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1 Introduction

The dynamics of biomolecular systems is characterized by the existence of
biomolecular conformations which can be understood as metastable geomet-
rical large scale structures [1]. On the longest time scales, biomolecular dy-
namics is dominated by flipping processes between these conformations, while
on shorter time scales, the dynamical behavior is governed by flexibility within
these conformations, resulting in a rich temporal multiscale structure of time-
dependent observables. The purpose of this chapter is to elucidate on the
possibility of constructing reduced models reflecting the ”effective dynamics”.

It is a promising idea to describe the effective dynamics of a biomolecular
systems by means of a Markov chain with discrete states D1, . . . , Dm, rep-
resenting the metastable conformations, and a transition matrix P = (pkj),
describing the ”flipping dynamics” between these states. The problem of ef-
ficient algorithmic identification of the metastable conformations is a chal-
lenging problem, recently there have been several set-oriented approaches to
this problem [2–4]. In the context of the present work Hidden Markov Models
(HMM) are used to extract the effective dynamics between hidden metastable
molecule conformations from observable time series. e.g. the torsional angles
of the backbone of biopolymers obtained by MD simulations [5]. In addition,
the flexibility within conformations can be modelled by stochastic differen-
tial equations (SDE), thus comprising the HmmSde model [6–8]. As the de-
scription of internal flexibility by SDEs also accounts for relaxation from one
metastable conformation to another, this approach narrows the gap between
”flipping dynamics” and transition path computation, as described in, e.g.,
[9].

We will herein first explain the background of the (set-oriented) transfer
operator approach and the HmmSde scheme. In the second part of this contri-
bution we will discuss application to conformation dynamics of a prototypical
dipeptide, spanning the range from gas phase to aqueous solution.
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2 Metastability and the transfer operator approach

In the following we shortly summarize the algorithmic idea of the transfer
operator approach, omitting most of the theoretical background. Instead we
concentrate on the question how to set up an effective dynamics from a given
time series, e.g., trajectory data. The reader interested in a mathematically
more rigorous description is referred to [3, 10–13], readers not familiar with
the basic notations of Markov chain theory are referred to [14]. First we ex-
plicate the concept of metastability of a Markov chain and the key idea for
the identification of metastable states. Note that the transfer operator is an
object in continuous state space, while we present the concept on discrete
state space. Therefore only the discretized equivalent of the transfer operator,
the transition matrix, appears in the following.

Consider a Markov chain {Xk}k∈
� on a discrete state space X = {1, 2, . . . , n}

specified by a stochastic transition matrix P = (pkj), with

pkj =
�

[Xl+1 = j|Xl = k],

denoting the conditional probability to jump from k to j within one timestep.
Furthermore, assume that the Markov chain is irreducible, aperiodic and re-
versible, i.e. a unique and strictly positive stationary distribution π = (πk)
exists with πkpkj = πjpjk for all k, j ∈ X. A subset B ⊂ X is called metastable

if
�

[Xl+1 ∈ B|Xl ∈ B] ≈ 1,

i.e., if the process is in subset B it is very likely to stay there within the next
time step.

A decomposition d = {D1, . . . , Dm} of the state space X is defined as
a collection of disjoint subsets Dk ⊂ X covering X, i.e. ∪m

k=1Dk = X. The
metastability of a decomposition d is defined as the sum of the metastabilities
of its subsets, i.e. for each arbitrary decomposition dm of the state space X

into m sets its metastability measure is defined as

M(dm) =

m
∑

j=1

�
[Xl+1 ∈ Dm|Xl ∈ Dm].

For given m, the optimal metastable decomposition into m sets maximizes the
functional M . In particular the appropriate number m of metastable subsets
must be identified. Both the determination of m and the identification of
the metastable subsets can be achieved via spectral analysis of the transition
matrix P , as the following holds

Due to reversibility, all eigenvalues of the transition matrix P are
real. Metastable subsets can be detected via eigenvalues close to the
maximal dominant eigenvalue λ = 1, i.e., the number of metastable
subsets in the metastable decomposition is equal to the number of
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eigenvalues close to 1, including λ = 1 and accounting for multiplicity,
while the rest of the spectrum is separated through a spectral gap from
1. Among other possibilities, the sign structure of the eigenfunctions
allows the identification of the metastable subsets [3, 12, 15].

