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Abstract

Finding modules (or clusters) in large, complex networks is a challeng-
ing task, in particular if one is not interested in a full decomposition of
the whole network into modules. We consider modular networks that also
contain nodes that do not belong to one of modules but to several or to
none at all. A new method for analyzing such networks is presented. It
is based on spectral analysis of random walks on modular networks. In
contrast to other spectral clustering approaches, we use different transi-
tion rules of the random walk. This leads to much more prominent gaps
in the spectrum of the adapted random walk and allows for easy identifi-
cation of the network’s modular structure, and also identifying the nodes
belonging to these modules. We also give a characterization of that set of
nodes that do not belong to any module, which we call transition region.
Finally, by analyzing the transition region, we describe an algorithm that
identifies so called hub-nodes inside the transition region that are impor-
tant connections between modules or between a module and the rest of
the network. The resulting algorithms scale linearly with network size (if
the network connectivity is sparse) and thus can also be applied to very
large networks.

1 Introduction

Describing complex systems as abstract networks is a powerful tool. The de-
scription by means of a network reduces the system under consideration to
the information about its constituents or elementary parts, represented by the
nodes of the network, and the interaction between these parts, represented by
edges between the nodes. On the one hand this description is as sparse as it
can get, that is, it ignores all available additional information or properties of
the system. On the other hand, it is so abstract that it can be used all over
the sciences, the range spanning from protein interaction networks via traffic
or computer networks to social networks (Albert and Barabasi, 2002; Newman,
2003; Newman et al., 2006).

In many applications these networks can be huge such that even as abstrac-
tions they remain highly complex. Approaches to reducing the complexity of
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networks and to understanding their structure include characterization of net-
works in terms of simple statistics such as degree distributions (Jeong et al.,
2000), or decompositions of networks into loosely coupled sub-networks like in
clustering and module finding (Newman and Girvan, 2004). In the latter case,
networks are coarse-grained into modules where nodes belonging to one module
are highly interconnected, but have relatively few connections to nodes in other
modules. In the following, we will use the term “modules” instead of “clus-
ters” because we want to avoid confusion of the approach to be presented with
standard clustering approaches.

In recent years, an abundance of algorithms have been proposed to detect
modules in networks, see for example Porter et al. (2009); Santo (2010); Nasci-
mento and De Carvalho (2011) for reviews. These algorithms span a variety
of categories. Many are designed around optimizing the maximal modular-
ity measure, first proposed by Newman Newman and Girvan (2004), and its
variants (see, e.g. Reichardt and Bornholdt (2006); Newman et al. (2006)).
Others have been constructed based on various topological structures, such as
edge betweenness Girvan and Newman (2002). Another family of algorithms
are closer in spirit to what we propose, and are designed around the dynami-
cal properties of the network. This family includes algorithms such as Markov
Clustering (MCL Van Dongen (2000)), based on simulation of (stochastic) flow
in graphs, various spectral clustering methods that utilize the eigenvectors of
the graph Laplacian or transition matrix, (see for example Luxburg (2007) for
an overview), and many others. Furthermore, there is the vigorously researched
area of Machine Learning and statistical inference algorithms, see (Santo, 2010)
for an extensive review.

Almost all of these approaches consider partitioning the network completely
into modules, that is, every node is assigned to exactly one module. During
the last five years there has been growing interest in developing alternative
approaches for the case of module identification where overlaps between modules
are allowed. Algorithms such as k-clique percolation Palla et al. (2005), or
the extension of modularity score for overlaps Nicosia et al. (2008) are notable
examples of this trend.

In contrast to such standard module-finding approaches, we will not con-
sider complete or overlapping partitions of the network. Instead we suggest to
consider modules as groups of densely connected nodes that do not partition
the network completely and do not overlap so that there remain nodes that are
not assigned to any module at all. We call the set of these nodes the transition
or interconnection region.

The distinction between complete and non-complete partition is illustrated
in Fig. 1 for an example network with modular structures connected by nodes
that do not seem to belong to a module. While the MCL algorithm (as an
example for the standard approaches) fully partitions the network into modules
and assigns every node to exactly one of these modules (Fig. 1(a)), the new
approach to be presented herein finds modular structures and an additional
extended interconnection region which connects the modules (Fig. 1(b)). In
order to understand its structure in more detail, we will introduce an algorithm
which allows for identifying the nodes in the interconnection region that are
most important for the connection between modules: the hubs of the network
(see section 3.4).

The new approach to be presented exploits recent results on random walks
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(a) Result of MCL algorithm (b) Result of our new algorithm

Figure 1: Simple example network. Colors indicate modules found by (a)
the MCL algorithm (complete partition, left) and (b) our new approach (non-
complete partition, right); nodes belonging to the interconnection regions are
shown in gray.

on modular networks. It considers modules as metastable sets of the random
walk and identifies these metastable sets via its spectral properties. These ideas
are not new: In the last decades methods based of random walks have been
well-established for structural analyses of networks, as it can fully account for
local as well as global topological structure of the network (Garrido and Marro,
2002; Noh and Rieger, 2004) and is very useful for finding central nodes which
can be used to identify hubs (Aldous and Fill, 2002; Lovasz, 1993; Noh and
Rieger, 2004; Rosvall and Bergstrom, 2008). There is rich literature addressing
different variants of the problems of identifying dominant metastable sets of
Markov processes (Meila and Shi, 2001; Doyle and Snell, 2000; Meerbach et al.,
2005; Mattingly, 1995; Cho and Meyer, 1999; Meyer, 1989; Marek and Mayer,
2001; Deuflhard and Weber, 2005) and similar related dynamics-based concepts
on discrete structures Lafon and Lee (2006); Schulman and Gaveau (2005) and
for set-oriented numerics for dynamical systems Dellnitz et al. (2000); Dellnitz
and Preis (2003). However, almost all of these techniques aim at complete
partitions, see the review in (Li et al., 2008).

