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ABSTRACT: The study of folding and conformational changes of macromolecules by molecular dynamics simulations often
requires the generation of large amounts of simulation data that are difficult to analyze. Markov (state) models (MSMs) address
this challenge by providing a systematic way to decompose the state space of the molecular system into substates and to estimate
a transition matrix containing the transition probabilities between these substates. This transition matrix can be analyzed to reveal
the metastable, i.e., long-living, states of the system, its slowest relaxation time scales, and transition pathways and rates, e.g., from
unfolded to folded, or from dissociated to bound states. Markov models can also be used to calculate spectroscopic data and thus
serve as a way to reconcile experimental and simulation data. To reduce the technical burden of constructing, validating, and
analyzing such MSMs, we provide the software framework EMMA that is freely available at https://simtk.org/home/emma.

■ INTRODUCTION
Molecular dynamics (MD) or related simulation approaches are
commonly used to investigate various complex processes on the
molecular level. Examples include ion or water transport
through pores,1 protein folding,2−6 the formation of polymer
melts,7 protein−ligand binding,8,9 macromolecular aggrega-
tion,10,11 and conformational transitions.12−14 While these
systems have high-dimensional conformation state spaces, many
interesting processes occur as transitions between a rela-
tively small number of subsets of this large state space. The
difficulty of dealing with molecular systems stems from the fact
that there is usually very little a priori knowledge available to
help with the characterization of relevant states. Hence, good
reaction coordinates reducing the high dimensionality of the
system are hard to find. A projection onto a low-dimensional
subspace of user-defined order parameters can thus lead to
deceptive results.15−17

Moreover, many of these molecular processes involve rare
events which require one to accumulate a large amount of
sampling data from numerical simulations. Recent advances in
computing technology have enabled researchers to substantially
increase the amount of data available from direct simulations.
This development has in particular been fostered by fast
simulation codes,18−20 public access to supercomputers, and
efficient use of GPUs for molecular dynamics simulation.21−24

Nowadays, up to aggregate millisecond simulation data can be
generated with distributed computing frameworks such as
folding@home25 and GPUgrid, the Anton MD supercomputer,26

and supercomputers.27

The combination of large amounts of trajectory data and the
fact that relevant states are a priori unknown calls for efficient
and objective ways to analyze the simulation data. Additionally,
it would be desirable to start subsequent simulation in such as
way that statistical accuracy is achieved with minimal sampling
effort, based on the knowledge of the already obtained data.
Markov (state) models (MSMs) address this problem and have
received a surge of interest in the past few years.14,16,17,28−36 In
MSMs, the molecular state space is discretized into microstates,
and the transition probabilities or rates between these
microstates are estimated from the available simulation data.

Due to the high dimensionality of macromolecular systems,
microstates can usually not be defined in terms of a grid
discretization but by a clustering approach. The resulting
transition or rate matrix can then be analyzed in order to gain
insight into the relevant metastable states,31,37,38 the essential
(slow) dynamical processes and their time scales,6,39 and
transition pathways between substates of special interest (such
as unfolded and folded subsets).6,8,40 It has also been shown
that MSMs can be used to systematically reconcile simulations
with experimental data, e.g., obtained from kinetic experiments
such as temperature-jump, fluorescence correlation, or time-
resolved infrared measurements.39,41−44

Despite the substantial advantages of MSM analysis, simple
yet potentially misleading analysis techniques such as principal
component analysis, coordinate mapping, and histogramming
are still much more widely used. This may be due to the fact
that the construction and analysis of MSMs is technically more
challenging. In order to make MSMs more accessible, we
provide EMMA: an easy to use software package/framework
for Markov model building and analysis. The EMMA software
is free and can be obtained from https://simtk.org/home/
emma.
Another currently available MSM software package is

MSMbuilder.45 At the present stage, MSMbuilder and EMMA
have similar functionalities permitting the basic operations
of MSM construction (data clustering, transition matrix esti-
mation, PCCA, transition path theory). MSMbuilder 2 has
been optimized for rapid RMSD clustering and is suitable
for constructing MSMs with very large numbers of clusters
from data sets as they are generated by folding@home. In
contrast, EMMA 1.3 puts more focus on smaller MSMs that
can be statistically validated and provides tools such as the
Chapman−Kolmogorow test for validating the MSM and
transition matrix sampling for calculating the statistical
uncertainties of quantities of interest. However, these features
are version-specific and may change in future versions. While
MSMbuilder is written in python, EMMA is Java-based.
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Currently, both packages are used through a command-line
interface.
At this point, we would like to issue a word of caution. The

construction of Markov models still involves a lot of choices to be
made by the user (distance metric, clustering and estimation
methods, several parameters), which involve some degree of
experience to be made correctly. We are not yet at a stage where we
can leave the choices involved in the construction of a Markov
model to the algorithm altogether in order to hide all complexity
from the user. Therefore, default parameters may not be appropriate
in all situations, and EMMA is provided to “use at your own risk”.
The choice of some of the parameters and algorithms and
appropriate references to the literature are given in this paper.
EMMA is written in Java. The EMMA command line tools

for construction, validation, and analysis of MSMs can be
invoked directly from the command line, making it suitable for
use with bash scripts. Future versions of EMMA will expose
an application programming interface (API) that is accessible
from Java, Java-compatible user interfaces such as Matlab or
Mathematica, and Python.
Here, we focus on the command-line-based MSM con-

struction with EMMA that can roughly be described by the
following sequence of steps:

1. Generation of the MSM from simulation trajectories
this step consists of the following:

a. Clustering of the simulation data and assignment
to microstatescurrently, we support trajectory
input from files in xtc (Gromacs), dcd (Charmm/
NAMD), and ASCII formats; available clustering
methods are k-centers, k-means, and equidistant
clustering in space or time (Figure 1)

b. Assignment of all trajectory frames of the input to
discrete microstates using a Voronoi discretization
(Figure 2)

c. Ensuring that the microstates used to build the
MSM are dynamically connected (Figure 2)

d. Determination of an appropriate lagtime τ (the
time resolution of the MSM, Figure 2)

e. Maximum-likelihood estimation of a transition
matrix T(τ) describing the transition probabilities
between microstates (Figure 3)

2. Determination of the metastable sets by means of
kinetic clustering using the PCCA + method (eq 7)

3. Validation of the MSM
a. Chapman−Kolmogorow test to compare long-time

probabilities of states predicted by the MSM with
those directly estimated from trajectory data (eq 1)

b. Calculation of statistical uncertainties using
transition matrix sampling, if desired (Figure 2)

4. Analysis of the transition matrix, e.g., by
a. Calculation of the stationary probability distribu-

tion on microstates, ensemble averages of
molecular observables, or the free energy differ-
ences between microstates (Figure 4)

Figure 1. The steps involved in construction, validation, and analysis of Markov state models.

Figure 2. Illustration of the microscopic Brownian dynamics in a two-
dimensional energy landscape given by a three basin model potential.
Thirty microstates (rectangular dots) were determined by k-means
clustering. Three metastable sets of microstates were obtained by the
PCCA algorithm after MSM estimation. The coloring of each
microstate represents its affiliation to one of the three metastable sets.
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b. Spectral analysis, i.e., determination of the slowest
relaxation time scales of the molecular process and
the associated structural rearrangements (eq 13)

c. Calculation of transition pathways between subsets
of special interest (e.g., unfolded→folded or
dissociated→bound), see Figure 5

d. Calculation of dynamical observables such as
the evolution of an experimental observable in a
perturbation−relaxation experiment or time-
correlation functions of experimental observables
these observables can be compared to kinetic ex-
periments such as temperature-jump or fluores-
cence correlation spectroscopy (see eq 26)

These steps are discussed in the subsequent sections. For a
detailed documentation of the EMMA syntax, we refer to the
EMMA documentation and tutorial available at https://simtk.
org/home/emma.