Therefore the road map to determine metastable states on basis of a time
series reads as follows

1. Discretize the state space of the time series and extract a transition matrix
by counting transitions between the discrete states.

2. Use the spectral properties of the transition matrix to obtain metastable
sets, yielding a coarse-grained description.

There are two remarks to be made on this road map.
First: Discretizing the state space is a non-trivial task, as typical biomolecu-
lar systems contain hundreds or thousands of degrees of freedom. Fortunately,
chemical observations reveal that—even for larger biomolecules—the curse of
dimensionality can be circumvented by exploiting the hierarchical structure
of the dynamical and statistical properties of biomolecular systems: only rel-
atively few essential degrees of freedom may be needed to describe the confor-
mational transitions.
Second: After discretizing the state space there is a choice in the lag time τ

used to obtain the transition matrix. If τ∗ is the timestep between subsequent
data points then the lag time τ can be set to rτ∗ by evaluating transitions
from every kth sampled step to every (k + r)th, r ≥ 1, sampled step. Taking
r > 1 corresponds to a coarser discretization of the time domain of the origi-
nally continuous dynamics. Different values of r give rise to different transition
matrices. Therefore subsets of the state space are metastable with respect to

a certain timescale. By choosing r sufficiently large one can decrease corre-
lations between subsequent timesteps and therefore ensure that the Markov
description is a proper description.

2.1 Illustrative Example

We give a short and simplistic example to highlight the procedure outlined
above. Consider the one dimensional time series (Yt)t=t1,...,tN

, with constant
sampling time τ∗ = tj+1−tj , shown in Fig. 1, which clearly exhibits metastable
behavior. We discretize the state space [−180 180] into 9 equidistant boxes,
the numbering of the boxes randomly chosen. If Nr(j, k) denotes the number
of transitions from box j to box k in r steps and Nr(k) the number of data
points in box k, we obtain a reversible transition matrix P = (pkj), with
respect to the timelag τ = r ∗ τ∗, by setting

pkj =
Nr(j, k) + Nr(k, j)

Nr(j) + Nr(k)
. (1)

The obtained matrix seems to exhibit no special structure, but computing the
spectrum, for r = 1, yields
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σ(P ) = {1, 0.98, 0.55, 0.34, . . .},

indicating two metastable states. The information contained in the eigen-
vector belonging to the second eigenvalue is used to identify the metastable
subsets, i.e. boxes with the same eigenvector sign are assigned to the same
metastable state. Permuting the matrix such that boxes belonging to the same
metastable set are neighbors, results in a dominantly blockdiagonal structure.
Aggregating the states in each metastable set results in a two state ”effective
dynamics” with transition matrix

(

0.989 0.011
0.013 0.987

)

,

and a stationary distribution π = (0.56 0.44)T .
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Fig. 1. Top left: A time series of circular data. The equidistant space discretization
in 9 randomly numbered boxes is indicated with dashed lines. Bottom left: The
obtained stochastic transition matrix, blue (dark) color represents entries near zero,
while red (light) entries are corresponding to entries close to one. Bottom middle:
The sign structure of the second eigenvector allows assignment to metastable states.
Bottom right: The matrix permuted according to the eigenvector structure exhibits
a block structure. Top right: Aggregating the discretization boxes belonging to the
same metastable state yields a two state model.
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3 The Hidden Markov Model Approach

Assume that we extracted a time series Yt from, e.g., MD-simulation, which
do not necessarily completely specify the state of the molecule at time t,
but rather some low-dimensional observable, for example, some or all torsion
angles or a set of essential degrees of freedom. As the Markov property does not
hold for projections of Markov processes in general, we have to be aware that
the process on the (torsion angles) subspace might no longer be Markovian.
Nevertheless, we assume that there is an unknown metastable decomposition
into m sets D1, . . . , Dm, in the full dimensional system. We then can premise
that, at any time t, the system is in one of the metastable states Djt

to which
we simply refer by jt in the following. However, the time series (jt) is hidden,
i.e., neither known in advance nor observed, while the series (Yt) is called the
output series or the observed sequence.