However, our new approach differs from these approaches not only with
respect to the non-completeness of the partition: We also introduce a new form
of the random walk that removes problems with artificial metastable structures
that hamper previous spectral approaches. Fig. 2(a) illustrates the advantage
of the new random walk that is adapted to the module finding problem: The
standard random walk exhibits no clear spectral gap since some loops and long
arcs are metastable sets in their own right. In contrast the new random walk
exhibits a clear spectral gap after the first two eigenvalues because its definition
strongly relates metastability to dense connectivity.

In the new approach the assignment function that assigns nodes to modules
takes the form of a probability that is essentially dynamics-based: The assign-
ment probability of a given node x to a certain module M is the probability that
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(a) (b)

Figure 2: Example network (a) with two densely connected modules (colored
green and blue) and the associated eigenvalue spectrum (b) (blue circles: stan-
dard random walker, red crosses: adapted random walker).

the random walker, if started in x, enters M first before it reaches any other
module. Thus, it takes values 0 and 1 for nodes that are members of modules
and values between 0 and 1 for all nodes that are not members of any module.
Such an assignment function is called soft in contrast to hard assignment func-
tions where every node is assigned to exactly one module with probability one.
Soft assignment functions do also appear naturally in methods based on statis-
tical interference but without relation to dynamical properties of the network
and without being used for non-complete partitions, cf. (Santo, 2010). Very
few other dynamics-based soft assignments for non-complete partitions have
recently been discussed in the literature (Deuflhard and Weber, 2005; Sarich
et al., 2010; Li et al., 2009). They are all based on spectral decomposition ideas
but suffer from essential drawbacks resulting from artificial metastable sets and
form inefficiency in application to very large networks. We will show that our
new algorithm does not suffer from this problem.

The outline of the article is as follows: section 2 will introduce the necessary
theory and explain the concepts needed in the remaining of the paper. In section
3 we describe our new methods in detail, before we demonstrate the method on
a “real world” example network in section 4.

2 Theoretical background

2.1 Random walks on networks

Throughout the article, we will consider the graph G = (V,E) associated with
a network, where V is the set of nodes and E the set of edges of the graph. We
denote the adjacency matrix of the graph by (a(x, y))x,y∈V and the degree of a
node x by d(x). We further assume that the graph is connected and undirected,
that is, the adjacency matrix is symmetric.

The goal is to understand structural properties of the graph from the dy-
namics on the network. Therefore, we introduce a family of time-continuous
random walks, that is, time-continuous Markov jump processes Xt on the finite
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state space V , by defining their transition rules as a family of rate matrices

L(x, y) =


− 1

d(x)p , x = y

k(x,y)
k(x)d(x)p , x 6= y, (x, y) ∈ E

0, else

(1)

with a scalar p ≥ 1, non-negative weights k(x, y) such that k(x, y) = 0 if (x, y) /∈
E and k(x, y) = k(y, x), and k(x) =

∑
y k(x, y). The interpretation of the rates

is as follows: if being in node x, the expected waiting time till the next jump
away from x is inversely proportional to |L(x, x)|, and L(x, y)/|L(x, x)| is the
probability that this jump leads to y. Therefore, the expected waiting time in a
node is proportional to its degree d(x), that is, the more neighbors a node has,
the longer it takes the random walker to decide where to go next on average.
One can directly compute that a Markov jump process with a rate matrix of
this form has the unique invariant measure

µ(x) =
1

Z
d(x)pk(x) (2)

and is always reversible, so it holds µ(x)L(x, y) = µ(y)L(y, x). From the rate
matrix (1) one can also directly compute the transition matrices of the random
walk by Pt = exp(tL). Its entries P (t, x, y) denote the transition probability
from node x to node y in time t.

To illustrate the properties of this family of random walks introduced above,
let us consider two special cases.

(C1) In the simplest case we have

k(x, y) = a(x, y), p = 1 ⇒ k(x) = d(x), (3)

such that the process jumps to one of the neighbors without preference
for one of them.

(C2) A more elaborated choice of the weights is (p = 1)

k(x, y) = a(x, y) ·
(
1 + 〈ax, ay〉

)
, (4)

where az is the zth row of the adjacency matrix and 〈·, ·〉 is the usual
Euclidean scalar product. Here, whether a jump away from x leads to y
depends on the similarity of the neighborhood of the nodes. This can be
seen better when using the often-used clustering coefficient for a node x,
defined by

c(x) =
∑

y,z∈V

a(x, y)a(x, z)a(y, z)/d(x)(d(x)− 1),

and measures the connectedness of the neighborhood of x via the ratio
of the number of edges between neighbors of node x and the maximum
possible number of such edges. By choice (4), it enters the invariant
measure of our random walk,

µ(x) =
1

Z
d(x)2

(
1 + (d(x)− 1) · c(x)

)
, (5)
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showing that the nodes with high degree and high clustering coefficient
become very attractive.