■ GENERATION OF MARKOV STATE MODELS (I)
In the process of generating a Markov model, a mapping between
the highly dimensional molecular trajectory conformational space
onto a smaller, more manageable subspace is achieved.
To demonstrate the functionality of EMMA, two examples

have been chosen. The first one is a 2-d Gaussian model
potential with three metastable states. The model potential and
exemplary analysis scripts are provided with the EMMA soft-
ware and are described in greater detail in the documentation
found at https://simtk.org/home/emma.
The second example is molecular dynamics simulation data

of the MR121-GSGS-W peptide, which are also available for
download. For more detailed information about this data set,
see ref 39.

Determination of Microstates by Clustering. The first
step in building a MSM is to discretize the molecular state
space Ω ∈ d,where d is the dimensionality of the system, into

Figure 3. (a) Implied time scales of the MSM for the two-dimensional model of Figure 2 with 30 microstates. (b) Implied time scale of a MSM for
the conformation dynamics of the MR121-GSGS-W peptide with 800 microstates.

Figure 4. Results of the Chapman−Kolmogorov test (a) for the three metastable sets of the 2D-diffusion example of Figure 2 and (b) for four
metastable sets of the MR121-GSGS-W peptide dynamics.
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a microstate space X, which is defined on a clustering (set
partition) C = (C1, ..., Cn) of Ω (i.e., ∪iCi = Ω), by dividing the
simulation data into these clusters. A microstate is defined as
the set of molecular configurations exhibiting geometrical or
structural similarity. EMMA provides a number of clustering
tools for this purpose. The user can skip this step and employ a
specific microstate definition obtained from other means than
by the EMMA clustering command and proceed with the assign-
ment step (Figure 2). The mm_cluster command requires three
inputs: (1) trajectory data, (2) a clustering algorithm together
with the desired number of cluster centers generated by the
algorithm, and (3) an output destination for the cluster center
coordinates. In the current version, cluster center coordinates can
be written to file in either Charmm/NAMD (*.dcd) format, if the
input trajectory was in a binary format, or ASCII format, if the
input was in ASCII format.

The input trajectory data file formats may be either Gromacs
(*.xtc), Charmm/NAMD (*.dcd), or plain ASCII format. It may
consist of a single trajectory or multiple/many trajectories. A
subset of all available trajectory frames for clustering can be
specified using the -stepwidth r option, which only uses every rth
trajectory frame as input for the clustering. Since simulation
trajectories are stochastic samples of the equilibrium distribution
of the molecular system, a substantial reduction of the input data
is often possible and a representative clustering is still obtained.
This option is especially useful to save computing time when
clustering algorithms such as k-means or k-centers are employed,
which require several iterations over the input data.
The number of clusters specifies the total number of

microstates of the Markov model. The number of microstates
has a severe influence on the quality of the Markov model. A
small number of microstates may lead to microstates that

Figure 5. (a) Potential energy function with four metastable states and corresponding microscopic stationary density μ(x). (b) Density plot of the
transition matrix for a simple diffusion dynamics in a 1D potential energy landscape. The 100 bins of the 1D-grid discretization correspond to the
100 microstates of the MSM. Red indicates high transition probability, and white indicates zero transition probability. Please note the nearly block-
diagonal structure. The transition probability is large within the four blocks corresponding to the metastable sets. Rapid transition between states
lying within a metastable basin are allowed, while probabilities for jumps between different basins are small. (c) The four dominant right
eigenfunctions of the transition matrix, r1, ..., r4, which indicate the associated dynamical processes. The first eigenfunction is associated with the
stationary process, the second to a transition between A + B↔C + D, and the third and fourth eigenfunctions to transitions between A↔B and
C↔D, respectively. (d) Eigenvalues of the transition matrix. The gap between the eigenvalues of the four metastable processes (λi ≈ 1) and the
eigenvalues of the fast processes is clearly visible. (e) The four dominant left eigenvectors, l1, ..., l4, of the transfer operator after weighting with the
stationary density. Figure adapted with permission from ref 36. Copyright 2011, American Institute of Physics.
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contain kinetically separated regions, thus leading to a poor
Markov model. Increasing the number of microstates generally
improves the quality of the MSM by reducing the discretization
error36 but may increase the negative effect of limited statistics.
Please note that a high number of microstates will also make
the vector and matrix operations involved in Markov model
building and analysis more expensive in terms of required
memory and running time of the algorithms. Iterative approaches
to obtain a clustering can become very slow if the number of
desired cluster centers is very large. The impact of the number
of microstates on the quality of the Markov model will be
further addressed in eq 8. Typical numbers of microstates are
100s to 10 000s.
In order to cluster data, a metric is required which assigns a

distance d(x, y) to pairs of data points x and y. When the
overall position and orientation of a molecular system is not
of interest, it is desirable to use a metric that captures
intramolecular structural changes. The minimal RMSD metric46

has shown to be suitable in protein folding and in large-scale
protein conformational changes. Minimal RMSD is a proper
distance metric47 for situations in which the entire molecule can
exhibit structural changes, but its global position and
orientation is not of interest. In the case that the simulated
system is fixed or can be meaningfully aligned to a reference
structure, the direct Euclidean metric is also useful. Such a
metric could be useful for the description of, e.g., conforma-
tional transitions that affect only parts of the molecule,
transport processes through a pore, or the binding of a small
ligand to a protein.9 The Euclidean metric may also be used
when the input data consists of angles (e.g., dihedral angle
values for investigating peptide dynamics). Note that it is not
strictly necessary to account for angle periodicity by the
clustering metrican artificial splitting of the data at the −180/
+180 degree boundary may split kinetically connected states,
but such kinetic information is contained in the transition
matrix that is being estimated from the transitions between
microstates. However, unnecessary splitting in angle micro-
states can be avoided by transforming each angle ϕ into two
values (sin ϕ, cos ϕ) and performing the clustering on this
extended set of input coordinates.48

Different clustering algorithms (EMMA option -algorithm)
can be applied to determine cluster centers. The following
clustering algorithms are implemented:

• K-Means: a well-known and established clustering
approach that partitions the input data points z(t) into
sets C = {C1, ..., Cn} such that the pairwise distances
between points within the same cluster are minimal.
Mathematically, C = arg min

C
∑i=1

n ∑z(t)∈Ci
d(z(t),ci)

2. This

is achieved by iterating two steps for all clusters i = 1...n:
− Voronoi assignment of z(t) to cluster representa-

tives ci
− Update clusters by: ci = (1/|Si|)∑z(t)∈Si z(t).
k-means is a good choice when internal or Cartesian

coordinates are used.9,37 Even if relatively few coordi-
nates are used, such as the three-dimensional position
of a ligand relative to a protein,8,9 k-means significantly
outperforms partitioning the space with a grid, because
it focuses on the regions of space that are dense with
data. Please note that K-means cannot be used with
the minimal RMSD metric because there is no well-
defined way of calculating a cluster center ci as a mean
of several existing structures. If the minimal RMSD

metric is desired, please use one of the following cluster-
ing algorithms.

• K-Centers49 is a fast algorithm to partition the input data
points z(t) into sets C = {C1, ..., Cn} in a way such that
the optimization problem∑i,j,k,lmaxxi∈Cj

minyk∈Cl
d(xi,yk) is

approximated.
Here, a simple and fast greedy approximation algorithm is

used: The first iteration chooses an arbitrary data point. In the
ith iteration, the data point that has the largest distance from all
previously selected cluster centers c1, ..., ci−1 is picked, and the
next cluster center ci represents that point. In other words, ci =
arg max

tz( )
∑m=1

i−1 d(z(t),cm). Note that this version of k-centers has

a tendency to find outliers as representatives which might only
provide a good clustering for large numbers of clusters.45

K-centers is not the recommended way of clustering data but
was included to allow comparison with previous studies that have
employed this clustering technique. In practice, regular spatial
or regular temporal clustering achieves much better results.