This scenario can be represented by a Hidden Markov Model (HMM). A
HMM abstractly consists of two related stochastic processes: a hidden process
j, that fulfills the Markov property, and an observed process Yt, that depends
on the state of the hidden process jt at time t. A HMM is fully specified
by the initial distribution µ, the transition matrix P of the hidden Markov
process j, a rate matrix in continuous time, and the probability distributions
that govern the observable Yt depending on the respective hidden state jt.

In the standard versions of HMMs the observables are assumed to be
identically and independent distributed (i.i.d.) random variables with station-
ary distributions that depend on the respective hidden states [5]. Within the
scope of molecular dynamics this setting corresponds to the simple case where
the timelag τ is comparable with the relaxation times within the metastable
states, while the relaxation times are sufficiently smaller than the mean exit
times of the metastable states. In other words one expects the process to
sample the restricted invariant density before exiting from a metastable state,
and the sampling time of the time series is long enough to assume statisti-
cal independence between steps. Nevertheless, if this is not the case, only a
slight modification of the model structure is required to include the relaxation
behavior: Instead of i.i.d. random variables, an Ornstein-Uhlenbeck (OU) pro-
cess serves as a model for the output behavior in each hidden state. The HMM
then takes the form [6]:

Ẏt = −∇V (jt)(Yt) + σ(jt)Ẇt, (2)

jt : R1 → {1, 2, ..., m}, (3)

where jt are the realizations of the hidden Markov process with discrete state
space, Wt is standard ”white noise”, and {V (j), σ(j)} is a set of the state-
specific model parameters with harmonic potentials V (j) of the form

V (j)(Y ) =
1

2
(Y − µ(j))T D(j)(Y − µ(j)) + V

(j)
0 , (4)
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µ(j) and D(j) denoting equilibrium position and Hesse-matrix of the OU pro-
cess within conformation j. This process is therefore specified by the parame-
ters Θ(j) = (µ(j), D(j), σ(j)). Since the output process is given by a stochastic
differential equation we will refer to this model modification as HmmSde . Its
entire parameter set is Θ = (Θ(1), . . . , Θ(m), P ), where P denotes the transi-
tion matrix of the Markov chain in (3).

The parameter set of this model can be estimated from a time series
via a modified EM (expectation-maximation) algorithm [16], as described
in [6,7,17]. Once the model parameters are estimated one can use the Viterbi
algorithm [18] to compute the most probable path of hidden states, the Viterbi

path, given observation sequence. So both can be obtained, a dynamical model
and the assignment of data points to the hidden, not observed, states. In con-
trast to the transfer operator approach, where the number of metastable states
is extracted from the spectral properties of the transition matrix, we have to
specify the number of metastable states as an input parameter for the EM
algorithm. Since this number is in general unknown, a combination of both
algorithms is used: First, guess a sufficiently large number of metastable sets,
compute a Viterbi path and then reduce the number of states by set up a tran-
sition matrix from the (discrete) Viterbi path and cluster with the transfer
operator approach.

4 Conformation analysis of a Glycine Di-Peptide
Analogue (GLDA)

As an example we investigate the dynamics of glycine dipeptide analogue
(CH3–CO–NH–CH2–CO–NH–CH3), which is one of the smallest (artificial)
peptide containing two peptide bonds (CO–NH). Thus the essential degrees
of freedom are the torsional rotations of the individual peptide units (–CO–
NH–) about the backbone of the chain, where Φ and Ψ describe the torsion
of the N-terminus (CH3–CO–NH–) and the C-terminus (–CO–NH–CH3),
respectively, with regard to the central CH2 group, see Fig. 2. The plane
spanned by the two angles Φ, Ψ is referred to as Ramachandran plane [19],
with values of (±180◦,±180◦) corresponding to a fully extended conformation
of the chain. For longer polypeptide chains these angles serve to characterize
typical secondary structural motifs such as helices and sheets.

4.1 GLDA in the gas phase

We used an empirical force field (Gromos 53a6 [20, 21]) to obtain a potential
energy surface in the two essential degrees, i.e., varying the Ramachandran
angles and minimizing the potential energy wrt. the other degrees of free-
dom. The potential energy surface shown in Fig. 2, reflects the symmetry of
the peptide. Local minima correspond to energetically favorable formations
of ringlike structures, including seven or five atoms (C5 and C7), closed by
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Fig. 2. Left: Glycine dipeptide analogue. The two marked torsion angles are the
essential degrees of freedom as the peptide units are essentially planar. Right: Poten-
tial energy surface with respect to the two torsion angles. The local minima are due
to the formation of hydrogen bonds between the peptide groups, the local maxima
are due to repulsion.