For the sake of simplicity, we will assume in the following that the graph is
unweighted. If we had weights w(x, y) assigned to edges (x, y) ∈ E, we could
simply choose k(x, y) = w(x, y).

Remark 1 Usually, in network clustering one does not consider time-continuous
random walks as above but a Markov chain with one-step transition matrix di-
rectly given by the adjacency structure,

P (x, y) =
a(x, y)

d(x)
. (6)

Note that it is exactly the embedded Markov chain of the time-continuous ran-
dom walk (3). As already outlined in the introduction we will not use this
standard random walk since the process defined by L has crucial advantages in
comparison to the Markov chain associated with P ; these advantages will be
explained in detail in the next sections.

However, the standard discrete-time setting could still be kept by considering
the one-step transition matrix Pt = exp(tL) associated with L for a certain
preselected time t instead of P from (6). This also is no option because of the
following reason: Pt in general is not sparse even if L is a sparse matrix (what
it normally is for modular networks). As we will see later the sparsity of L is
essential for getting algorithms that scale linearly with network size.

2.2 Modules and metastability

We are aiming at finding modules in our network. Assume we have m modules;
these then are disjoint subsets Ci ⊂ V , i = 1, . . . ,m, of the set of all nodes, V .
The union of all modules form the set M = ∪iCi. We want a fuzzy partition
of the network, that is, we assume that M does not contain all nodes of the
network, meaning, there is a non-empty set T = V \M, which we call transition
region.

When considering the relation of a specific module, say Ci, to the others,
we will need the set Mi = M \ Ci, the union of all modules except Ci. Our
key idea is that the modules are metastable sets of the random walk, that is, on
the one hand they are attractive for the random walk while, on the other hand,
they are well separated in the sense that communication between them is rare.

In order to make this more precise we will now introduce the notion of
metastable sets of the random walk. In a rough sense, the random walk has
metastable sets, Ci ⊂ V , i = 1, . . . ,m, if it exhibits a specific relation between
two timescales: the typical return time R the random walk needs to enter one of
the Ci, if started outside of any module, is small compared to its typical waiting
time W between transitions from one of the Ci to another one. In order to
quantify these timescales we first denote by τ(A) the random time the process
Xt needs to enter a set A. Then Ey(τ(M)) denotes the expected entry time of
the process into an arbitrary one of the Ci, if started in some node y ∈ T in the
transition region T = V \M. Likewise Ei(τ(Mi)) denotes the expected entry
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time into one of the Cj with j 6= i, if started from the invariant measure µ in
Ci. The random walk is metastable with regards to the sets Ci, i = 1, . . . ,m, if

R = max
y 6∈M

Ey(τ(M)) � min
i=1,...,m

Ei(τ(Mi)) = W,

or, equivalently, if the relation of return and waiting time is small, R/W � 1.
This still is a rough definition since there may be many different collections of
disjoint sets Ci such that R/W is small. Below we will outline how to find
optimal metastable sets that then define the modules of the network. That is,
modules are optimal metastable sets of the random walk.

However, the reader should be aware that we cannot simply define the opti-
mal modules via the property of minimizingR/W since every full decomposition,
that is, every choice with T = ∅, leads to R = 0. Therefore we must look deeper.

2.3 Why time-continuous random walks?

Since our random walk is reversible, all eigenvalues Λ of the rate matrix L
and λ of the associate transition matrix Pt are real with Λ0 = 0 respectively
λ0 = 1 being the largest ones, and λ = exp(tΛ) in general. It is well-known
that there is a direct relation between the existence of metastable sets and the
largest eigenvalues of the transition matrix Pt of the random walk (Schuette and
Huisinga, 2003; Huisinga and Schmidt, 2006; Djurdjevac et al., 2010a; Sarich and
Schuette, 2011). For example, in the case of just two metastable modules, there
is exactly one other eigenvalue λ1 = exp(tΛ1) of Pt close to λ0 = 1 such that
E1(τ(M1)) is approximately given by 1/|Λ1|, while all other eigenvalues of Pt

are significantly further away from 0. Whenever there is a gap after the leading
m eigenvalues λ0, . . . , λm−1 close to one we will find m metastable sets, and the
longest relaxation timescales of the random walk, ti = 1/|Λi|, are encoded by
the leading eigenvalues Λ0, . . . ,Λm−1. Therefore, spectral clustering methods
usually search for a spectral gap appearing after several eigenvalues which are
close to one; their numbers then give the number of metastable sets. Our key
idea is to exploit these groups of nodes which are strongly interconnected, but
have only few connections to the rest of the network. These are candidates
for forming modules and are metastable in the sense of the random walk as
described above. The problem is that for the standard random walk (6) many
other structures of nodes in a network also can cause metastability, for example
large cyclic structures or long pathways connecting strongly connected groups.
In the following, we use the network that was introduced in Figure 1 as an
example. Figure 3 shows a different visualization and the spectra of the standard
and the time-continuous random walk.

Obviously, the spectrum of the standard transition matrix (6) does not offer
a clear gap to give an idea about the number of modules being present. In
contrast, the time-continuous random walk shows a small gap after 7 and a
strong gap after 8 eigenvalues. The benefit of the introduction of the waiting
times proportional to the degree of the nodes (1) is that the process becomes
faster in simple regions, which are loosely connected, and slows down in more
complicated, interconnected structures. As it is observed in Figure 3, this leads
to a better coherence of connectivity, the idea of modules, and metastability.

