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Abstract. Motivated from a molecular dynamics context we propose a sequential change point
detection algorithm for vector-valued autoregressive models based on Bayesian model selection. The
algorithm does not rely on any sampling procedure or assumptions underlying the dynamics of the
transitions, and is designed to cope with high dimensional data. We show the applicability of the
algorithm on a time series obtained from numerical simulation of a penta peptide molecule.
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1. Introduction. The macroscopic dynamics of typical biomolecular systems
is often characterised by the existence of biomolecular conformations which can be
understood as metastable geometrical large scale structures, i.e., molecular geometries
which are on average persistent for long periods of time.

In many applications a Markovian picture is an appropriate description of this
behaviour, where the effective or macroscopic dynamics is given by a Markov jump
process that hops between metastable sets representing the large scale structures,
while the dynamics within these sets might be mixing on time scales that are smaller
than the typical waiting time between the hops, cf. [13, 16, 38, 36, 30, 25].

Biophysical research seems to indicate that these metastable sets of a typical
biomolecular system can be characterised in terms of a small number of essential
degrees of freedom [1], e.g., the torsion or backbone angles of the molecule under con-
sideration. Thus, the metastable conformations can be identified from the molecular
dynamics time series projected onto these angles. However, the problem of efficient al-
gorithmic identification of the most persistent conformations from a given time series
is still a challenging open problem. There have been several set-oriented approaches
to this problem which, after careful discretization of the state space into sets, are
based on the analysis of the transition matrix that describes transition probabilities
between these sets [38, 11, 12, 9, 31]. Recently there have also been approaches which
are based on a dynamical description of the configurations by fitting local stochastic
differential equations to the observed time series. A jump in configuration space then
corresponds to the switching between different parameter sets [37, 15].

All these approaches are based upon a global analysis of a given time series. Due
to the multiscale structure it is often difficult or even infeasible to obtain a time
series from molecular dynamics which covers the macroscopic dynamics, as both sys-
tem size and required simulation time is too large. Therefore approaches based upon
distributed computing became more and more important. Art Voter [42, 43] pre-
sented an approach based on parallel simulation of uncorrelated copies of a molecular
system. However, his approach assumes that transitions between the (not known)
conformations can be detected on-line. In this article we present a statistical model
for trajectories of molecular systems and show a change point algorithm that can be
used to detect these changes on-line.

The change point detection problem has received considerable attention in the
last years, but the problem is essentially still unsolved. One of the most prominent
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approaches to change point analysis is the CUMSUM approach, where knowledge
about the distribution of the difference between prediction, assuming a model, and
observation is employed to construct a rule for detecting an abrupt change in the pa-
rameterisation, e.g., [33, 3]. CUMSUM methods are in many cases asymptotically well
understood but effectively rely on knowing the parameter-values which are changing.
As we are confronted with high-dimensional systems and therefore with the risk of
high uncertainty in parameter estimation, we have chosen a Bayesian approach, since
it can naturally deal with parameter uncertainty. However, boon and bane of Bayesian
methods is the need of specification of prior distributions for the parameters. In our
context we can not resort to environmental studies to specify prior distributions, as in
Perreault et. al. [35]. On the other hand many ways to obtain “objective” priors, like
the one presented by Girón et. al. [17], are feasible only in low dimensional parameter
settings. We employ the fractional Bayes approach of O’Hagan [32] and show that
this can be easily adapted to our setting.

Although we avoided a sampling based approaches like particle filtering [10, 14],
as we consider change points in principle as rare events which makes it difficult to
make prior assumptions on the distribution of change points, there is a similarity to
the approach proposed by Fearnhead [14] as our algorithm also relies on the integra-
bility over parameter space of the likelihood functions for linear models. Opposed to
sampling based algorithms our algorithm can only, at least in the form stated here,
handle multiple change points in a sequential form.

This paper is organized as follows. In § 2 we briefly introduce the model used to
describe conformation dynamics, consisting of linear stochastic differential equations
(SDE’s) and a jump process switching between them. In § 3 we show that discrete
observations from a single linear SDE can be described by vector-valued autoregressive
processes (VAR) processes, which makes it possible to reformulate the initial change
point problem to a change point problem of VAR-processes by transformation of the
parameter set. To prepare ground for the change point detection we also review
the maximum likelihood estimators (MLE’s) of a VAR model. In § 4 we formalise
the change point problem as a Bayesian model selection problem and comment on
general on methods to cope with vague prior distributions. In § 5 we concretize the
proposed methods to our specific problem. Finally, we summarise in § 6 the obtained
algorithm and apply it in § 7 to the problem of a diffusive particle in a three-well,
two-dimensional potential, as well as an example from molecular dynamics.

2. Modelling of Conformational Changes by Linear SDE’s with Switch-
ing Parameters. In dealing with molecular systems one is typically faced with sys-
tems of very high dimensionality, e.g., several thousands degrees of freedom (d.o.f.).
Therefore methods of model reduction are needed in the analysis of molecular systems.
An important class of such reduced models are the Langevin models and its gener-
alised variants. The derivation of these models is based on the existence of slow and
fast time-scales in the system. While the slow d.o.f.’s are modelled by some effective
potential function, the influence of the fast d.o.f.’s is modelled by a noise term [23].
In the easiest case the resulting effective dynamics is given by a first order Langevin
equation,

ż(t) = −∇zU(z(t)) + ΣẆ (t), (2.1)

where z ∈ Rd is the reduced system, U is some effective potential function, W (t) a
d-dimensional Brownian motion simulating the influence of the unresolved variables
and Σ ∈ Rd×d a positive definite noise intensity matrix.
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For the moment we will stick to the first order model given by (2.1) and comment
later (see § 3.2) on generalised models obtained by adding a memory kernel to the
noise.

Following [37, 26, 25], we linearise the non-linear stochastic differential equation
(SDE) given in (2.1) by assuming a set of local linear SDE’s, each of them representing
the dynamics within a molecular conformation, while a switching process generates
transitions between them,

ż(t) = F [i(t)]
(
z − µ[i(t)]

)
+ Σ [i(t)]Ẇ (t),

i(t) ∈ {1, . . . , s},
(2.2)

where {F i}, resp. {µi}, is a set of (d×d) force matrices, resp. d-dimensional mean vec-
tors (this is equivalent to assume local quadratic potentials Ui(z) = − 1

2 (z−µi)′F i(z−
µi) in Eq. (2.1)). If the obtained reduced model can be parameterised based on some
observed time series, one encounters the problem that, unlike z, the switching pro-
cess i(t) is not observable. In [15, 26, 37] the assumed Markovian structure of the
(hidden) switching process is used in order to employ Hidden Markov Models (HMM)
to estimate the parameters and transition probabilities of the system (2.2) using the
so-called Expectation-Maximisation algorithm.