• Regular spatial clustering: Clusters are chosen to be
approximately equally separated in the conformation
space with respect to the distance metric used. The distance
between cluster centers is controlled by the parameter dmin.
In detail, the cluster centers are determined as follows:

− The first data point z(t = 0) is taken to be the first
cluster center c1. Let n = 1 be the current number
of clusters.

− Iterate data points z(t):
When a data-point z(t) is found, for which
d(z(t),ci) > dmin is fulfilled for all 1 ≤ i ≤ n
existing ci, then cn+1 = z(t) becomes a new cluster
center and n is incremented.

Regular spatial clustering guarantees that the conforma-
tion space is partitioned in a roughly equidistant manner.
Despite its simplicity, we have found it to be a good way
to build microstates for an MSM.36 Note that the total
number of clusters k that will be obtained by the method
strongly depends on the choice of the threshold dmin.

• Regular temporal clustering: Given a step length r,
every rth data point of the input trajectory set is selected
as a cluster center. If the trajectory has length N, then n =
⌊(N/r)⌋ cluster centers are selected. This approach will
generate a sensible model if the system was equilibrated
and the initial nonequilibrium part of the trajectory was
discarded before clustering. Trajectories which are long
compared to the system’s slowest relaxation time can
usually be regarded as sufficiently equilibrated. Also a
multiensemble simulation such as parallel tempering/
replica-exchange molecular dynamics can provide suit-
able data for this clustering approach. In this case, the
algorithm will pick cluster centers from the equilibrium
distribution of the system of study.

As an output, the clustering algorithms provides a set of n
cluster centers C = {c1, ..., cn} representing molecular structures
in conformation space that are used as an input for the
subsequent assignment step.
Usually, the execution time of a noniterative clustering

algorithm (k-centers, regular spatial, regular temporal) is
(Nn). Here, N denotes the number of data points and n, the

number of cluster centers. Due to the large amounts of data
available, clustering and the subsequent assignment are often
the most expensive steps in MSM construction, and it is often
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desirable to reduce the dimensionality of the input data to the
coordinates that are relevant for describing the process of
interest before clustering (e.g., α-carbon coordinates, domain
centers, backbone dihedrals, etc.).
Assignment of Conformations to Microstates. The

mm_assign command maps trajectories in continuos confor-
mation space, z(t) ∈ d, to microstate trajectories, s(t) ∈ X,
where X ∈ {1, ..., n} is the set of microstates, from n cluster
centers. All trajectory frames are assigned to the closest cluster
center ci resulting in a Voronoi-partitioning of the input data. In
other words, the microstate trajectory is obtained as s(t) =
arg min

i
d(z(t),ci). These discrete trajectories are used to

estimate a Markov model.
The mm_assign command requires three inputs: (1)

trajectory data (z(t)), (2) a file in ASCII or .dcd format con-
taining the cluster center coordinates, and (3) a destination
for writing the discretized trajectories. If the cluster centers
have been obtained by the mm_cluster command, modifica-
tions are still possible. This may be desirable, if X-ray structures
are known and including these as cluster centers would make
the Markov model more informative. If the cluster centers were
user generated, extra care should be taken to ensure that the
dimensionality of the cluster centers matches those of the input
trajectories.
Connectivity Test. The program mm_connectivity tests

which microstates are dynamically connected and writes the
largest connected subset of microstates to the specified output.
Two microstates i and j are said to be connected if there exists a
set of trajectories by which the system can move from i to j and
also from j to i. In other words, there is a nonzero probability to
go from i to j and back in a finite number of steps. A set of
states is said to be connected if all states in this set are pairwise
connected.
Consider for example the following sequence of microstates

forming a single microstate trajectory {1, 2, 1, 4, 3, 5, 4, 3, 5, 4, 6}.
The microstate space X = {1, 2, 3, 4, 5, 6} contains the
following connected sets of microstates, S1 = {1, 2}, S2 = {3, 4, 5},
and S3 = {6}. Within the given microstate trajectory, S1 will not
be visited again once it was left, and S3 will not be left once it
has been entered. Thus, S2 is the largest dynamically connected
subset of X. If there is only one fully connected subset S1, then
S1 ≡ X.
A unique stationary distribution exists only for Markov

models on a connected set of states. Since many MSM algo-
rithms use the stationary distribution as a starting point for
further calculations, it is important to work with a connected
set of microstates. If the set of microstates is split into several
connected sets, the largest set can be determined and written
out. Information about the largest connected set of microstates
can be used as input in later stages of the MSM building
process.
There may be different reasons why the microstate space X is

separated into several connected sets:
• There may be unused cluster centers in the assignment

process. Thus, microstate trajectories do not contain
microstates corresponding to such cluster centers. Empty
states will appear as single states (“singlets”) in the
connectivity analysis. They can be removed without a
loss of information. Please note that there are also other
reasons for the appearance of singlets in the connectivity
analysis.

• There are sets of states that are only visited at the
beginning or at the end of a microstate trajectory, for
example, the sets S1 and S3 in the above example.

• The clustering is too fine. It misses the fact that cluster
centers lying in the same kinetic region would be properly
connected if more simulation data were available. When
low connectivity is reported for microstates coming from
the same kinetic region, a coarser clustering may produce
more satisfactory results.

• Weakly connected parts of state space appear as
disconnected due to insufficient simulation data. This is
often the case for simulations of biomolecules where the
transition times between metastable sets can easily be on
the order of or even greater than the total simulation
time. The MSM analysis may be restricted to the largest
connected set of microstates, but all information about
the neglected part of state space will be lost. In situations
in which disconnectivity results from a lack of observed
transitions between sets that are expected to be connected,
it will be necessary to generate more data to build a
meaningful Markov model.

It can be seen from the discussion above that there are many
reasons why the state space can be separated into disconnected
sets of microstates. The discrimination of these different situa-
tions can be quite challenging for complex systems and may
require further insight into the dynamics.
We will not go into depth discussing the technicalities

involved in determining the connectivity here. The algorithm
used is Tarjan’s algorithm, and we refer to ref 50 for a detailed
discussion.
The (on-screen) output of mm_connectivity comprises the

microstates sorted into different connected sets. Each row of
microstates corresponds to a single communicating class. The
largest connected set of microstates is written to file in order to
provide a starting point for a construction of a MSM with a
unique stationary distribution.