7



2 4 6 8 10 12 14
0.7

0.75

0.8

0.85

0.9

0.95

1

Figure 3: Example network and first 13 eigenvalues λ of standard random walk
(red circles) and time-continuous random walk (blue crosses).

2.4 Fuzzy decomposition

When looking into the relevant literature, most articles are concerned with
complete partitioning of networks, that is, hard clusterings in which the modules
form a complete partition of the network. As outlined, we are not aiming
at such complete partitions because in many relevant cases there are nodes
which cannot be reasonably assigned to a particular module, but rather have
an affiliation to several modules. For this purpose, it is necessary to consider
a fuzzy decomposition of the network. That is, for every node x that does not
belong to any module we specify its affiliation fi(x) ∈ [0, 1] to module i such
that

∑
i

fi(x) = 1.

If we assume for a moment that we have already identified the modules Ci,
there is a natural way to define this affiliation by learning from the random walk.
To do this, we simply start the random walk in node x and see which module it
will enter next. Then, we set the affiliation fi(x) to be the probability that the
next module to be entered is Ci. There are two advantages to this approach.
First, one can compute these affiliation functions, which are also known as
committor functions, very efficiently by solving sparse, symmetric and positive
definite linear systems. For sets C1, ..., Cn it is shown for example in (Metzner
et al., 2009) that the committor fi solves the linear system

(Lfi)(x) = 0 ∀x ∈ T

fi(x) = 1 ∀x ∈ Ci

fi(x) = 0 ∀x ∈ Cj , j 6= i.

(7)

By inserting the constraints into the linear equation and rewriting, one gets an
equivalent linear equation of the form

L̂f̂i = −gi (8)

where
L̂ = (L̂(x, y))x,y∈T , f̂i = (f̂i(x))x∈T L̂(x, y) = L(x, y).

and
gi = (gi(x))x∈T gi(x) =

∑
z∈Ci

L(z, x).
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Then, fi is given by the constraints on the modules and by f̂i on the transition
region. Moreover, by multiplying (8) with Dµ̂ = diag(µ̂), µ̂(x) = µ(x), x ∈ T
from the left, one obtains a sparse, symmetric and positive definite formulation
because of the reversibility.

Second, this fuzzy decomposition can be well interpreted in the sense of
a coarse graining of our random walk by Markov State Modeling (Djurdjevac
et al., 2011; Schuette et al., 2011; Djurdjevac et al., 2010a;b; Deuflhard et al.,
2000).

3 Methods

According to our considerations above the key idea of our approach is: Identify
modules as optimal metastable sets and determine the fuzzy decomposition of
the transition region T via committor functions.

3.1 Identification of modules

In order to approach the question of how to identify modules, let us first assume
(in contrast to what we want to achieve) that the modules Ci, i = 1, . . . ,m, form
a full partition of the network. Furthermore, let us fix a timescale t and consider
the transition matrix P = Pt of our random walkXt. Then the partition induces
a coarse grained random walk on state space {1, . . . ,m} that jumps from module
to module with transition probability P̂ (i, j) = Probµ(Xt ∈ Cj |X0 ∈ Ci) where
the index µ refers to the fact that we start in Ci distributed due to the invariant
measure. As it is well-known (Schuette et al., 2011; Djurdjevac et al., 2010a;b;
Sarich, 2011) the matrix P̂ can be written in the form P̂ = QPQ, where Q is the
orthogonal projection onto the finite-dimensional space D of all step-functions
that are constant on the sets Ci.

Now assume that we do not have a full partition but just the candidate
modules Ci, i = 1, . . . ,m and m associated non-negative affiliation functions
fi with

∑
i fi(x) = 1 for all nodes x. Assuming that the fi are the committor

functions, we still find a coarse grained random walk that jumps between the
modules but now takes the dynamics on the transition region T into account
correctly (Sarich, 2011). It again has an m × m projected transition matrix
P̂ = QPQ, where now Q is the orthogonal projection onto the space spanned
by the affiliation/committor functions.

Now we want to find sets C1, . . . , Cm such that the longest relaxation timescales
of our random walk, being encoded by m dominant eigenvalues λ0, ..., λm−1 of
P , are optimally reproduced by the timescales of the coarse grained random
walk, encoded by the eigenvalues λ̂0, ..., λm−1 of P̂ . According to (Djurdjevac
et al., 2010b;a) one can write

max
i=0,...,m−1

|λi − λ̂i| ≤ λ1(m− 1) max
i=0,...,m−1

δ2i (9)

where ui is the normalized eigenvector of P with respect to λi and

δi = ‖ui −Qui‖ (10)

is the associated projection error. That means that the dominant eigenvalues
of P are well approximated by the eigenvalues of the projected matrix P̂ if the
projection error of the corresponding eigenvectors is small enough.
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Remark 2 Even if we have a full partition, that is, fi(x) ∈ {0, 1}, the last
statement still applies: The subspace D consists of step-functions that are con-
stant on the sets Ci and δi measures how much the eigenvectors are varying
within each set Ci. Many spectral clustering methods like PCCA (Deuflhard
and Weber, 2005) exploit this connection to identify the optimal clustering,
which minimizes this projection error. This will result in a complete metastable
partitioning of the network (Deuflhard et al., 2000).