Our focus here is different as we are interested in on-line analysis of a time series,
i.e., we want to detect transitions from one regime to another one, e.g. i(t) = j for
t0 ≤ t < t1 and i(t) = k for t ≥ t1, while observing the time series sequentially. We
will call a time point where such a change in parameterisation occurs (t1 above) a
change point.

However, in § 6.4 we show that if all change points are successfully identified over
a certain time interval, we can use the obtained information to estimate transition
probabilities of the process i(t). Before dealing with the change point detection prob-
lem we need to elaborate on parameter estimation of a single linear SDE in the next
section.

3. Parameter Estimation of a Linear SDE.

3.1. Maximum Likelihood Estimators. A natural way for parameter esti-
mation of a d-dimensional linear SDE

ż = F (z − µ) + ΣẆ ,

based upon a series of observations Z = {zt}, t ∈ {1, . . . , T}, at equidistant time
points, i.e. zt := z((t − 1)τ), with time step τ , is to investigate an appropriate
likelihood function [37]. It is well known that for a linear SDE with fixed initial
conditions the solution is a Markov process and any time discretization of the solution
is multivariate normal distributed [2]. In particular, given an observation zt, the
conditional probability density of zt+1 is a Gaussian with density function

fλ(zt+1|zt) =
1√

|2πR(τ)|
exp

(
−1

2
(zt+1 − µt)TR(τ)−1(zt+1 − µt)

)
, (3.1)

where |·| denotes the matrix determinant and the mean, resp. variance, of the distribu-
tion is given by µt := µ+ exp(τF )(zt−µ), resp. R(τ) :=

∫ τ
0

exp(sF )ΣΣ ′ exp(sF ′)ds
(depending on the argument exp(·) denotes a scalar or a matrix exponential func-
tion). The dependence on the parameter set is marked by λ = (µ,F ,Σ ). Therefore,
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a likelihood function can be constructed as

L(λ|Z) =

T−1∏
t=1

fλ(zt+1|zt).

Unfortunately, there is no known analytic solution to the maximisation problem of L
w.r.t the parameter set (µ,F ,Σ ). Another drawback, from a statistical viewpoint, is
that L is not integrable over the parameter space (e.g. if we set F = 0 (for d = 1)
integrating over µ is not possible). Therefore we can not obtain a density in parameter
space from the likelihood function. We can get around this problem by rewriting (3.1)
as,

zt+1 = N (µ+ exp(τF )(zt − µ),R)

= (I − exp(τF ))µ+ exp(τF )zt +N (0,R),
(3.2)

where N is a multivariate normal distributed random variable and I an identity
matrix of appropriate size. Eq. (3.2) reveals the autoregressive structure of order one,
VAR(1), of the time series of discrete observations. Defining,

Φ :=
(
(I − exp(τF ))µ exp(τF )

)
∈ Rd×(d+1)

X :=

(
1 . . . 1
z1 . . . zT−1

)
∈ R(d+1)×(T−1)

Y :=
(
z2, . . . ,zT

)
∈ Rd×(T−1)

ε :=
(
N (0,R), . . . ,N (0,R)

)
∈ Rd×(T−1),

allows to write (3.2) in a compact form,

Y = ΦX + ε.

Transforming the parameter set λ to λ̃ = (Φ,R) leads to a likelihood function,

L(λ̃|Z) =

(
1√
|2πR|

)(T−1)

exp

(
−1

2
tr((Y − ΦX )(Y − ΦX )′R−1)

)
, (3.3)

for which there are analytic MLE’s Φ̂ and R̂ given by [24, 29],

Φ̂ = YX ′(XX ′)−1 and R̂ = (Y − Φ̂X )(Y − Φ̂X )′/(T − 1). (3.4)

Therefore transforming the parameter set to λ̃ has the advantages that (i) the distri-
bution of the discrete observations is fully characterised by λ̃, (ii) analytical MLE’s
are available and (iii) the likelihood function is integrable over the parameter space
(c.f Appendix A).

3.2. Higher Order VAR Processes to Include Memory Effects. Consid-
ering the discrete observations of a linear SDE as realizations of a VAR(1) process
naturally raises the question if there is a consistent interpretation for using a higher
order model, e.g. VAR(p), that is

zt+1 = A0µ+

p∑
i=1

Aizt−i+1 +N (0,R). (3.5)
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This process is obviously not a Markov process anymore since it exhibits a memory lag
of p steps into the past. In fact, Eq. (3.5) can be interpreted as a time discretization
of a generalised Langevin process

ż(t) = −∇zU(z(t))−
∫ t

0

γ(t− s)z(s)ds+ ΣẆ (t), (3.6)

under the assumption of a quadratic potential function, as above, and a piecewise
constant memory kernel γ with finite support. For a more detailed presentation we
refer to [19].

If a fixed order p is assumed estimation of the parameters of the VAR(p) process
is analogue to that of the VAR(1) process, we only have to extend the definitions of
the data matrices X and Y to

X :=


1 . . . 1
z1 . . . zT−p
...

...
zp . . . zT−1

 ∈ R(dp+1)×(T−p)

Y :=
(
zp+1, . . . ,zT

)
∈ Rd×(T−p).

The estimator Φ̂ in (3.4) now estimates,

Φ =
(
A0µ A1 A2 . . . Ap

)
∈ Rd×(dp+1),

The estimator of R̂ has to be adusted to the growing number of initial points needed
for higher order and becomes,

R̂ = (Y − Φ̂X )(Y − Φ̂X )′/(T − p).

3.3. Estimation of the Model Order. There are several criteria and tests to
estimate the order p of a VAR process from a given time series, for a discussion of
these we refer to [24, Chapter 4.3]. In our application example we use the Schwarz
criterion which chooses the order p such that the function

SC(p) = log |R̂(p)|+ log T

T
pd2, (3.7)

where R̂(p) is the MLE of R under the assumption of a VAR(p) process, is minimised
within a predefined range 0, . . . , pmax. The first term of the Schwarz criterion min-
imises the noise term in the model while the second penalises the number of estimated
parameters which grows with a higher order model. It can be shown that the Schwarz
criterion is a consistent estimator of the order of a VAR process. We are aware that,
unfortunately, the Schwarz criterion is often not optimal in finite sample situations.
We do not want to elaborate on this subject, but only remark that the order of
the VAR process considered here is essentially the memory length of the molecular
process, which might be known or estimated by methods specific to the MD context.