Selection of the Lagtime τ: Implied Time Scales. Once
a dynamically connected set of microstates is identified, the
number of transitions between all pairs of microstates is
recorded in a count matrix C(τ). Its elements cij(τ) contain the
number of times the trajectory visited in state i at time t and in
state j at time t + τ, for all times t. C(τ) is then converted into
an estimate of the transition matrix T(τ), which, together with
the microstate definition, comprises the Markov model. While
the continuous microscopic dynamics underlying the input
trajectories is Markovian in full phase space, the discrete jump
process between clusters of state space is no longer Markovian.
Hence, a Markov model on this space can only be approximate.
The correctness of the Markov approximation is determined by
two properties: The lagtime τ and the quality of the microstate
definition.36,51

A transition matrix T(τ) has eigenvalue−eigenvector pairs:

τ λ τ=T r r( ) ( )i i i (1)

A direct application of the Markov property shows that the
eigenvalues of a transition matrix estimated at lagtime τ should
follow an exponential decay in τ. The time scale (inverse rate)
of this decay is called implied time scale and is given by

τ τ
λ τ

* = −
| |t ( )

ln ( )i
i (2)
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These implied time scales are relaxation time scales that are
experimentally observable39 and should therefore be independ-
ent of τ if the Markov model was exact. Since the discretized
dynamics are not exactly Markovian, ti*(τ) do depend on τ.
However, assuming sufficiently good statistics, their depend-
ence of τ should diminish for larger values of τ.36,51 If lagtimes τ
are taken to be too short, the time scales will always be
underestimated. This behavior was first observed in ref 52, and
it was suggested by the authors to test whether the time scales
ti*(τ) become approximately constant in τ after some minimal
value τ′ and to then use the Markov model with lagtime τ′.
Transition matrices T(τk) are estimated for a set of increasing
lagtimes τ1...τm, and the corresponding largest implied time
scales are calculated from eq 2 as a function of τ. The smallest
value τ for which the implied time scales become approximately
constant in τ is selected as lagtime τ for our Markov model.
The test for implied time scales is included in EMMA and is

conducted by the command mm_timescales. The main input
options are the discretized trajectories (via -i), the lagtimes τk for
which the implied time scales will be estimated (via -lagtimes),
and the number of eigenvalues or implied time scales for which
the analysis will be conducted (via the option -neig).
In addition to these mandatory options, it can specified

whether transition matrices are estimated such that they fulfill
detailed balance with the (-reversible) flag. This option should
be considered, if the dynamics evolve at thermal equilibrium.
Adding prior counts to make the time scale calculation numer-
ically robust when statistics are poor via the -prior option is
also possible. See Figure 3 for a short discussion of counting
approaches and priors used for the count matrix estimation.
The dynamically connected set of microstates is specified by
the option -restrictToStates. It is advisible to use the largest
connected subset of microstates for the time scale estimation.
The output of the algorithm is a table containing the implied
time scales at each lagtime that is either printed on the console
or redirected into the output file when specified.
In practice, this test may behave in an unexpected way for a

number of reasons:
1. When τ ≫ ti*, the numerical solution of the eigenvalue

problem (eq 1) can fail. This can lead to an apparent
linear increase of ti* for large lagtimes τk. This behavior
can especially be observed for processes corresponding
to short implied time scales and is not necessarily a
signature of a poor Markov model.

2. The convergence of ti*(τ) to the true implied time scales
occurs asymptotically with τ−1, i.e., relatively slow.
Convergence is especially poor if the clustering is
poor.36 Therefore, when poor convergence is observed,
one may need to either refine the clustering or use very
large lagtimes in order to obtain a Markov model with
good approximation quality.

3. In the case of poor statistics, convergence in τ may not
be observable.

Despite these issues, the implied time scale plot still provides
a useful way to determine whether a good MSM can be found.
Figure 3 shows implied time scales plots of Markov models of
the 2D-test data set and the MR121-GSGS-W data set, both
showing a reasonable convergence of the dominant implied
time scales and allowing an appropriate choice of τ to be made.
Transition Matrix Estimation. The main purpose of the

mm_estimate command is to generate a row-stochastic transition
matrix T(τ) using the discretized simulation trajectories and the

selected lagtime τ as inputs. T(τ) together with the definition of
the microstate discretization comprises the actual Markov model
and the main object of interest.
While transition matrix estimation was carried out for several

lagtimes in order to generate the implied time scale plot as seen
in Figure 3, it is now repeated a for the single lagtime τ that has
been selected as the Markov model lagtime. It is assumed that
the state space of our discrete input trajectories consists of a
single completely connected set of microstates. If this is not the
case, it is possible to restrict the transition matrix estimation to
the largest connected subset using the -restrictToStates option.
In the following, the theory behind the transition matrix

estimation procedure is briefly outlined. Consider a discretized
trajectory s(t) of total length tmax. Each time step in s(t) yields
the index of one of the n microstates. The sequence of
microstates given by s(t) can be transformed into an n × n
matrix of observed counts Co(τ) between the n microstates via

∑τ δ δ τ= +
τ

=

−
c s t s t( ) [ ( )] [ ( )]ij
o

t

t

i j
0

max

(3)

where δi[s(t)] = 1 if s(t) = i and 0 otherwise. Thus, the
observed count matrix element cij

0 is equal to the number of
transitions between states i and j at lagtime τ that are contained
in the given microstate trajectory s(t). Since the count matrix is
obtained from the trajectory by sliding a window of length τ
along the trajectory, this method of counting is referred to as
the sliding window method. The advantage of this method is
that all transitions contained in the trajectory are included into
the estimated count matrix. The resulting counts are however
not statistically independent since the sliding window approach
ignores the fact that the process is not Markovian at time scales
smaller than τ. Statistically independent counts can be
generated by using the lagtime counting method. See ref 36
for further discussions of the different counting approaches.
The user can choose to add a prior matrix Cp to avoid

numerical problems with states that were rarely visited or never
left:53,54

= +c c cij ij
p

ij
o

(4)

The purpose of the prior Cp is to avoid numerical problems in
scenarios with little data where trajectories contain insufficient
transitions to conduct a numerically stable transition matrix
estimation. Prior counts introduce a bias which is vanishing
once cij is dominated by observed counts cij

0. In order to
minimize the bias, the added prior counts should be as small
as possible while guaranteeing numerical stability. In many
situations, the neighbor prior54,45 cij

p = α when cij
o(1) + cji

o(1) > 0 is
a suitable prior for count matrix estimations. The neighbor
prior ensures strict positivity of the stationary distribution on
all microstates by adding a small pseudocount to neighbor-
ing entries of the count matrix whenever an element of the
observed count matrix Co is nonzero. The neighbor prior can
be applied using the -prior option of the mm_timescales and
the mm_estimate command. The count matrix can be written as
a sparse matrix in coordinate format to an ascii file specified by
the outputcountmatrix option.
The total number of outgoing transitions from state i is

ci = ∑k=1
n Cik. Following Bayes’ theorem, the probability of a

transition matrix T given the counts C is given by

∏| ∝ TT C( )o
i j

ij
c

,

ij

(5)
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This probability is maximized by the maximum probability
estimator T̂ij(τ). When no constraints are imposed on T̂ij(τ)
other than that it is a stochastic matrix, the estimator is trivial:

τ̂ =
c
c

T ( )ij
ij

i (6)

Molecular dynamics is usually conducted in thermal equili-
brium, i.e., such that the equations of motion fulfill microscopic
detailed balance. This translates to a detailed balance criterion
for the microstates:

π π=T Ti ij j ji (7)

However, the simple maximum likelihood estimator of the tran-
sition matrix T̂(τ) in eq 6 will in general not fulfill a detailed
balance as a result of statistical deviations from these con-
straints due to finite length simulation trajectories. Since a
detailed balance of a Markov State Model is a prerequisite for
the application of many advanced analysis methods, it is useful
to enforce a detailed balance when estimating a transition
matrix from a given count matrix. Previous work had suggested
to enforce a detailed balance by using the sum of transition
matrices from both forward- and backward-in-time count-
ing.37,55 However, this approach is only valid if the individual
simulation trajectories are of such length that they sample from
a global equilibrium. A better approach to enforce detailed
balance is to build the constraints (7) into the transition matrix
estimation.36,56 EMMA implements the optimal reversible
estimator for transition matrices described in ref 36. It is
available through the -reversible option of the mm_estimation
and mm_time scales commands.