(strongly) frustrated intramolecular hydrogen bonds. The maximal regions
are corresponding to intramolecular repulsion of –O O– and –H H–. The ac-
curacy of the potential energy surface is of course limited by the quality of
the empirical force field used, but comparison with the potential energy sur-
face computed by quantum chemical calculations yields a qualitatively similar
picture [22–26].

Performing a finite temperature MD-simulation at 300K using a Berendsen
thermostat of the dipeptide in vacuum, samples the low energy regions of C5
and C7 in the Ramachandran plane, see Fig 3(E). As these regions are sepa-
rated by a barrier of approx. 9 kJ/mol one would expect a metastable behavior
at a reasonable timescale. To confirm this assumption, we use HmmSde to
extract a Viterbi path, assuming 4 (hidden) states, for each of the Ramachan-
dran angles Φ, Ψ . Superposition of these two Viterbi paths yields a Viterbi
path with 11 states. As the number of hidden states is only determined by
our initial guess, we use the transfer operator approach to further reduce the
number of states. Setting up the stochastic transition matrix P with time lag
τ = 0.1ps, and computing the first five eigenvalues:

σ(P ) = {1, 0.9948, 0.9296, 0.8152, 0.6540 . . .},

indicates 3 metastable sets. Using the information coded in the three dom-
inant eigenvectors we aggregate the 11 states to 3 states. In Fig. 3 (E) the
assignment of the data points to these metastable (hidden) states is shown,
the plot reveals, that we identified the (symmetric) C7 conformations and the
C5 conformation. Transition probabilities between these hidden states can
be obtained by using Eq. 1, Fig. 3 (D). Thus we have obtained a detailed
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Fig. 3. A) A sample of the two dimensional torsion angle time series extracted from
a 300K MD-simulation. The data points are colored according to the allocation to
hidden states by HMM-SDE. B) Superposition of the two Viterbi paths yields into
a joint Viterbi path with 11 hidden states. C) Using the transfer operator approach
lumps the 11 hidden states to 3 metastable hidden states. D) A transition network for
the 3 hidden states with a time lag of τ = 0.1ps, red numbers denote the conditional
transition probabilities, numbers in brackets the weight of each state. E) The data
points of the torsion angle time series in the Ramachandran plane colored according
to their allocation to metastable states.

dynamical picture of the effective finite temperature dynamics of GLDA in
vacuum.

4.2 GLDA in aqueous solution

To compare these results with the dynamics in solution phase we consider
GLDA in a (3.5nm)3 box filled with 1405 rigid water molecules. Using a cutoff
for electrostatic interactions of 1.1 nm and a Berendsen-temperature coupling
to the solvent of 300K, we performed an MD-simulation over 2.5 ns with
an integration timestep of 2 fs using again the Gromos 53a6 force field and
recording the atom positions every 20 fs. After discretizing the Ramachandran
plane in 5◦ × 5◦ boxes, the free energy for each box Bi can be calculated
by [27, 28]

∆G(Bi) = −kBT (log(
�

[Bi]) − log(max
i

�
[Bi])).
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This free energy surface, see Fig. 4, has, due to intermolecular interactions
(water-GLDA), a considerably richer structure than the potential energy sur-
face in gas phase, Fig. 2. Analyzing the torsion angle time series with the
HmmSde approach, assuming 24 metastable sets, perfectly distinguishes re-
gions belonging to different local minima in the free energy surface, Fig. 4.
As these local minima are separated by low energy barriers, compared with
thermally available energies, it is not a priori clear that they correspond to
metastable states on timescales of e.g. 1 ps. An instructive picture is obtained
by setting up the transition matrix, based on the 24 states of the obtained
Viterbi path, and plotting the eigenvalues against the time lag used, Fig. 5.
It can be clearly seen that 4 metastable states are persistent even for larger
time lags, as there is an obvious gap after the first 4 eigenvalues.