3.4. Computation of the Estimators. The analytic estimators given in (3.4)
are in general not used for computation of the parameters, as the matrix inversion
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may be unstable. Instead one can use the moment matrix,

M = M (Z) : =

T∑
i=1


1
zi
...

zi+p

(1 z′i . . . z′i+p
)

=

(
XX ′ XY ′

YX ′ YY ′

)
=:

(
M11 M12

M21 M22

)
.

(3.8)

The moment matrix is an important object as it contains all statistical relevant in-
formation about the observed process (under the assumption of a VAR(p) process).
This can be seen by rewriting the likelihood function in terms of the blocks in M :

L(Φ,R|Z) = L(Φ,R|M) =

(
1√
|2πR|

)m
· exp

(
−1

2
tr((M22 −M21Φ′ − ΦM 12 + ΦM 22Φ′)R−1)

)
, (3.9)

where m denotes the upper left scalar entry of M which equals T − p, i.e., the length
of the observed time series minus p initial points. We will employ the notation m =
m(Z) below to avoid the indices for the length of different time series. We will also
subsequently use the notation f(Z|Φ,R) ≡ L(Φ,R|Z) if we want to highlight Eq. (3.9)
as a density in data space. The MLE’s can be obtained from the moment matrix M
in a stable way via a Cholesky factorisation which gives an upper triangular matrix

U =

(
U11 U12

0 U22

)
,

such that,

M =

(
XX ′ XY ′

YX ′ YY ′

)
=

(
U ′11U11 U ′11U12

U ′12U11 U ′12U12 + U ′22U22

)
= U ′U .

After substituting the Cholesky factorisation into the estimators (3.4) one obtains,

Φ̂ = (U−111 U12)′ and R̂ =
1

m
U ′22U22. (3.10)

In case of an ill-conditioned moment matrix M one can add a regularization matrix to
ensure a well-posed Cholesky factorisation. A possible choice is to use M + δdiag(M )
instead of M , with a small parameter δ depending on the dimensionality of the prob-
lem and the machine precision, cf. [28].

4. Bayesian Model Selection.

4.1. Change Point Models. In order to detect changes in the parameterisa-
tion of the underlying VAR model we utilise a Bayesian approach similar to the one
presented in [35] for the univariate and independent distributed case. Assume that
we have observed a sequence of data points,,

Z = {z1, z2, . . . zT }, zi ∈ Rd,
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for which we presume a VAR(p) model as the data generating mechanism (DGM). Our
aim is to test within a window from t1 to t2 for a change point in the parameterisation.
We do not test from 1 to T as we need at least (d + 1)p + d + 1 observations in one
dynamical regime (this assumption will become evident later,) i.e., one could set
t1 = (d + 1)p + d + 2 and t2 = T − (d + 1)p − d − 2. In practice, however, all our
experience indicates that it is highly advisable to increase t1.

Thus we have n := t2− t1 + 1 candidate change points giving rise to n+ 1 models
Hi, 0 ≤ i ≤ n, where,

Hi :=


Z is generated by only one VAR(p)-DGM, for i = 0.

Z1 = Z1(i) = {z1, . . . ,zt1+i−1} and

Z2 = Z2(i) = {zt1+i−p, . . . ,zT }
are generated by distinct VAR(p)-DGM’s. for 1 ≤ i ≤ n.

(4.1)

Note that the Z1 and Z2 are overlapping, since the last p points of Z1 are used as
initial conditions for Z2.1

The probability of each model given the observations Z can be computed via the
Bayes formula,

P[Hi|Z] =
P[Z|Hi]P[Hi]
n∑
j=0

P[Z|Hj ]P[Hj ]

, (4.2)

where,

P[Z|Hi] =


∫
f(Z|Φ1,R1)π1(Φ1,R1)dΦ1dR1 if i = 0 ,∏

i=1,2

∫
f(Zi|Φi,Ri)πi(Φi,Ri)dΦidRi if i > 0,

with prior distributions π1 and π2 on the parameters.
With (4.2) at hand, we assume now a so-called M -closed perspective [5, Chapter

6], i.e., we believe that the true model is within the models stated above and we no
other model is possible. In this scenario, we can easily evaluate the probability of a
change point as,

P[change|Z] =

n∑
i=1

P[Z|Hi]P[Hi]

n∑
j=0

P[Z|Hj ]P[Hj ]

. (4.3)

In order to evaluate these probabilities we must specify the prior probabilities for the
models, i.e., P[Hi], and the parameters, i.e. π1 and π2 and, of course, evaluate the
above integrals.

A natural choice to include our ignorance on a parameter change before observing
data is to assign a prior probability of 1

2 to the event of a change and assign a uniform

1Of course one has to remove the overlap if Z1 and Z2 are not directly subsequent, which does
not affect any of the subsequent considerations.
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probability to all the other models,

P[H0] =
1

2
, P[Hi] =

1

2n
, 1 ≤ i ≤ n.

More problematic is the choice of prior distributions for the parameters of the VAR
models under ignorance. A common choice is the usage of the diffusive prior, which
consist of a flat prior on Φ and a Jeffrey’s prior on R, so that

πD(Φ, R) ∝ |R|−
d+1
2 . (4.4)

A discussion of this prior and other possibilities is given in [29, 41]. Although it can
be easily shown that under the diffusive prior the posterior distribution,∫

p(Z|Φ,R)πD(Φ,R)dΦdR,

is proper, i.e., normalisable, the choice is problematic for model comparison, as the
prior itself is unproper: We can set,

π1 ≡ π2 ≡ cπD,

with an arbitrary chosen constant c. This means that the model probabilities (4.2)
as well as probability of change (4.3) are also defined up to a constant,

P[change|Z] = c ·
∑n
i=1P[Z|Hi]P[Hi]∑n
j=0P[Z|Hj ]P[Hj ]

.

The constant does not cancel out of the fraction as there are parameters which are
not common to all models, i.e., the parameters for the VAR model after a change has
occurred. To emphasise: with the use of an unproper prior we can compare different
change point models, since the indeterminate constants do cancel out, but we can not
compare the probability between change and no-change.

This general obstacle of Bayesian model selection can be tackled by the usage of
so-called “objective” Bayes factors [21], which we are going to introduce in the next
section.

On the other hand, note that it is possible to split the change point detection
problem into two parts:

1. Identify the most likely change point under the assumption that there is one,
this requires specifications of parameter priors up to a constant only.

2. Compare the probability of change at the identified possible change point
with the probability of no change. Now we have to specify a proper prior for
the parameters after the change to avoid arbitrariness.