■ METASTABILITY (II): LUMPING OF MICROSTATES
TO METASTABLE SETS

A way to group microstates of a MSM into sets on which the
model dynamics is metastable is a useful tool for investigating
the essential characteristics of the underlying microscopic
system.37,38,47,57 Metastable sets are characterized by showing
rapid interconversions between states lying within the set and a
rare occurrence of transitions between different metastable sets.
This grouping into dynamically similar sets, also known as
kinetic clustering, can reduce the complexity of a MSM on a
very large microstate space by identifying states belonging to
the same kinetic cluster. This can be an enormous aid in
visualization and further analysis.37 Please note that metastable
sets are not themselves used to calculate kinetic properties of a
coarse grained MSM on the level of different kinetic clusters.
Such a coarse graining would dramatically increase the error of
the MSM51 unless it is performed in a very specific manner.57

Thus, the fine microstate model is always kept as a numerical
means to approximately solve the molecular kinetics on a “fine
grid”, while kinetically grouped macrostates are useful for
visualization of relevant sets or grouping of additive properties,
such as the probability of states or transition fluxes (see below).
The method of choice for determining kinetic clusters from a

transition matrix is PCCA, invented by Schütte et al.38 and later
improved by Weber and Deuflhard.31,58 The robust version of
PCCA (also called PCCA+)58 is implemented by the EMMA
command mm_pcca and described subsequently. Given a
transition matrix T(τ) ∈ ×n n and a number of states m < n,
PCCA assigns each of the microstates to one of m clusters
S1...Sm that are metastable. PCCA makes this assignment in a
fuzzy way; i.e., the primary result is not a clustering but a

membership matrix χ ∈ ×m n indicating by its elements χij to
what degree each microstate j belongs to metastable set mi,
where

∑ χ = ∀ j1
i

ij
(8)

This matrix is then used to generate a crisp assignment of
sets in such a way that each microstate i is assigned to the
metastable set m it most likely belongs to.

χ∈ =j M iif arg maxi
k

kj

This assignment is made on the basis of first finding m
microstates that are kinetic centers and therefore representative
states for the metastable sets and then assigning kinetic
distances by the coordinates all microstates have in the m-
dimensional space of dominant eigenvectors of T(τ). A more
detailed description can be found in refs 31, 37, and 58.
The mm_pcca command implemented in EMMA can

provide both microstate clustering and fuzzy memberships.
The main input parameter is the transition matrix T(τ) and the
number of kinetic clusters/metastable sets which is set by the
option -nclusters. The determined cluster assignments, either
crisp or fuzzy, are written out by the options -ocrisp and -ofuzzy,
respectively.
The result of PCCA clustering of the two-dimensional

diffusion in a three-state energy landscape is shown in Figure 2.
The PCCA clustering for an MSM obtained from 6 μs
simulation data of the MR121-GSGS-W peptide is shown in
Figure 7

■ VALIDATION (III)
The validation of the MSM is necessary in order to be able to
judge the meaningfulness of the generated Markov model. If
the Champman−Kolmogorov test discussed in the following
holds, it is generally a good indication of the robustness of the
model built and thus an essential part of the model validation
process.

Chapman−Kolmogorov Test. A number of ways to test
the validity of Markov models have been proposed in previous
papers.36,59−61 A rather direct and easy-to-interpret set of tests
compares long-time observations generated from the estimated
transition matrix T̂(τ) with long-time information available
from the trajectory data.36,61 In the following, we describe the
Chapman−Kolmogorov test proposed in ref 36, which has
been implemented in EMMA through the mm_chapman
command. The Chapman−Kolmogorov equation is a strong
test of the Markov property of the estimated model. Let T̂(τ)
be the transition matrix estimated for lagtime τ, and let T̂(kτ)
be the transition matrix estimated from the dynamics on a
longer time scale. If the dynamics of the model is to a good
approximation Markovian on the time scale of the lagtime τ,
the model should be able to approximately reproduce the
dynamics on the microstate space for longer times t = kτ. Since
the dynamics of the model is generated by repeated application
of the transition matrix, the following approximation should be
valid:

τ τ̂ ≈ ̂ kT T[ ( )] ( )k (9)

If the microstate dynamics were perfectly Markovian, the above
equation would have to strictly hold. That is, the long time
dynamics of the system would have to be exactly determined by
the transition matrix estimated from the short time dynamics
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on scales of the lagtime τ. It is important that the test is
conducted on time scales comparable with the time scale t2 of
the slowest dynamical process. If we would perform the test for
longer times kτ ≫ t2, we will only test how well the model
approximates the stationary distribution and gain no
information about the validity of the MSM for the description
of the dynamical processes.
Matrices T̂(τ)k and T̂(kτ) could be directly compared via a

matrix norm. However, in order to arrive at a comparison that
has a direct physical interpretation, we instead choose to
propagate a distribution p0 using T̂

k(τ) while we are estimating
the quantity p0T̂(kτ) directly from the trajectory. For a correct
MSM we require

τ τ· ̂ ≈ · ̂ kp T p T[ ( )] ( )k
0 0 (10)

Here, p0 is defined by the local stationary probability
distribution confined to set Ci:

π
π= ∑ ∈

∈

⎧
⎨⎪
⎩⎪

p
i C

0 else
i

i

k S k
i

0, i

(11)

The test is visualized by plotting the total probability on each
set Si tested over times kτ and inspect whether the Markov
model and the direct calculation agree within statistical error
(see ref 36 for further details). That is, the dynamics are started
from each of the metastable sets, and the evolution of the
probability in that set toward the stationary probability is
traced. This test effectively enforces that the approximation
error in eq 10, E(kτ) = |p0·[T̂(τ)]k − p0·T̂(kτ)|, is bounded by
the statistical error and thus enforces a balancing of these two
errors. Thus, decreasing the statistical error by adding more
simulation data will also increase the requirements for the
Chapman−Kolmogorov test to be valid.
The program mm_chapman expects three main input

parameters: (1) a previously estimated transition matrix T̂(τ),
(2) the input trajectories, which were used to estimate the
matrix T̂(kτ), and (3) the sets of states on which the
propagation of eq 10 is tested. We suggest to use the PCCA
sets calculated with mm_pcca at this point, as the metastable
states are the ones which by definition have the fewest
transitions between them. Thus, when successful, this test will
validate that the MSM is a good model of the slow dynamics
that are usually the ones of interest. Alternatively, user-specific
sets, such as unfolded and folded sets in protein folding,41 or
random sets (-randomsets) can aslo be defined. The initial
probability p0 may be specified by the user (option -pinit) or else
the stationary distribution of T̂(τ) is used. The propagation length
k is given in multiples of the lagtime τ selected by -kmax.
Figure 4 shows the test results for the 2D diffusion example

available through the built in tutorial in EMMA as well as for
the MR121-GSGS-W peptide. The sets chosen here are the
three or four metastable sets that have been previously
identified with PCCA (see above). Note that the agreement
at the times t = τ and at t→∞ is always expected and is no test
of the Markov model quality.51 The critical test is whether the
Markov model reproduces the relaxation for the range τ < t < 3t2*,
where the upper time bound is of course limited by the maximal
length of available trajectories.
Uncertainty Calculation. In Figure 3, a transition matrix

was estimated whose maximum probability is given by eq 5.
This maximum probability estimator (for a uniform prior called

the maximum likelihood estimator) is a good estimator if the
probability distribution is sharply peaked, and thus transition
matrices that differ largely from the maximum probability
estimator are very unlikely. Such a sharply peaked probability
distribution exists if statistics are overwhelming, i.e., if all
molecular processes (including the slowest ones) have been
sampled frequently. Since this is usually not the case other than
in toy models, it is important to calculate the statistical error of
the estimate. The statistical errors can be essential for any
future choice of starting points of simulations, with the aim to
minimize statistical errors. This can be done adaptively and is
generally referred to as adaptive sampling.56,62,63 The statistical
uncertainties of individual transition matrix elements can be
directly calculated from the observed count matrix Co.36