Let us return to the fuzzy affiliation functions fi given by the committors. In
(Sarich and Schuette, 2011) it is shown that for any eigenvalue λi of T and the
corresponding, normalized eigenvector ui it holds

δi ≤ p(ui) + 2µ(T )pmax(ui) + r(T )(1− λi)

(∑
x∈T

ui(x)
2µ(x)

) 1
2

(11)

with

r(T ) = sup
‖v‖=1,

v=0 on M

 1∑
x∈T

(v(x)− (Pv)(x))2µ(x)

1/2

p(ui) = ‖ei‖ pmax(ui) = ‖ei‖∞

ei(x) =

0, if x ∈ T,
1

µ(Cj)

∑
y∈Cj

ui(x)− ui(y)µ(y), if x ∈ Cj .

(12)

From this inequality we can deduce that modules should satisfy two things in
order to ensure small projection errors ‖Q⊥ui‖ for the dominant eigenvectors,
and hence be a good approximation of the largest eigenvalues (3.1), which corre-
spond to metastability of the random walk. First, from the transition region T
the random walker should always enter some module quickly enough such that
r(T )(1−λi) is small enough. More precisely, the more eigenvalues of P we want
to approximate, the faster the transition region T has to be left. Second, the
dominant eigenvectors should be almost constant on the modules to guarantee
small values of p(ui) and pmax(ui). It will be particularly useful that the error
bound decomposes into these two parts. The factor r(T )(1− λi) takes only the
transition region T into account and the errors p(ui) and pmax(ui) depend only
on the partitioning of M = V \ T into the modules.

3.2 Algorithm

The standard approach for the identification of modules as the most metastable
sets (see Section 2.2) would be to compute a fuzzy decomposition of the network
and to define the module Ci to contain all nodes x, for which fi(x) ≥ θ for some
threshold θ ∈ [0, 1], that is,

Ci = {x ∈ V : fi(x) ≥ θ}. (13)

The problem is that the computation of fuzzy decompositions, e.g. (Deuflhard
and Weber, 2005; Sarich et al., 2010), is usually very costly for large networks.
We will now follow the ideas derived above and compute the modules and the
fuzzy decomposition in three separate steps:
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1. Identify the transition region T , which will not be assigned to any module.

2. Split the remaining nodes of the network into modules C1, ..., Cm.

3. Compute the fuzzy decomposition as the committors with respect to the
modules.

There are several strong advantages of identifying the transition region T first.
We will see that it allows to transform the fuzzy clustering problem for the whole
network into a hard clustering problem, that is, a full partition with respect to
the nodes belonging to M only. This means, the number of nodes we have to
cluster will decrease, often dramatically. Moreover, the resulting cluster problem
will be easier and more robust to solve because it becomes hard (as opposed to
fuzzy or soft) and we erased those nodes, which might be problematic to cluster
because of affiliation to several modules. We will show now that every step can
be computed very efficiently.

Step 1 We want to ensure a small factor r(T )(1−λi) in the error bound (11)
for the dominant eigenvalues, which just depends on the transition region T .
If we fix a specific choice of T , and let an ensemble of infinitely many random
walkers start only in this region T , r(T ) measures how many of the random
walkers will leave the transition region. That is, the higher the probability is
that the random walker will leave T quickly, the smaller the factor r(T ) will be.
Next, this factor is compared to (1 − λi) for the dominant eigenvalues. This
yields the following interdependency: For eigenvalues close to one, (1− λi) will
be rather small, which gives us more flexibility with r(T ), that is, it can take
the random walker more time to leave the transition region T . Remember that
the closer to one the eigenvalues are, the stronger they indicate the presence of
metastability in the system. So, if we also want to consider modules, which are
less metastable, we will have to approximate eigenvalues, which are less close to
one and therefore, the region T has to be left more quickly.

Now, algorithmically this leads to the following idea: We take the invariant
measure µ∗ of the random walker using a rate matrix as defined in (1) and
parameter p = 0. That is, we turn off the effect of waiting times, which made
the modules in the network more metastable. Then, we consider the random
walk for p = 1 and choose a lag time α > 0, at which we want the random walker
to leave the transition region. As explained above, we will choose a rather large
α if we are interested in finding only the most metastable set of modules, and
decrease α if we also want to identify modules with less metastability. Then,
we choose

Mα = {x ∈ V |(PT
α µ∗)(x) > µ∗(x)} (14)

to be the set containing the modules with respect to the metastability parameter
α. Connecting to the ensemble point of view from above, this set (14) is exactly
the region, which rather attracted random walkers in the ensemble than let
random walkers leave within the time step α.

Step 2 Having identified the set Mα we now have to find a full partition into
the final modules. For this purpose, we consider the random walk only on the
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nodes belonging to Mα with transition matrix

P̂α(x, y) =
∑
z∈V

P (x, z)qy(z), x, y ∈ Mα, (15)

where qy(z) is the probability that y will be the next node from Mα that is hit
by the random walk starting in z, i.e., it can be computed from a linear equation
like (7) with Ci = {y} and Cj = ∅ for all other j. That is, P̂α(x, y) describes the
transition probabilities between the nodes of Mα, ignoring the waiting times
and the transition region. Then, we use a hard spectral clustering method to
split M into the modules C1, ..., Cm. Note that P̂α describes the dynamics only
between the nodes of modules. The absence of nodes with affiliation to several
modules makes the spectrum of P̂α usually very amenable for interpretation.