In fact, this approach is favourable from an algorithmic viewpoint as it is easier
to exclude outliers from the change/no-change decision (see § 6) and the M -closed
perspective is somewhat arbitrary anyway as the number of models obviously depends
upon the defined window [t1, t2]. We now have to compare a change model with a
(single) no-change model, i.e., we have to compute the probability,

P[change|Z] =
P[Z|Hc]P[Hc]

P[Z|Hc]P[Hc] +P[Z|H0]P[H0]
, (4.5)

where Hc is the model of a change at the pre-computed candidate change point c.
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4.2. Bayes Factors. The Bayes factors are a common way to compare posterior
probabilities of two distinct models within a Bayesian setting. Given two models Hi

and Hj , the ratio

P[Hi|Z]

P[Hj |Z]
=
P[Z|Hi]P[Hi]

P[Z|Hj ]P[Hj ]
, (4.6)

is called posterior odds. A high ratio means that model Hi is more probable in the
light of data the Z than Hj . The Bayes factor Bij is defined as

Bij =
P[Z|Hi]

P[Z|Hj ]
.

Eq. (4.6) reveals the meaning of the Bayes factor: it defines how the data Z transforms
the prior oddsP[Hi]/P[Hj ] to the posterior odds, i.e. in which direction the data shifts
our prior beliefs. The Bayes factor is then obtained by integration of the likelihood
function over the parameter space [7, 21]. Eq. (4.3) can be reformulated in terms of
the Bayesian factors, as

P[change|Z] =

n∑
i=1

Bi0P[Hi]

n∑
j=0

Bj0P[Hj ]
. (4.7)

This expression can can be interpreted as an assembly of a sequence of tests against
the null hypothesis of no change [17].

4.3. Non-informative Priors in Model Selection Problems. The Bayes
factors do not resolve the problem with the unproperness of the non-informative
standard priors, since they become also arbitrary when used with non-proper priors.
Subsequently we present three approaches to tackle this problem by deriving proper
priors in a data driven way.

4.3.1. Partial Bayes. A way to obtain a proper prior distribution for some
parameter θ despite of ignorance is to split the data Z into two parts Zp and Z−p and
use one part (Zp) as a training set to specify the prior while the other part (Z−p) is
used for testing or analysis, i.e., we set,

πPB(θ) ∝ πD(θ)L(θ|Zp),

where πD(θ) denotes an improper parameter prior. The size of the training set is
usually taken as the minimal size to guarantee properness of the resulting prior. A
problem is the arbitrariness in the choice of which data points are taken into the
training sample. A proposal to overcome this arbitrariness is given by Berger [4], who
suggested to average over all possible minimal training sets, the so-called intrinsic
Bayes approach. The intrinsic Bayes approach can be elegantly expanded if nested
models are tested, [17, 8], but has the drawback that computation, even with sampling
procedures, of intrinsic Bayes factors is often hard, resp. feasible only for a restricted
class of models.

4.3.2. Fractional Bayes. The fractional Bayes approach, put forward by
O’Hagan [32], is based on the idea to use a fraction of the likelihood function, instead
of using part of the data, to specify a prior, i.e., to set

πFB(θ) ∝ πD(θ)Lb(θ|Z),
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with a constant b ∈]0, 1[. The likelihood function used for decision making is then
transformed to L̃(θ|Z) := L(1−b)(θ|Z), thus becoming flatter as a fraction of the
information is already used to define the prior distribution. The question of the
right choice of a training set is elegantly avoided, as a fraction of all data is used.
A reasonable choice of b is the minimal value which guarantees properness of the
resulting prior, which corresponds to the choice of a maximal spreaded distribution
centered by the data.

4.3.3. Imaginary Minimal Experiment. Another approach presented by
Spiegelhalter and Smith [39] is the use of a so-called imaginary minimal experiment.
Suppose there are two models to be compared and in at least one of them there is
a parameter for which we can only specify an improper non-informative prior. Then
the resulting Bayes factor is given by

B01 = c ·
∫
f1(Z|θ1)π1(θ1)dθ1∫
f2(Z|θ2)π2(θ2)dθ2

,

with c an unknown constant. The idea of an imaginary minimal experiment is to fix
the undetermined constant c by imagination of a data set ZI which is just big enough
to discriminate between the two models, thus minimal, but gives maximal support for
one of the two models. The reasoning then is that the Bayes factor should favour the
supported model but only minimally, due to the smallness of the data set, so that

B01 ≈ 1⇒ c ≈
∫
f2(ZI |θ2)π2(θ2)dθ2∫
f1(ZI |θ1)π1(θ1)dθ1

.

It has been argued that the definition of an imaginary minimal experiment is sufficient
only in rather special cases [32]. Furthermore, it is not clear that the claim B01 ≈ 1 is
an appropriate choice in all cases. But, as we will show, in the change point detection
framework as presented, the imaginary minimal approach seems to be sensible.

5. Implementation of the Objective Bayesian Strategies. In the previous
sections we collected all necessary ingredients for a Bayesian change point detection,
so now we make more precise how to do this in our given scenario. As mentioned
before, we split the change point detection problem in two parts; first, identify a
possible candidate change point and, second, decide whether this point is actually a
change point.

The key ingredient which allows us to employ the approaches stated above is
that our model allows analytical integration of the likelihood function over parameter
space. Assume for the moment an arbitrary time series Z of length T , and the
corresponding moment matrix M = M (Z). Since M contains all statistical relevant
information of the data we can write p(M |Φ,R) instead of p(Z |Φ,R) = L(Φ,R|Z ), as
given in Eq. (3.9). Following the notation introduced in § 3.4 we denote by U11 and
U22 the corresponding diagonal blocks of the triangular matrix U obtained from the
Cholesky factorisation of M , and by m := M11 = T − p the upper left scalar entry of
M . Then (see Appendix A),

I[M ] :=

∫
p(M |Φ,R)πD(Φ,R)dΦdR =

∫
L(Φ,R|M )πD(Φ,R)dΦdR

=π
d(d−1)

4 |U11|−d|
√
πU22|−(m−dp−1)

d∏
j=1

Γ

(
m− dp− j

2

)
,

(5.1)
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where Γ denotes the Gamma function and | · | the matrix determinant. Note that the
integral exist only if m > d(p+ 1)⇔ T > d(p+ 1) +p, therefore at least (d+ 1)(p+ 1)
subsequent points before and after a change point are needed for evaluation. From
Eq. (3.9) another property of theM -matrices can be deduced, namely that information
coming from different time series (parts), e.g., Z1 and Z2 can be combined by just
adding the moment matrices, since

L(Φ,R|M (Z1))L(Φ,R|M (Z2)) = L(Φ,R|M (Z1) + M (Z2)). (5.2)

5.1. Identification of a Change Point Assuming its Existence. Using
the notation introduced in § 4, the aim is to calculate the probabilities of potential
positions of a candidate change point,

P[Hi|Z] ∝
∫
p(Z1|Φ,R)π1(Φ,R) dΦdR

∫
p(Z2|Φ,R)π2(Φ,R)dΦdR, (5.3)

with 1 ≤ i ≤ n = t2 − t1 and

Z1 =Z1(i) := {z1, z2 . . . , zt1+i−1},
Z2 =Z2(i) := {zt1+i, zt1+i+1 . . . , zT }.