However, as a user, one is usually interested in the statistical
uncertainties of potentially complex observables that are
calculated from the transition matrix (see Figure 4 below).
Therefore, a good approach is to sample the transition matrix
probability density (eq 5) using a Markov chain Monte Carlo
procedure.64 Although this sampling method is computationally
slower than using linear perturbation approaches,54,62,63 it
makes no restrictive assumptions about the form of the
probability distribution sampled and the functional form of the
observable used. Note that the uncertainties calculated from
transition matrix sampling only contain the part of the statistical
uncertainty from a finite number of transitions between
microstates. For a full account of uncertainties, one may also
need to include the uncertainties that arise from estimating the
values of functions of states from samples in that state. A treat-
ment of these combined uncertainties is described in ref 65.
Transition matrix sampling as described in ref 64 is imple-

mented by the mm_transitionmatrixSampling command. As an
input, the count matrix (-C) is required. Here, the choice of
counts is imperative, as for obtaining correct uncertainties, all
counts need to be statistically independent. This is not the case
when the transition counts are generated from a sliding window
approach (which is the default in transition matrix estimation).
Therefore, -sampling lag should be used instead in order to
generate statistically independent counts. Since this way of
counting may reduce the connectivity of the transition matrix,
the connectivity should be tested again and, if necessary, the
count matrix restricted to the connected subset of states.
The most general way of using transition matrix sampling is to

generate a series of sampled transition matrices (-sampleSaveT).
The desired observable can then be calculated for each of them,
and the statistical uncertainty can then be estimated from the
standard deviation of the respective quantity. This approach is
applicable to any numerical observable, no matter how complex it
is. The number of sampling steps is controlled by three numbers:
the number of samples (nsamples), the number of MCMC steps
to initialize the sampling (steps_burn-in), and the number of
MCMC steps for each sample steps_per-sample. The MCMC
procedure does steps_burn-in steps first and then returns one
transition matrix every steps_per-sample step. Typical values of
these numbers are 1 000 000, 100, and 100 000, but these
numbers may need to be increased for large matrices, making
the sampling of these computationally demanding.
In order to make transition matrix sampling more easily

usable, some common observables are directly implemented
and can be accessed with the combination of the -sample and
-observe... commands. For example, -observeSpectrum 2 will
calculate the distribution of the two leading eigenvalues of the
transition matrix. The output file will contain for each sample
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the instantaneous sample value, the running mean, and the
running variance. The mean and variance should be checked for
convergence. If convergence is not achieved, the number of
samples or the number of steps per sample must be increased.

■ ANALYSIS (IV)
In the following section, the analysis possibilities of the previously
built MSMmodel will be discussed. Evidently, these tools can also be
applied to transition matrices obtained through other sources than
EMMA, as long as the file convention (see Appendix) is adhered to.
Stationary Distribution. A basic quantity of interest is

the stationary probability πi of any microstate i. When the
molecular system under investigation is in thermal equilibrium
with its environment, the stationary distribution is given by
the average of the microscopic Boltzmann distribution over
the Voronoi clusters Ai pertaining to each microstate i. The
stationary distribution on the Markov model microstates can be
calculated as

π π τ= T( )T T (12)

that is, by computing the eigenvector of the transition matrix
with eigenvalue 1, which is subsequently normalized such that
∑iπi = 1. When the transition matrix is fully connected, the
largest eigenvalue is 1, and it is not degenerate. This also means
that the stationary distribution is unique. Stationary proba-
bilities can be calculated by the mm_transitionmatrixAnalysis
program with the -stationarydistribution option.
Many scientists prefer to characterize the stability of states

via their free energies. The free energies can be directly
calculated (via option -freeenergies) from the stationary
probabilities:

π
π= −F k T ln

maxi
i

j
j

B

(13)

as a measure of the free energy differences with respect to the
most stable microstate. See Figure 5a for an illustration of the
relationship between stationary distribution and free energy in a
one-dimensional model potential.
Spectral Analysis. The EMMA command mm_transition-

matrixAnalysis can be used to decompose the transition matrix
into eigenvalues and eigenvectors. Such a spectral analysis is
useful in order to gain information about the slowest
conformational changes of a molecule. The slowest conforma-
tional changes correspond to the slowest dynamical processes
of the Markov model. This correspondence can be used to
identify metastable conformations and to estimate the time
scales of conformational changes.39−41,43

In the following, we will outline the importance of the
spectral properties of the Markov model. Consider the
propagation of a probability vector p0 on the microstate
space using the transition matrix T(τ):

τ=τp p T ( )k
T T k

0 (14)

In the following, we will show that we can express this
propagation as a sum of exponentially decaying processes. As a
consequence of reversibility, it is possible to diagonalize the
transition matrix using a complete set of left and right eigen-
vectors, {ri}i=1

n and {Ii}i=1
n . Recall that the stationary distribution

p is the left eigenvector corresponding to the unique eigenvalue
λ1 = 1:

π = l1 (15)

The left and right eigenvectors are normalized such that ⟨li,rj⟩ =
δij. Here, ⟨x,y⟩ = ∑i=1

n xiyi denotes the standard scalar product.
Another consequence of the detailed balance condition is that
left and right eigenvectors are related as follows:

π=l ri k i k k, , (16)

Then, T(τ) can be decomposed as

∑τ λ=
=

T r l( )
i

n

i i i
T

1 (17)

so that

τ λ=T r r( ) i i i (18)

τ λ=l T l( )i
T

i i
T

(19)

Now, we can write the propagation of p0 as

∑τ λ= = ⟨ ⟩τ
=

p p T p r l( ) ,k
T k

i

n

i
k

i
T

i0
1

0
(20)

Using the fact that the first eigenvalue λ1 = 1 and that |λi| =
|λi(τ)| = e−(τ/(ti)), we can finally conclude that

∑= ⟨ ⟩ + ⟨ ⟩τ
τ

=

−p p r p p r l, e ,k
T

i

n
k t

i
T
i0 1

2

/
0

i

(21)

In other words, the relaxation of any initial distribution to the
equilibrium distribution can be understood in terms of a sum of
exponentials, each decaying with a rate governed by the
eigenvalue λi or the associated implied time scale, which was
previously summarized by eq 2.
The structural rearrangement associated with this time scale

is expressed by the sign structure of the corresponding left
eigenvector li or right eigenvector ri (both the left and right
eigenvector carry the same qualitative information; they are just
differently weightedwith the use of p, eq 21 can be written in
terms of left eigenvectors only or right eigenvectors only).
Figure 5 shows the diffusion on a one-dimensional energy
surface as an example. The yellow eigenvector corresponds to
the largest implied time scale, i.e., the slowest relaxation
process, and indicates that the corresponding transition occurs
between energy basins (A + B) and (C + D), i.e., across the
largest energy barrier. The green and blue eigenvectors further
subdivide the (A + B) and (C + D) basins.
Since the relaxation time scales are observable in kinetic

experiments, the eigenvalue decomposition (spectral decom-
position) of a Markov model transition matrix provides direct
insight into these structural changes. Many protein folding
studies40,41,66 analyze the second eigenvector because one usually
assumes that folding is the process governing the slowest relaxa-
tion time scale.67 This assumption may be wrong in certain cases
as demonstrated in refs 39 and 68. In ref 39, the first five
eigenvectors of a Markov state model were analyzed in order to
understand the dominant conformation dynamics of glycine−
serine peptides of different lengths.
Eigenvectors and eigenvalues can be directly calculated for a

given transition matrix using the command mm_transitionma-
trixAnalysis. The implied time scales can be obtained from the
eigenvalues using eq 2.