Fig. 4. Left: The free energy surface obtained from MD-Simulation with water
has a considerably richer structure than the potential energy surface in vacuum.
Right: Coloring the data points according to state allocation obtained by HmmSde

perfectly distinguishes the local minima in the free energy surface (for 24 metastable
sets assumed).

The cause of the metastable states can be revealed by taking the inter-
molecular interactions into account, These interactions are mainly due to H-
bond bridges between the peptide groups (–CO–NH–) and neighboring water
molecules. Each peptide group provides a donor pair (NH) and an acceptor
(O) for H-bond bridges attracting solvent molecules. If we restrict to mi-
crosolvation structures, i.e. GLDA with 1 or 2 waters, it is clear that ring
like structures, as shown in Fig. 6, are energetically favorable, as each water
molecule can participate in two H-bond bridges [29]. Besides the possible ex-
tension of the C7 and C5 structure to C7+2 (atoms), C7+2+2, C5+2 and
C5+2+2 structures, H-bond bridges can stabilize structures that do not oc-
cur in vacuum, namely the C6 structures shown, where the –O O– and –H
H– repulsion is overcome by inserting water molecules to form a ring struc-
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Fig. 5. Left: Dependence of the eigenvalues of the transition matrix obtained from
the Viterbi path on different time lags. Middle: Data points are colored according to
a clustering of the Viterbi path in 4 metastable sets. Right: Data points exhibiting
a C6 microsolvation structure (magenta) and data points exhibiting a C7 or C5
microsolvation structure (cyan).

ture. In the following we denote by C7+X the C7+2+2 and C7+2 structures
collectively (with analogous meaning of C6+X and C5+X).

Fig. 6. Energetically favorable microsolvation structures with one or two water
molecules.

These microsolvation ring structures can also be identified in the fully
solvated system. Comparison of the plots in Fig. 5 reveals the nature of the
four metastable states. They correspond to regions where C7+X/C5+X or
C6+X ring structures occur.

The assumption that microsolvation structures causes metastability can be
further supported by redoing the analysis based on six metastable states, see
Fig. 7. Even though there are regions in the Ramachandran plane allowing dif-
ferent microsolvation structures, e.g. regions allowing C7+X or C5+X struc-
tures have an overlap, the plots of the data points belonging to a metastable
state and the plots of data points with certain microsolvation structures show
an obvious similarity. Again, this indicates that the origin of the metastable
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Fig. 7. Top: Data points belonging to different metastable states after clustering
in 6 states, two symmetric equivalent states are shown in one plot. Bottom: Data
points exhibiting C6+X (left), C7+X (middle) or C5+X (right) ring structures.

conformational structures is related to the formation of different microsolva-
tion environments of the solute molecule.

5 Conclusion

We demonstratated the ability of our HmmSde approach to reflect structural
properties of the complete simulated system by analysis of only two essential
degrees of freedom. The effective reduction of dimensionality achieved for the
GLDA example is due to the capability of HmmSde to distinguish different
dynamical behavior in time series. Although the system investigated here is
of moderate size, HmmSde appears to be a promising approach to beat the
curse of dimensionality in more complex systems. Currently conformational
analysis of DNA fragments containing 15 base pairs has been pursued in our
laboratory [17]. Hence, it is believed that this approach is much more general
and can be used beyond the context of MD-simulations. Possible applications
range, e.g., from transient spectroscopy to the analysis of climate or financial
data.
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Appl. Dyn. Syst., submitted (2005)
18. A.J. Viterbi, IEEE Trans. Informat. Theory IT-13, 260 (1967)
19. G.N. Ramachandran, V. Sasiskharan, Advan. Prot. Chem. 23, 283 (1968)
20. D. van der Spoel, E. Lindahl, B. Hess, G. Groenhof, A. Mark, H.J. Berendsen,

J. Chem. Phys. 26, 1701 (2005)
21. C. Oostenbrink, A. Villa, A.E. Mark, W.F.V. Gunsteren, J. Comp. Chem. 25,

1656 (2004)
22. J. Antony, B. Schmidt, C. Schütte, J. Chem. Phys. 122(1), 014309 (2005)
23. T. Head-Gordon, M. Head-Gordon, M.J. Frisch, C.L. Brooks III, J.A. Pople, J.

Am. Chem. Soc. 113(16), 5989 (1991)
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