Step 3 We compute the committors with respect to the modules C1, ..., Cm to
get a fuzzy clustering of the remaining nodes. As mentioned above, committors
can be computed by solving positive definite, symmetric linear systems which
will be as sparse as the adjacency matrix. Such computations can be performed
efficiently, even for large systems.

Algorithm summary.
1. Input: α > 0, matrix A
Compute L according to (1), e.g. p = 1.
Solve

d

dt
vt = LT vt, v0 = µ∗

until t = α, so vα = eL
Tαµ∗. Set

Mα = {x ∈ V |vα(x) > µ∗(x)}.

2. Compute committors qy(z), y ∈ Mα, z ∈ T with respect to the
single nodes of Mα and for x, y ∈ Mα

P̂α(x, y) =
∑
z∈V

P (x, z)qy(z).

Choose number of modules n according to the spectrum of P̂α and
use hard clustering method, e.g. (Deuflhard et al., 2000).

3. Compute committors fi(x) for every x ∈ T with respect to the
modules C1, ..., Cm.

Computational effort In the following, the number of nodes in the network
is denoted by n, and the number of nodes belonging to the set Mα is denoted
by m.
Step 1: For example in (Al-Mohy and Higham, 2010) it is shown that the com-
putational effort is dominated by matrix multiplications. For a large, sparse
matrix L this effort is O(n).
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Step 2: First, we have to solve a symmetric, positive definite linear system (8)
for m right hand sides. Since the matrix L̂ is large and sparse, conjugate gradi-
ent methods allow to compute the solution in O(mn) point operations. Then,
we have to compute a hard clustering with respect to the coarse grained random
walk with m ×m transition matrix P̂α For this task, a lot of algorithms exist,
for example, (Deuflhard et al., 2000; Li et al., 2008). The fastest combinatorial
methods perform in O(m2 logm).
Step 3: Again, we have to solve linear systems of the form (8) as in step 2 with
the same matrix L̂, but for even less right hand sides.
Whole algorithm: This shows that the overall effort is dominated by step 2,
where we have to compute a hard clustering for the m nodes belonging to Mα.
The total effort scales like O(m2 logm)+O(mn). If m � n, that is, if the num-
ber of nodes in modules is much smaller than the number of nodes not assigned
to modules, then the effort scales linearly with the total number of nodes. In
general, our algorithmic strategy reduces the computational effort to calculate
a fuzzy decomposition of a network with n nodes to the effort of computing a
hard clustering for m nodes.

To substantiate these theoretical considerations we applied our method to
several generated test networks. All these networks have the same structural
concept in common. Between the n nodes of the network, edges are generated
randomly with the intention that 4 modules in the sense above should form,
each of them containing s nodes. Here, n and s are input parameters. Then,
the network is constructed such that for a node in an intended module the
average number of edges to other nodes within the same module is 9 and the
average number of connections to other nodes is 2. The average degree of a
node that should not belong to any module is approximately 3 and there is no
preference with respect to neighbours. In Fig. 4, such a network is shown with
n = 500 nodes and s = 50 nodes per module including the modules found by our
algorithm. For each generated network the spectrum of the matrix P̂α clearly
indicated the presence of the 4 modules.

According to this blueprint we generated networks with respect to all com-
binations between the total network sizes 500, 1000, 1500, 2000, 2500 and single
module sizes 40, 50, 60, 70, 80. In Fig. 5, the computation time in seconds that
was needed to perform the whole module identification on a desktop computer
is plotted over the total network size for several choices of module sizes. As
expected, each of the curves follows a linear trend while larger modules lead to
a higher computational effort.

Choice of timescale α As discussed, different choices for the parameter α
may lead to different clustering results. From the definition of the set Mα it is
clear that there exist two values α∞ > α0 such that the set Mα does not change
for α > α∞ and for α < α0, respectively. So we have two limiting parameter
values of α, which give only the most dominant modules or resolve also the
less pronounced modular structures. Since α is connected to the timescale at
which the random walk leaves the transition region, it is possible to get an idea
about reasonable values for α from the spectrum of the generator L. That is,
if the dominant eigenvalues of L are denoted by 0 = Λ0 > Λ1 ≥ Λ2 ≥ ... the
implied timescales of the random walk, which are given by 1/|Λ1| ≥ 1/|Λ2| ≥ . . .,
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Figure 4: Test network with n = 500 nodes and s = 50 nodes per module and
the modules found by our algorithm.

1000 1500 2000 2500
number of nodes

 

40 nodes per module

50 nodes per module

60 nodes per module

70 nodes per module

80 nodes per module

Figure 5: Computation time in seconds over network size for different module
sizes.

provide estimates for possible choices of α. If there is a cluster of eigenvalues
0 = Λ0 > Λ1 ≥ . . . ≥ Λk around 0 separated by a spectral gap from all smaller
eigenvalues, then a good choice of α would be 1/|Λk| > α > 1/|Λk+1|. Several
spectral gaps therefore would give us a list of proposals for good values of α.
As a general rule, the number m of nodes in the modules will increase with
decreasing α. Since the last paragraph on the computational effort has shown
that small m is computationally advantageous, we should start with the largest
α from our proposal list.

14



3 5 7 9 11 13

−3

Figure 6: 13 largest eigenvalues of the generator L for the example network.