Transition Path Theory (TPT). Transition path theory
allows us to analyze the essential statistical features of the
reactive transitions between two chosen subsets A and
B.41,69−71 This includes the analysis of transition pathways
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between A and B, their relative probabilities, the total A→B
flux, and the A→B rate. The first application of transition path
theory to the analysis of a molecular system has been carried
out in an investigation of the ensemble of protein folding
pathways in ref 41 and protein−ligand binding pathways in ref 8.
Since then, several applications have been using TPT to tackle
questions in protein folding and conformation dynamics.9,40,43

The results of transition path theory can be calculated using
the mm_tpt program. Transition path properties can be either
calculated for the full set of microstates or for a coarse-graining
of microstate space such as the one achieved by PCCA using
the -coarsesets option.
The essential object needed to calculate statistics pertaining

to the A→B reaction is the committor probability, also called
splitting probability or probability of folding.72−79 Let A and B
be two disjoint sets of microstates. The forward commitor qi

+ is
a function on microstate space assigning to each state i the
probability for the Markov process to visit set B before set A
when starting in i. By definition, qi

+ = 0 for i ∈ A and qi
+ = 1 for

i ∈ B, while qi
+ ∈ [0,1] for all other states. Many standard

reaction coordinates which are defined a priori without knowl-
edge about the dynamics exhibit the problem of concealing
relevant dynamics of the system. The commitor in con-
trast defines a dynamical reaction coordinate circumventing
this problem.72,76,79 Often the isocommitor surface qi

+ = 0.5
is of special interest. The isocommitor interface has been
interpreted as the transition state ensemble in protein folding
theory.80

We also need the backward committor probability, qi
−, which

is the probability that the process came from A last rather than
from B. In the case where dynamics are reversible, i.e., the
transition matrix fulfills detailed balance, the backward and
forward commitors are related in the following way: qi

− = 1 − qi
+.

A property that is of special interest for applications is the
reactive flux. The reactive flux or current f ij can be calculated
using TPT in the following way:71,41

π
=

≠

=

− +

⎪
⎪⎧⎨
⎩

f
q T q i j

i j0ij
i i ij j

(22)

The reactive flux counts the number of transition pathways per
time going from state i to state j. f ij does include transitions
from unproductive recrossings and transitions into and out of
dead ends. Since it is often desirable to only analyze path
probabilities without recrossings or dead ends, one calculates
the net flux via

= −+ + −f q qmax( )ij i i (23)

in the special case of reversible dynamics (detailed balance
transition matrix); the net flux is given by81

π= −+ + +f q q T( )ij i j i ij (24)

when qi
+ ≤ qj

+. The net flux is available via the option -onetflux.
Since f ij

+ is defined for pairs of microstates, TPT will produce
a possibly very large network consisting of many small fluxes.
It is often useful to investigate fluxes on a coarse grained
microstate space. The coarse-grained flux and netflux, as well as
the coarse-grained forward and backward commitors are
available applying the coarse prefix to the commands for the
calculation of microstate commitors. Fluxes can be trivially
added for any partition. A partition of special interest is the
one into metastable states that has been generated by PCCA
(see eq 7). As examples, we show the net fluxes among the four
metastable states of MR121-GSGS-W and the folding flux
network of PinWW (taken from ref 41) in Figure 6.

Figure 6. (a) Flux of the transition from the least-populated to the most-populated metastable state of the two-dimensional diffusion example from
the EMMA tutorial. (b) Flux of the folding transitions between the metastable states of the PinWW protein. Figure adapted with permission from
ref 41. Copyright 2009, National Academy of Sciences.
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qij
+ defines a flux-conserving network flow out of A and into B

that can be decomposed into a set of A→B reaction pathways
along with their probabilities.41,69,71

Finally, the total flux of the A→B reaction is given by

∑ ∑= =
∈ ∉ ∈ ∉

+F f fAB
i A j A

ij
i A j A

ij
, , (25)

and the A→B reaction rate41 is given by:

π= ∑ −k
F

qAB
AB

i i i (26)

Expectation Values, Correlation Functions, Finger-
prints. The EMMA program mm_observables is a useful tool
used to analyze MSMs in a way that allows comparison to
experimental measurements. Let a be an observable in
microstate space with scalar values ai on each microstate i. In
order to model experimental observations using such an
observable, we have to provide this observable definition for
computations with EMMA. Such an observable with scalar
values is stored as a single column ascii file containing one
measurement value ai in each row. Scalar observables may be
any functions taking real values on the state of microstates.
They can model a variety of observations, e.g., intensities of
fluorescence signals, FRET efficiencies, particle distances, etc.
Many experiments measure ensemble averages. Given a

transition matrix T(τ) with associated stationary distribu-
tion π and observable vector a, the ensemble average can
be calculated with the -expectation command. It is simply
estimated by

∑ π=
=

a a[ ]
i

n

i i
1 (27)

The most interesting features of mm_observables however
allow dynamical observables to be calculated, such as
perturbation−relaxation and correlation curves, as they can
also be measured in kinetic experiments. Importantly,
mm_observables can help to interpret these curves in terms
of dynamical f ingerprints, which can be dissected into dynamical
features that are associated with individual relaxation time
scales and structural rearrangement processes.39,68 Here, we
differentiate between two types of kinetic experiments: pertur-
bation and correlation experiments.
In perturbation experiments, the ensemble average of an

observable is tracked over time while the ensemble relaxes from
some perturbed or triggered initial state at time t = 0 toward its
stationary distribution. The initial trigger may consist of, e.g.,
a jump in temperature82,83 or pressure,84 a change in the
chemical environment,85 or a photoflash.86−88 Such time-
dependent ensemble averages can be calculated with the
commands -perturbation and -relax via

∑ ∑τ τ=
= =

k p T k aa[ ( )] ( )
i

n

j

n

i ij jp
1 1

0,0
(28)

A special perturbation experiment is the temperature-jump
experiment where an ensemble is prepared at temperature T1 at
t < 0 and is then suddenly changed to temperature T2 at t = 0.
The system is kept at T2 and relaxes from its old distribution
p0 = p(T1) to its new stationary distribution π(T2). In cases where
simulations have been conducted at both temperatures T1 and
T2, the stationary distribution at T1 can be straightforwardly
obtained as an initial distribution to a perturbation experiment

using the transition matrix at T2, and the result can be calcu-
lated with the -perturbation command.
A very common type of kinetic experiment is correlation

experiments. Correlation experiments may be realized either
through scattering techniques such as inelastic neutron
scattering89 or via low concentration or single molecule experi-
ments accumulating auto- or cross-correlations of fluctua-
tions, e.g., correlation spectroscopy of the fluorescence inten-
sity90−94 or Förster resonance energy transfer efficiency.95,96

The -autocorrelation command calculates equilibrium auto-
correlations of observables a via

∑ ∑τ π τ=
= =

k a T k aa a[ (0) ( )] ( )
i

n

j

n

i i ij jp
1 1 (29)

and the -crosscorrelation command calculates the cross-correlation
between two observables a and b via

∑ ∑τ π τ=π
= =

k a T k ba b[ (0) ( )] ( )
i

n

j

n

i i ij j
1 1 (30)

Instead of directly printing the perturbation−relaxation or
correlation curve via -relax, one can output the dynamical
fingerprint of a perturbation or correlation experiment via
the -fingerprint command. As explained in detail in refs 39 and
68, the long-time scale part of eqs 27, 28, and 29 can each be
written in the form

∑τ γ τ= − *
=

⎛
⎝⎜

⎞
⎠⎟y k k

t
( ) exp

i

m

i
i1 (31)

where y(kτ) is the dynamical observable (expectation or
correlation), ti* is the ith implied time scale, and γi is an
amplitude that depends on the specific experiment conducted.
The amplitudes γi are derived in refs 39 and 68 and can be
calculated from scalar products of initial or stationary
probability distributions, properly normalized left or right
eigenvectors li and ri and observable vectors a and b:

γ = ⟨ ⟩⟨ ⟩p r a l, ,i i i
perturbation

0 (32)

γ = ⟨ ⟩a l,i i
autocorrelation 2

(33)

γ = ⟨ ⟩⟨ ⟩a l b l, ,i i i
crosscorrelation

(34)

The command -fingerprint outputs the amplitudes γi and
time scales ti* for all spectral components with positive
eigenvalues. This result can then be plotted into a dynamical
fingerprint plot that can be directly compared to the fingerprint
calculated from the experimental measurement. When model-
ing and sampling errors are small, one can match peaks
between experimental and simulated fingerprints. On the
basis of this match, one can assign structural processes to
experimentally detectable relaxation time scales (see Figure 7)
or even propose new experiments that optimally amplify low-
amplitude features.39,68 Note that for comparing the dynamical
fingerprint from the MSM to its experimental counterpart, the
experimental relaxation curve must somehow be transformed into
a spectral density. One way to do this, suggested in refs 39 and 68,
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is implemented in the SciMex package available at simtk.org/
home/scimex.

