes in SCHD. Although the hybrid scheme employs thawed Gaussians for the bath DOFs, we could show that non-Gaussian distortions are manifested in our results.

As in the experiment, partial purity revivals have been observed for certain initial conditions. Other than inferred from the experiment, which was performed at finite temperature, we did not see any signatures of cat states in the bath, even for $T = 0$. Only incoherent superpositions of different vibrational bath states were generated. In future investigations we intend to investigate different cluster or matrix geometries to study the influence of symmetry and size of the Kr environment on the decoherence dynamics. Another direction is to apply finite-temperature SCHD to improve quantitative agreement with experimental data also for other regions of temperature/excitation parameter space. Finally, the influence of further normal modes on the decoherence dynamics will be the objective of future studies, where we intend to include more than four normal modes in SCHD calculations to corroborate the convergence of our reduced dimensionality results toward the bulk results.

APPENDIX A: SCHD EXPRESSION OF THE WIGNER FUNCTION

We consider a one-dimensional SOI. In density matrix formalism the Wigner function has already been defined in eq 36 as

\[W(s, p) = \frac{1}{\pi \hbar} \int d\zeta \left(s - \zeta \right) e^{2i \zeta s / \hbar} \]
For reasons of clarity, the momentum of the Wigner representation \(\tilde{p}_{\text{S}} \) is introduced to distinguish it from the system momentum \(p_{\text{S}} \) which is part of the phase space integration.

\[
e = -(-\Lambda_{11} + 2\Lambda_{12} - \Lambda_{22})e^2 + \left[-2(s-q_{\alpha,S})\Lambda_{11} + 2(q_{\alpha,S} - q_{\alpha})\Lambda_{12} + 2(s-q_{\alpha,S})\Lambda_{22} - \sigma_1 + \sigma_2 + \frac{2i}{\hbar}\tilde{p}_{\text{S}} \right] \zeta
\]

\[
+ (s-q_{\alpha,S})^2\Lambda_{11} + (s-q'_{\alpha,S})^2\Lambda_{12} + 2(s-q_{\alpha,S})(s-q'_{\alpha,S})\Lambda_{12} + (s-q_{\alpha,S})\sigma_1 + (s-q'_{\alpha,S})\sigma_2
\]

This is now an exponent of quadratic form in \(\zeta \), for which the integral in eq A1 can be calculated analytically by applying a Gaussian integration formula. The Wigner function then becomes

\[
W(s,\tilde{p}_{\text{S}}) = \int \frac{d^N p_{\text{S}}}{(2\hbar)^N} \det(H) \det(A) \det(R) \frac{1}{\sqrt{-\Lambda_{11} + 2\Lambda_{12} - \Lambda_{22}}}
\]

\[
\exp \left\{ \bar{\varepsilon} + \frac{1}{\hbar} (S-S') \right\} \exp \left\{ - \frac{1}{\hbar^2} \left(\Lambda_{11}^2 - \Lambda_{12} - \Lambda_{22}^2 \right) \right\}
\]

results from the integration over \(\zeta \). It consists of the matrix

\[
y = \begin{pmatrix}
\frac{\Lambda_{11}}{2\Lambda_{12} - \Lambda_{11} - \Lambda_{22}} & \frac{\Lambda_{12}}{2\Lambda_{12} - \Lambda_{12} - \Lambda_{22}} \\
\frac{\Lambda_{11}}{2\Lambda_{12} - \Lambda_{11} - \Lambda_{22}} & \frac{\Lambda_{12}}{2\Lambda_{12} - \Lambda_{12} - \Lambda_{22}}
\end{pmatrix}
\]

and the vector

\[
x = \begin{pmatrix}
\frac{2p_{\text{S}}}{\hbar} \Lambda_{11} + 2 \left(q_{\alpha,S}' - q_{\alpha,S} \right) \Lambda_{12} - \frac{\sigma_1}{2} + \frac{\sigma_2}{2} \\
\frac{2p_{\text{S}}}{\hbar} \Lambda_{22} + 2 \left(q_{\alpha,S}' - q_{\alpha,S} \right) \Lambda_{12} - \frac{\sigma_1}{2} + \frac{\sigma_2}{2}
\end{pmatrix}
\]

Thus as in the semiclassical hybrid reduced density, only the numerical calculation of the phase space integral is left to obtain the SCHD Wigner function.

AUTHOR INFORMATION

Corresponding Author

*E-mail: max.buchholz@mailbox.tu-dresden.de.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We gratefully acknowledge financial support by the Deutsche Forschungsgemeinschaft (GR 1210/4-1,2), and allocation of computational resources by the Zentrum für Informationsdienste und Hochleistungsrechnen (ZIH) of the Technische Universität Dresden. P.J. thanks the Czech Science Foundation for support via grant P208/12/G016 and the Academy of Sciences for the Praemium Academica Award. For help with the construction of the normal modes we thank Martin Mucha.

REFERENCES

(31) In the case of a non-Gaussian initial wave function, it can be decomposed to a given accuracy in terms of Gaussian wave packets.47
(45) In a similar manner, but starting from different initial conditions, non-Gaussian distortions are introduced in ref 48.