Note that t1 must be larger or equal than (d + 1)(p + 1) and t2 smaller than T −
2− (d+ 1)(p+ 1), so that each segment contains at least (d+ 1)(p+ 1) data points,
since otherwise the integrals can not be evaluated. We can include information which
might be already obtained from a previous observation Z0 into the prior distribution
π1 by setting

π1(Φ,R) ∝ πD(Φ,R)L(Φ,R|Z0),

which is formally a partial Bayes approach, however, the motivation is not to make
the prior distributions proper, as at this stage proper priors are not essential, but to
include prior information from previous observations. Otherwise we take the diffuse
prior for both parameter sets, i.e.,

π1(Φ,R) = π2(Φ,R) ∝ πD(Φ,R).

Using (5.1) and (5.2) we have,

P[Hi|Z] ∝ I[M (Z0) + M (Z1)]I[M (Z2)], (5.4)

with prior observations Z0. If there are no prior observations we set M (Z0) to 0 .
Thus it is possible to determine the most probable change point ĉ analytically, by
choosing

ĉ = argmax
1≤i≤n

P[Hi|Z],

even if we do not know if this is an actual change point. An example is depicted in
Fig. 5.1, where it can be seen how a change point can be identified by locating the
maximum of the conditional density, but that one still has to decide if this maximum
really belongs to a change point. This can be done by Fractional Bayes or the Imag-
inary Minimal Experiment as exemplified below. In general, however, we could use
any method for our decision which seems to be appropriate. Therefore splitting the
change point analysis has the big advantage that the difficult problem, i.e., the model
decision problem, is now separated from the problem of locating the most probable
change point.
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Figure 5.1. Left: the top panel displays a 2-dimensional trajectory against time artificially
generated from a VAR(1) process with a switch in the mean occurring at t = 311. Below is the
probability density of a change point conditional to its existence. The margin lines left and right of
the panel mark the test interval [t1, t2]. Right: An example where no change point occurs in the
trajectory. Still we obtain a candidate change point.

Fractional Bayes. The fractional Bayes approach can be easily implemented by
noting from (3.9) that

Lb(Φ,R|M )

=

(
1√
|2πR|

)bm
exp

(
−1

2
tr((bM22 − bM21Φ′ − ΦbM12 + ΦbM22Φ′)R−1)

)
= L(Φ,R|bM ), (5.5)

so that, using the notation introduced above, we have∫
Lb(Φ,R|Z)πD(Φ,R)dΦdR = I[bM (Z)].

Also, using (5.2),∫
L(Φ,R|Z1)L(1−b)(Φ,R|Z2)πD(Φ,R)dΦdR = I[M (Z1) + (1− b)M (Z2)].

Setting the prior probabilities for change and no change equally to 1
2 the quantity to

compute reads,

P[change|Z] =
P[Z|Hĉ]

P[Z|Hĉ] +P[Z|H0]

=

∏
i=1,2

∫
pi(Zi|Φ,R)πi(Φ,R)dΦdR∏

i=1,2

∫
pi(Zi|Φ,R)πi(Φ,R)dΦdR +

∫
p0(Z|Φ,R)π1(Φ,R)dΦdR

.

We leave π1 ∝ πD unproper, since the normalisation constant cancels out anyway,
or with prior observations π1(Φ,R) ∝ πD(Φ,R)L(Φ,R|Z0), but for π2 we use the



Change Point Detection 13

fractional Bayes approach,

π2(Φ,R) :=
πD(Φ,R)Lb(Φ,R|Z2)∫

πD(Φ,R)Lb(Φ,R|Z2)dΦdR
.

Since some data is used to specify the prior distribution, we can not use all of it for
calculation of the probability, i.e., we set

p1(Z1|Φ,R) = L(Φ,R|Z1),

p2(Z2|Φ,R) = L(1−b)(Φ,R|Z2),

p0(Z|Φ,R) = L(1−b)(Φ,R|Z2)L(Φ,R|Z1).

Assembling all the pieces we obtain, in compact notation, the probability,

P[change|Z] =
I[M(Z1)]I[M(Z2)]

I[M(Z1) + (1− b)M(Z2)]I[bM(Z2)] + I[M(Z1)]I[M(Z2)]
. (5.6)

The minimal value of b is determined by the minimal value for which

I[bM (Z2)]

is defined (cf. Appendix A). Therefore the minimal value of b is given by

bmin =
d(p+ 1) + 1

m(Z2)
,

which means that the upper left entry of bM (Z2) just meets the threshold of d(p +
1) + 1.

Imaginary Minimal Experiment. To employ the Spiegelhalter/Smith approach we
have to define an adequate imaginary minimal experiment ZI . If we want to decide if
Z2 is generated by the same VAR model as Z1 we need, as stated above, a minimum
of (d + 1)(p + 1) observations, otherwise integration over the parameter space is not
defined anymore. Maximal support for the “no change”-model would be the same
observed statistic in both observed time series, i.e.,

M (Z1)

m(Z1)
=

M (ZI)

m(ZI)
⇔ M (ZI) =

dp+ d+ 1

m(Z1)
M (Z1).

With this definition of M (ZI) we can fix the undetermined constant in the Bayes
factor as

cI =
I[M (Z1) + M (ZI)]

I[M (Z1))]I[M (ZI)]
,

and obtain the Bayes factor

B
(i)
I = cI ·

I[M (Z1)]I[M (Z2)]

I[M (Z1) + M (Z2)]
.