■ CONCLUSIONS

Markov state models are used by an increasingly wide
community to model and analyze molecular dynamics data.
EMMA provides a number of tools for Markov model con-
struction of molecular kinetics. Molecular dynamics data
can be partitioned into microstates using different clus-
tering techniques. Different methods are available to esti-
mate the Markov model transition matrix and to validate
the model by testing its ability to reproduce the long-time
dynamics of the given trajectory data. EMMA provides a
number of analysis tools enabling the calculation of
stationary probabilities, free energies, relaxation time scales,
transition pathways, and observables measured in kinetic
experiments.
In the future, we plan to support MSM software developers

by releasing API documentation that will permit direct access to
the functionality of the EMMA classes in Java. Furthermore, we
plan on extending EMMA’s functionality to match the demand
for improved tools and algorithms for the application of Markov
models to problems in molecular sciences.

■ APPENDIX: EMMA FILE TYPES
Here, a concise definition of the file formats used in EMMA is
given. Input and output files are assumed to be human readable
ascii files with the exception of trajectory files and cluster
centers. Trajectory data can be either in ASCII format (see
below), Gromacs compressed binary format (xtc), or Charmm/
NAMD binary format (dcd). Cluster centers are stored either
as ASCII (when the input data were ASCII) or dcd (when the
input data were dcd or xtc). Subsequently, the file formats are
described in detail.

ASCII Trajectory and Cluster Center Files
Given is a time-discrete trajectory z(tj) with n frames, where
j ∈ 0, ..., n − 1 denotes the frame index of the trajectory. Each
frame z(tj) is of dimension d, thus z(tj) ∈ d. The trajectory is
stored in row-wise orientation; each line of the file contains one
frame of the trajectory:

< _ _ _ > < _ _ _ >
< _ _ _ > < _ _ _ >

< _ _ _ − > < _ _ _ − >

x 1 t 0:double ... x d t 0:double
x 1 t 1:double ... x d t 1:double

...
x 1 t n 1:double ... x d t n 1:double

It is also possible to include a time column as a first column.
In this case, the option -timecolumn must be used in the

Figure 7. (a) Experimental relaxation profiles (A) can be transformed into dynamical fingerprints (B), which represent the time scales and
amplitudes of the relaxation processes in the data without having to predetermine a particular model or number of processes. On the
theoretical side, the dynamics on an energy landscape (D) also generates dynamical fingerprints (C), but here each feature can be uniquely
assigned to a particular transition or diffusion process on the landscape. If the simulation model is a sufficiently accurate model of the
experimental system, structural processes can be assigned to the experimental data by matching features in the experimental and theoretical
fingerprint. (b) Partition of the conformation space for the peptide MR121-GSGS-W into the six most stable metastable (PCCA) states and
the associated five slowest relaxations (as indicated by the transition matrix eigenvectors). Representative structures are shown in cartoon
representation with flexibility indicated by the overlay of line structures. The fluorescent states are shown bright; the dark states are shaded.
The slow relaxation processes are indicated by colored arrows. (c) Dynamical fingerprint for a fluorescence quenching experiment of MR121-
GSGS-W extracted from single molecule FCS data directly (top), and from the MD simulation Markov model (bottom). Features in the
experiment and simulation that can be qualitatively associated with each other are linked with dashed lines. The mean positions and
amplitudes of the five slowest relaxations are marked in colors and correspond to the structural transitions shown on the left. Regions that are
unreliable due to measurement or analysis artifacts are grayed out. Figures reprinted with permission from ref 39. Copyright 2011, National
Academy of Sciences.
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mm_cluster and mm_assign commands in order to avoid
interpreting the time column as coordinate:

< _ > < _ _ _ > < _ _ _ >
< _ > < _ _ _ > < _ _ _ >

< _ − > < _ _ _ − > < _ _ _ − >

t 0:double x 1 t 0:double ... x d t 0:double
t 1:double x 1 t 1:double ... x d t 1:double

...
t n 1:double x 1 t n 1:double ... x d t n 1:double

Discrete-State Trajectories
Given is a time-discrete microstate trajectory s(tj) with n
frames, where j ∈ 0, ..., n − 1 denotes the frame index of the
trajectory. Each frame s(tj) denotes a single microstate. The
trajectory is stored in row-wise orientation; each line of the file
contains one frame of the trajectory:

< _ >
< _ >

< _ − >

s 0:int
s 1:int

...
s n 1:int

Matrix Files
Dense Matrix Format. A matrix M ∈ ×r c is stored in dense

format as defined below.

< > < >
< _ _ > < _ _

>
< _ _ −

>
< _ _ > < _ _

>
< _ _ −

>

< _ − _ > < _ − _
>

< _ − _ −
>

DENSE r:int  c:int
m 0 0:double m 0 1:doubl

e
... m 0 c 1:do

uble

m 1 0:double m 1 1:doubl
e

... m 1 c 1:do
uble

...

m r 1 0:double m r 1 1:do
uble

... m r 1 c 1:
double

Sparse Matrix Format. A matrix M ∈ ×r c is stored in a
sparse format as defined below. The file contains only entries
mi,j, for which is mi,j ≠ 0.0. Such an entry is defined as i, j,
and mi,j.

< > < >
< > < > < _ >
< > < > < _ >

SPARSE r:int  c:int
row:int col:int ... m row:double
row:int col:int ... m row:double

...
(lines of the above format for every entry not zero)

Vector Files
All vectors v, e.g., a stationary distribution vector or a vector of
observables for mm_observables, are written column-wise and
in dense format. A vector v ∈ d is stored as defined below.
Currently, there is no header. The i line represents the ith entry
vi of v.

< _ >
< _ >

< _ >

v 0:double
v 1:double

...
v d:double

State Selection Files
The state selection file contains a set of microstates. A file of
this type is generated by the command mm_connectivity and

contains, if generated by the above command, these micro-
states, which belong to the largest connected component.
This file can be used for input, where the option -restrictToStates

is available, thus for the command mm_time scales, mm_transition-
matrixEstimation and mm_chapman.
Each row of the file contains one state.

< >
< >

state:int
state:int

...

Set Definition Format
A set definition file (provided as an output by mm_pcca and
required as an input to mm_chapman and mm_tpt) contains a
list of sets of microstates. The ith row of the file corresponds to
the set Si ∈ S and contains a whitespace-separated list of
microstates (arbitrarily many) belonging to that specific set.

< _ _ _ _ > < _ _ _ _ >
< _ _ _ _ >

state 1 of set 0:int state 2 of set 0:int
state 1 of set 1:int ...

...

The following is an example, which defines three sets S0 =
{2, 3, 5, 6}, S1 = {1, 4}, and S2 = {0, 7, 8, 9}:

2 3 5 6
1 4
0 7 8 9
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