3.3 Multilevel structure

We will now illustrate the properties of our method using the example network
shown in Figure 3. We start with the first step of our method, that is, the
identification of the transition region T and Mα. Therefore, we have to choose
a metastability parameter α. To demonstrate the effect of this choice, we will
consider two different metastability levels α = 1000, and α = 150. These values
have been selected because the spectrum exhibits gaps after the eighth and after
the ninth eigenvalue with 1/|Λ8| = 1254, 1/|Λ9| = 254, and 1/|Λ10| = 104.

In Figure 7, we see the spectrum of P̂α the corresponding random walk
restricted to the nodes of modules as in (15).

The spectra offer clear gaps: for α = 1000 after 8 eigenvalues, and for α =
150 we find two additional eigenvalues indicating less pronounced metastability.
Figure 8 shows why this is happening and is a good example for the multilevel
structure that is detected by our method.

The upper two illustrations of the network show in black the nodes, which
have been marked by our algorithm to belong to Mα. For a rather large
α ≥ 1000 this set only contains the most metastable parts of the network.
When decreasing α to 150, we know that the region T has to be left even faster
by the random walk. Therefore, sets of nodes referring to the next less pro-
nounced metastability are added to Mα. In the second step of our method we
derive a partition of these nodes into the final modules C1, ..., Cn by hard clus-
tering with respect to the associated P̂α. Note that having erased the transition
region the spectrum of the random walk clearly indicate the number of modules
corresponding to the chosen level of metastability. Nevertheless, we could also
vary the number of modules we want to split the region Mα into. As it is
also shown in Fig. 8 this leads to another form of hierarchy which we can ana-
lyze with our method. This means, we can choose to find new less pronounced
modules by decreasing α or splitting existing modules hierarchically into several
modules by increasing the cluster number in the second hard clustering step of
the algorithm.
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Figure 7: Top: Spectrum of P̂α for α = 1000. Bottom: Spectrum for α = 150.

3.4 Identification of hubs

After we have determined the modules we will now look at the transition be-
havior of the network, using the framework of Transition Path Theory (TPT)
(E. and Vanden-Eijnden, 2010) and (Metzner et al., 2009). More specifically, we
will show how to identify hubs, nodes that are essential for the communication
between the modules. We will present two different concepts for declaring a
node to be a hub, developed in (Djurdjevac et al., 2011).

We start by observing transitions from a module Ci to the union of all other
modules Mi = M \ Ci, taking into account only these parts of trajectories
(realizations of the random walk), where the random walker transits directly
from Ci to Mi. That is, for the n

th transition we consider the sequence of states

Pn = [xCi
n , x1

n, . . . , x
k
n, x

Mi
n ], (16)

called the nth reactive trajectory, where xCi
n ∈ Ci, xi

n ∈ T, xMi
n ∈ Mi.

The union of all such trajectories is called the set of reactive trajectories.
Statistical properties of these trajectories will provide us about the global, as
well as local transition behavior of the system. We define the discrete probability
current as

fCiMi
xy =

{
µ(x) fi(x)L(x, y) (1− fi(y)), if x 6= y
0, otherwise,

(17)

where L(x, y) are the entries of the generator defined using (3). This is the
average flow of reactive trajectories when going from state x to y, per time
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10 modules

Figure 8: Multilevel structure of modules.

unit. To calculate the net amount of probability current between two states, we
introduce the effective current f+

xy:

f+
xy = max (fCiMi

xy − fCiMi
yx , 0). (18)

We can now describe the global transition behavior from Ci to Mi, using the
transition rate kCiMi =

∑
x∈Ci,y∈V f+

xy, that is the average number of transitions
from Ci to Mi per time unit. For calculating the number of these transitions
that are passing through a single node y, let us consider the reactive flow through
y

ky =
∑
x∈Py

f+
xy =

∑
x∈Sy

f+
yx, (19)

where Py = {x ∈ V : f+
xy > 0}, Sy = {x ∈ V : f+

yx > 0}. Now, for
every y ∈ T , we can calculate the importance rate of reactive trajectories that
go through y by

pCiMi
y =

ky
kCiMi

. (20)

In this sense, a hub is a node which has a high importance rate, meaning that
most of the communication goes through this node.

The second approach is to distinguish between the transition paths in the
network and define a measure of how important they are for the global com-
munication. Notice that every single transition from module Ci to M\ Ci can
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be characterized by the path the random walker takes from Ci to M\ Ci. To
do this, let us assign to every edge of this path the effective current, meaning,
the net average number of reactive trajectories per time unit that make transi-
tions through this edge when going from one set to another. The edge with the
minimal effective current is called the dynamical bottleneck of the path, since it
limits the amount of flow that can be transported through this path. In prac-
tical applications, reaction paths that have the maximal minimal current are of
particular interest, since they can transport the most flow. These will be the
most important reaction paths. Therefore, those nodes that are taking part in
the most important transitions (in the above sense) in the network would be
hubs.

Example Let us now apply our method for identifying hubs on the example
network from Figure 3. As before, we set α = 1000 and θ = 0.85, where θ is used
as in (13). With these parameters the algorithm identifies eight modules that are
shown in Figure 9. We calculated the importance rates given by equation (20)
for all nodes that belong to the transition region. For the sake of simplicity,
we highlight only some of these nodes, namely the top 14 with the highest
importance rate. Out of these nodes we picked three nodes (A, B and C in
Figure 9) to illustrate different type of hub nodes. Node B is a node that
connects two modules with the rest of the network and therefore has a high
importance rate. Compared to this, node C has a higher importance rate, since
it is a node that connects four modules with the rest of the network. However,
node C is not crucial for the communication between these four modules and
therefore its importance rate is smaller than the one of nodeA. This is the reason
why node A has the highest rate of all the nodes, since this node connects four
of the modules with the rest of the network and moreover, A is also the only
node that connects these four modules among each other. Therefore, node A is
crucial for their communication.