Substituting the obtained Bayes factor in (4.7) gives an expression for the change
probability:

P[change|Z] =
I[M(Z1) +M(ZI)]I[M(Z2)]

I[M(Z1) +M(Z2)]I[M(ZI)] + I[M(Z1) +M(ZI)]I[M(Z2)]
. (5.7)
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Coming back to the example given in Fig. 5.1, we can now compute the probabil-
ity of a change for the identified candidate change point in both time series. Then
Z1 becomes the part of the analysed time series before the candidate change point
(where the conditional change point probability is maximised,) and Z2 the part after
the candidate change point. Computation of the change probabilities (5.6) and (5.7)
corresponding to these segments for both time series gives the following results.

P[change|Z]
Time series 1 Time series 2

(left in Fig. 5.1) (right in Fig. 5.1)

Fractional Bayes (5.6) 1 0.0217

Imaginary Experiment (5.7) 1 0.0226

We see that both procedures yield the right result, and reject a change point
where no change occurred (time series 2) while accepting the true change point (time
series 1). We choose in what follows the fractional Bayes approach since it worked sat-
isfactory in various test cases, is computational cheap, includes parameter uncertainty
and is less speculative than the imaginary minimal experiment approach.

6. Algorithmic Procedure. In this section we state the proposed algorithmic
procedure derived by the considerations above. Before we do this, we will comment
on how to cope with effects due to the finiteness of the time series the change point
analysis is applied to. After stating the core algorithm, we will also comment on post
processing possibilities, followed by showing two examples in the next section.

To make the following sections more readable we introduce the following notation:
Given some time series (segment) {zt0 , zt0+1, . . . ,zt1} we define by M(t0, t1) the
corresponding moment matrix

M(t0, t1) :=

t1∑
t=t0+p


1
zt−p

...
zt

(1 z′t−p . . . z′t.
)

Obviously the definition depends on VAR order p, but we omit an appropriate index
if the p is evident from the context.

6.1. Margin Effects. A systematic problem that occurs when change point
detection based upon parameter estimation is applied to finite a time series is that, if
the segments of the time series are too short, the information about the parameters
in these segments can be misleading. An illustration of this effect is given in the
left panel of Fig. 6.1. Therefore, if a time series with no change point is analysed,
the change point algorithm will tend to detect change points close to the ends of the
time series. The key point is that this effect can not be overcome just by regarding
parameter uncertainty, since the information contained in a short time series segment
is not just insufficient but also misleading. An example is given in the right panel of
Fig. 6.1. Here a trajectory generated by a VAR model is shown together with the
function,

f(i) = I[M1(i)]I[M2(i)],

M1(i) = M(1, i), M2(i) = M(i+ 1, T ),
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Figure 6.1. Left: A realisation of an artificially generated one dimensional VAR(1) process is
plotted. If parameters are estimated only from data points left to the red line they will significantly
differ from parameters obtained using the whole time series. Right: In the upper part of the figure
a two dimensional trajectory from a VAR(1) process is plotted (blue lines). Below the black line the
logarithm of f (see text) is shown (dashed red line, arbitrary scale). Also shown is the probability of
a change point for each possible change point that would be obtained by using the fractional Bayes
approach (red line). The vertical lines border the minimal length of a time series segment, here
(d + 1)(p + 1) = 6. It can be seen that in the margin regions the procedure would always detect a
change point.

which determines the candidate change points when no prior information is available,
cf. § 4.3. It should not be surprising that the candidate change points are located at
the margins of the time series. But if we look at the probability that a given candidate
change point is a real change point, according to (4.7), we see that it is, as a function
of candidate change points, close to one at the margins. To prevent this effect one
could add a penalty function for change points close to the border. We implement this
strategy by testing for change points only within a window which leaves the margins
large enough. Note that we do not need a left margin if prior information about the
parameters is included from prior observations, i.e., if another moment matrix Mp is
at hand such that we can set,

M1(i) = Mp +M(1, i).

6.2. Short Time Deviations - Recrossings. When applying change point de-
tection to real data one naturally has to handle with outliers or short time deviations
(for a short period of time the dynamical behaviour of the time series is different from
that before and after). It is often the case that one does not want to detect such short
time deviations since we are interested only in persistent changes of the dynamical
behaviour. One can avoid detection of deviations shorter than some predefined time
tb ∈ N in the following way: Having identified a candidate change point c, one calcu-
lates the probability of a change occurring at that position based upon the matrices
M1,M2,M3 which contain the sufficient statistics of the time series before, after and
without a change point,

M1 = M(1, c− 1), M2 = M(c, T ), M3 = M1 + M2.

Instead of using these matrices one can exclude the information contained in the
trajectory for tb steps after the candidate change point by using, instead of M2 and
M3,

M̃2 = M(c+ tb, T ), M̃3 = M1 + M̃2.



16 E. Meerbach, J.C. Latorre, Ch. Schütte

Figure 6.2. A one dimensional artificially generated time series is shown (blue) which fluctu-
ates mainly in [0, 1.5], at around t = 400 there is an obvious rise but after approx. 50 steps it seems
to regain the beforehand behaviour. The (logarithm of the) conditional change point distribution (red
line) clearly identifies a candidate change point at the beginning of the rise. The change probability
at this candidate change point is P2 = 0.99. If a window as described in the text is used to mask out
a part of the trajectory after the candidate change point (gray shaded) the change probability drops
to P1 = 0.48, as after the window the behaviour of the trajectory is similar to that before.

The rationale behind this strategy is that only if the dynamical behaviour after the
potential change point stays different longer than the predefined time tb, it will affect
the calculated probabilities because the dynamical information between c and tb is
not used. For an example see Fig. 6.2.

6.3. Algorithm. We summarise the results obtained so far in the basic algo-
rithmical procedure stated in Algorithm 1.

Note that in the implementation of this algorithmic scheme we substituted quan-
tities by their logarithmic values where suited to avoid numerical problems. A few
comments on the parameters:

• Note that the most important parameter is tm, as it determines the resolution
of the change point algorithm. Defining a minimal segment size of course
requires that there is no change point within the first tm data points.

• The parameter tb has a double role, first it is used as described in § 6.2
to exclude short deviations from the change point detection and, second, it
excludes candidate change points which are close to the right margin of the
test window, because the change might have had happen at the very end
of the time series (where it was not tested due to margin effects). This is
unproblematic since the change point would be detected in the next cycle.

• In practice, it turns out that the threshold parameter α should be chosen
rather large to avoid false positives, fundamental changes will reflect in a
change probability close to one anyway.

For a long time series the stated algorithm can become quite ineffective since,
after every new received data package, the loop (1.1) in Algorithm 1 to determine a
candidate change point is executed over all data points received so far. In practice
this can be overcome by testing for a candidate change point only over the last wmax
received data points, and add the information content of the beforehand received data
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Algorithm 1: Sequential change point detection

Parameter: tm ∈ N (minimal segment size)
tu ∈ N (length of update window)
tb ∈ N (length of buffer zone)
α ∈]0, 1[ (threshold value for detection of a change)
p (VAR order) or pmax (maximal VAR order)

Input : A d-dimensional time series Z = {z1, z2, . . .} with sequen-
tial access.

If p is not given estimate p ∈ {0, 1, . . . , pmax} based on z1, . . . ,ztm .
MI ← M (1, tm)
tE ← 2tm + tu
P[change]← 0
while P[change] < α do

Determine candidate change point between tm and tE − tm:1.1

for k ← p+ 2 to tE − 2tm do
M1 ← M (tm + 1, tm + k) + MI

M2 ← M (tm + k + 1, tE)
lk−p−1 ← I[M1]I[M2] (cf. (5.4))

ĉ = tm + p+ argmax
k

lk

If the candidate change point is not too close to the margin compute its
probability:
if tE − ĉ > tb + tm then1.2

M1 ← M (tm, ĉ) + MI

M2 ← M (ĉ+ 1 + tb : tE)1.3

b← (dp+ d+ 1)/(M2(1, 1))

P[change] =
I[M1]I[M2]

I[M1 + (1− b)M2]I[bM2] + I[M1]I[M2]
, (cf. (5.6))

tE ← tE + tu

Output: The change point ĉ and a corresponding moment matrix M1

for the identified segment.

points to the moment matrix MI .
In order to detect multiple change points the algorithm can be used multiple

times, starting each time from the last detected change point again. In applications it
is often advisable to start the algorithm again with a certain lag to the last detected
change point in order to prevent that the transition phase between different dynamical
phases spoils the statistics.

Note that after the information of a part of the time series is stored in a moment
matrix M , this part can be completely discarded as all statistical relevant information
is now stored in M . Therefore the whole approach is suited to handle with large data
sets as it occurs in molecular dynamics simulations, see § 7.2 for an example.

6.4. Post-processing. If the change point algorithm is applied repeatedly on a
time series to obtain multiple change points, the procedure will finally generate a se-
quence of change points c0 := 1, c1, . . . , cs−1, cs := T +1 and therefore a segmentation
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of a given time series Z, whose segments are given by

Zi = zci−1
, . . . ,zci−1, 1 ≤ i ≤ s,

and the corresponding moment matrices M1, . . . ,Ms which contain the statistically
relevant information. These matrices can be used for post processing purposes, e.g.,
to drop falsely detected change points or to group the data globally.

For this purpose we define a distance matrix D , measuring the distance between
all identified segments Z1, . . . , Zs of the time series, according to the probability that
the segments are generated by the same VAR model:

Dij =


I[Mi]I[Mj ]

I[bMj ]I[Mi + (1− b)Mj ] + I[Mi]I[Mj ]
, if mi ≥ mj

I[Mi]I[Mj ]

I[bMi]I[Mj + (1− b)Mi] + I[Mi]I[Mj ]
, if mi < mj ,

b =
dp+ d+ 1

min(mi,mj)
,

(6.1)

with 1 ≤ i, j ≤ s and mi the upper left entry of Mi. So the distance is just the proba-
bility of a change point, where the change point has to be between the two segments.
To make the distance matrix symmetric and to avoid waste of information from the
shorter segment we always use the longer segment to extract prior information about
the parameters.

In order to exclude falsely detected change points one should re-test for a change
point between adjacent segments, i.e., generate a new set of change points c̃0, . . . , c̃k
and a corresponding set of moment matrices (M̃1, . . . , M̃k) using the distance defined
in (6.1) by Algorithm 2.

Algorithm 2: Exclusion of falsely detected change points

Parameter: c̃0 = 1
j = 1

for i = 1 to s− 1 do
if Di,i+1 < α then

M̃j = Mi + Mi+1

else
c̃j = c̃i
j = j + 1
M̃j = Mi

c̃j+1 = T

Segments may be merged again, even if the same criteria is used as in the change
point Algorithm 1, due to the fact that the decision is now based on more data points.

Furthermore, the obtained distance matrix can be used to cluster the data, i.e. to
merge different time series segments (in fact one would first exclude the falsely de-
tected change points and then set up a full distance matrix with the set of merged
moment matrices), e.g. by an hierarchical clustering algorithm [20]. Therefore, the
distance between two clusters C1 and C2 is given by the maximal distance between
any member of one cluster to any member of the other cluster:

d(C1, C2) = max
Mi∈C1
Mj∈C2

Dij ,
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Figure 7.1. Left: A surface plot of the threehole potential V (x, y) as given in (7.1). Middle:
The invariant measure is proportional to exp(−βV ), which is plotted here for β = 0.5 (red marks
larger values of the measure while blue corresponds to nearly zero values). Right: The invariant
measure for a lower temperature (β = 2).

alternatively one can define the distance between clusters by the minimal distance
between any two members. The hierarchical structure appears by gradually raising
the maximal distance dmax allowed for objects within a cluster. If dmax = 0 all
moment matrices M1, . . . ,Ms define their own cluster. By raising dmax eventually
two segments are allowed to form a cluster, further on other segments may join the
cluster or define their own cluster or two clusters may merge to a single cluster. After
merging the moment matrices belonging to the same cluster wrt. dmax one would
iterate the process until there is no more merging of moment matrices, an example is
given in § 7.2.

7. Applications to Time-series Analysis.

7.1. The Three-well Potential. This example is the diffusion of an over-
damped particle in a two-dimensional potential, so-called the three-well potential,
which is defined as,

V (x, y) =− 3 exp(−x2 − (y − 5
3 )2)− 5 exp(−(x− 1)2 − y2)

− 5 exp(−(x+ 1)2 − y2) + 3 exp(−x2 − (y − 1
3 )2)

+ 0.2x4 + 0.2(y − 1
3 )4.

(7.1)

It exhibits three minima, a shallow one at approximately (0, 1.7), two deep ones at
approximately (±1, 0), and a maximum at approximately (0, 0.3). The fourth order
term in (7.1) again embeds the structure in a basin with unbounded walls. This
potential has been studied in [27, 34] to analyse the dynamics of diffusion processes
within it, which are given by,

ż(t) = −∇zV (z(t)) +
√
βẆ (t), (7.2)

with z = (x, y). The invariant measure of (7.2) is the Boltzmann-Gibbs distribution,
which is proportional to exp(−βV ). It can be seen in Fig. 7.1 that at lower tem-
peratures the invariant measure concentrates in the minimal potential energy basins,
while at higher temperatures it is more spreaded.