4 Results

In this section we demonstrate our new method by analyzing a network of US
political books, which was introduced in (Newman, 2006) (see Figure 4). The
network contains 105 nodes, each representing a book about US politics sold by
the online retailer Amazon. If customers frequently buy book A and B together1

an edge will be inserted between nodes (books) A and B.
We apply our algorithm to this network to obtain modules and a transition

region. After performing step 1 (Section 3.2) for α = 100 we identify the
region of modules Mα, which is colored black in Figure 11. Setting aside the
transition region we can then compute eigenvalues of P̂α(x, y) on the nodes
of Mα. The largest eigenvalues are: 1.00, 0.97, 0.31, 0.25, 0.18. As we noted
previously (Section 3.2), the resulting spectrum is convenient to interpret: It is
easy to see that there is a clear gap after the first two eigenvalues, indicating
that clustering into two modules is the natural choice for this example. Next, we
perform hard clustering (step 2) to assign nodes to these two modules. Figure 11
shows the final modules computed in this step.

1According to Amazon’s “Customers who bought this book also bought...” feature
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Figure 9: This shows the 14 most important hubs in our example network
colored in orange and having their importance rates written next to them.

For this particular example, we can actually interpret the results. In (New-
man, 2006), the books have been classified according the author’s personal judg-
ment into three categories of political alignment: conservative, liberal, and neu-
tral. This manual, hard clustering is illustrated in Figure 12 together with the
modules.

Moreover, we can compute the committors (see step 3) to find the affiliation
of the remaining nodes to the modules. Figure 13 shows also two sets which
consist of all nodes that have a higher affiliation to one of the modules for two

19



Deriliction of 

Duty

Against all

Enemies

Deliver Us from Evil

Bush Country

The Price of Loyalty

Big Lies

Figure 10: The political books network. (Taken from (Newman, 2006))

Figure 11: Left: Black nodes have been identified by the algorithm to belong to
modules. Right: Clustering the nodes within modules using PCCA.

different thresholds.
Most books that have been classified by Newman as belonging to the conser-

vative or liberal group also have a rather high affiliation to one of the modules
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LIBERAL

CONSERVATIVE

Figure 12: Identified modules and the assignment of the books to three cate-
gories (conservative, liberal, and neutral without coloring) according to New-
man’s personal judgment as in (Newman, 2006).

LIBERAL

CONSERVATIVE

LIBERAL

CONSERVATIVE

Figure 13: Left: Nodes with affiliation higher than θ = 0.9. Right: Nodes with
affiliation higher than θ = 0.8

found by our algorithm. On the other hand, for most of the neutral books we
find an affiliation which is less specific. Moreover, if we generate a hard cluster-
ing by assigning every book to the module, which it has the highest affiliation
to, all liberal books end up in the same cluster, and only two books that have
been classified as conservative are merged into the liberal cluster.

Of course, one has to be careful with the interpretation. For example, one
cannot expect any clustering algorithm applied to this network to uncover the
hard assignment that was based on human judgment. In (Newman, 2006), much
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more background information was used to decide about the political alignment of
the books. Moreover, it is a hard assignment to the three categories conservative,
liberal and neutral, but as usual some books will have a stronger affiliation to
one class than others.

In contrast, the information the network is based on is very different. It
has only used the selling statistics of Amazon. That is, our algorithm found
that there are two strongly interconnected groups of books, namely the modules
above. By construction of the network this means that they have been purchased
frequently by the same customers. Now, one could formulate the hypothesis that
people having a particular political disposition would buy rather corresponding
books. The results above would support this idea, but it also shows that such
a simplification cannot hold for every single book. Therefore, one should not
always expect a perfect full partitioning of a network like this, matching the
background information. The approach of identifying only subgroups, that is,
modules in the network, has the advantage that one only looks at the books for
which an interpretation really seems to exist. For the remaining books one just
computes tendencies, then. We have seen that using this algorithmic strategy
one is able to uncover very accurate and interesting connections, which are also
interpretable.

5 Concluding Remarks

Random walks on complex networks offer a way for a global analysis of the
topology of the network. We have shown how to adapt recent research regarding
coarse graining of random walks for the tasks of finding modules and hubs
based on fuzzy decomposition of complex modular networks. To this end, we
demonstrated how to overcome two essential difficulties of spectral methods
in application to network decomposition: (1) We presented a re-design of the
transition rules of the random walk such that the dominant spectrum of the
adapted random walk exhibits spectral gaps related to the modular structure.
(2) The resulting algorithms can be applied to large-scale networks since they
scale linearly with network size as long as the connectivity is sparse.

Other important problems, like how to identify the appropriate number of
modules in a network or the related question of how to uncover the multilevel
structure of many modular networks, have also been discussed. One crucial
aspect, however, has been kept open: We did not report on applications of
our novel approach to very large real-world networks. This is mainly because
in such cases ”correct” results do not exist in general, and we would have to
compare the output of different algorithms, which is a topic in its own right.
Future research will demonstrate how our approach performs on, for example,
biological networks in comparison to other algorithms and the insights that can
be gathered through its application.
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