A linear SDE is expected to be a good approximation of the diffusion process
(7.2) as long as it moves in the vicinity of any of the potential energy basins, since
in these regions the shape of the potential energy surface is approximately quadratic.
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This approximation definitely breaks down if the process switches from one basin to
another basin, which it (rarely) does due to the random force. Therefore, the three-
well potential should be a good test system of our change point detection algorithm.
In fact, in all our trials it worked very satisfactory. As an illustration a segment
of a trajectory, obtained via an Euler-Maryuama integration of (7.2), with a time
discretisation step τ = 0.01 and the temperature parameter set to β = 2, is depicted
in Fig. 7.2. The change point detection was done with the parameters set to tm =
tb = tu = 50, p = 1 and α = 0.7. Note that since hops between potential wells are
rare events, the testing, as described in § 6, was restricted to the last 750 data points
of the time series for each cycle. Also note that after detection of a change point ĉ
the detection of a subsequent change point starts at ĉ+ tb to allow the trajectory to
relax to a new potential well after leaving one.

7.2. Penta-alanine. In order to demonstrate the applicability of the preced-
ingly presented algorithm to segment time series in a similar way as the HMM-VAR
algorithm does (see § 2), we present an example from molecular dynamics (MD).
We will use simulation data of an artificial penta-peptide, consisting of a capped
chain of five amino-acids: glutamine-alanine-phenylalanine-alanine-argenine, shown
in Fig. 7.3. The peptide is an interesting object to study, since it is a small molecule
able to form salt bridges, an important and still not well understood matter. We will
not concern with this subject but rather use a trajectory of the peptide for demon-
stration purposes of our algorithm only. The trajectory was obtained from an MD-
simulation in vacuum using the NWChem software package [6, 22]. The integration
time step was set to 1 femtosecond, while the coordinates were written out every 200
femtoseconds. The trajectory we use consists of 100000 points thus covering a time
span of 20 nanoseconds in total. What can be seen in the trajectory is the folding of
the peptide from a spread out structure where only the two long side chains interact
(the salt bridge) to a more compact and very stable structure, see Fig. 7.3.

Since the dimension of the time series is higher than in our two dimensional
example before we choose more conservative parameters, i.e. tm = tu = tb = 100, and
as before p = 1 and α = 0.7. Choosing tm and tb in a range from 100 to 500 does
not significantly alter the results, if they are chosen smaller, resp. larger, more, resp.
less, change points will be detected, as described in § 6. Note that since we now deal
with circular data the algorithm has to be adjusted such that the actual tested time
series segment is shifted to make it quasi non-circular. We ellaborate on this on the
next section.

7.2.1. Observables and Removing Periodicity. A way to avoid difficulties
with the free translational and rotational modes of the positional coordinates of a
molecule is to switch to internal coordinates. In general, the overall geometric struc-
ture of a peptide can be characterised by the torsion angles along the backbone,
excluding the rigid N-H-C-O peptide bonds. For demonstration purpose we omit at
this point the torsional angles along the side chains, as it only makes the picture more
complicated. Therefore we are left with a 10-dimensional torsion angle time series
from the backbone as seen in Fig. 7.3.

Obviously we have to take care of the periodic nature of the torsion angles. Since
the algorithm expects the data to arrive sequentially we can just shift the data piece-
wise to remove periodicity, which will work in most cases since the torsion angles
are in general not free rotating. The shifting of the data can be automatised by dis-
cretizing the angle domain determine a borderline with minimal number of transitions
across. Additionally we can exclude transition to data points that cross the periodic
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Figure 7.2. (a) After moving a long time in the left basin of the potential the trajectory finally
hops to the right basin. (b) A candidate change point ĉ is easily identified by locating the maximum
of the conditional probability (red circle = detected change point, black line = right margin defined
by tm, dotted line = puffer zone defined by tb). (c) The diffusion process seen with bird’s eye view in
the two dimensional potential, ĉ is marked with the red circle again. (d) The procedure starts again
from ĉ + tb. At first there is a left and a right margin to our test window. (e) The first candidate
change point is invalid as it is too close to the right margin. (f)+(g) After iterating the algorithm
many times a subsequent change point occurs and is detected. (h) From the bird’s eye view we see
that the new change point corresponds to a jump back to the vicinity of the start basin.

boundary from our statistics, cf. Fig. 7.4.
Unfortunately, this means that we can not discard the time series data and instead

use the moment matrices for post processing, as shifting the time series will alter the
moment matrices in a non-reversible way (one could think of various work-arounds,
like imposing restrictions on the shifting, i.e., shift the whole time series the same
way), but this is no obstacle here as the time series is short enough. The change
point algorithm terminates with 37 detected change points. Post-processing each
data segment (as described in § 6.4), the resulting 38 segments are clustered in 23
clusters, cf. Fig. 7.5. The outcome is depicted in Fig. 7.6 and 7.7 .
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Figure 7.3. Left: The simulated penta-peptide with the 10 observed torsional backbone angles
marked. Right: During the simulation the molecule transforms from a structure where mainly the
side chains interact to a more compact and stable structure via several metastable intermediates.
The metastable structures at the beginning and at the end of the trajectory are visualised by density
plots showing the flexibility within a conformation (Visualisation by AMIRA, [40]).

Figure 7.4. Top left: an angular time
series exhibiting periodicity. Top right: the
angular domain is discretised and the border-
line with the fewest transitions across is de-
termined. Bottom: shifting the data, so that
the determined borderline becomes the bound-
ary, makes the time series effectively non-
periodic. Single transitions over the bound-
ary (dotted line) are just excluded.
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Figure 7.5. In this dendrogram the allocation of the 38 identified time series segments to 23
clusters via hierarchical clustering is shown (marked by colours and boxes). The tree represents
the hierarchical cluster distances using the distance measure given in (6.1), however as the inter
cluster distances are very close to zero while the intra cluster distances are almost one, it is not
very structured.

.
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Figure 7.6. The 10-dimensional backbone torsion angle time series of the peptide (splitted in 3
sub panels, Top: dimension 1-4, Middle: 5-7: Bottom: 8-10). The vertical lines mark the detected
change points. The digits 1 to 23 over the panels indicate the membership of the segments to the 23
clusters obtained from hierarchical clustering as explained in the text (the digits are distributed over
different panels only for reasons of readability).
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Figure 7.7. Here the obtained time series segments, bordered by dashed lines, are plotted in a
permutation such that the ones allocated to the same bordered by thick lines, are side by side.
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8. Conclusion. Motivated by the task to detect conformational changes in
biomolecules on-line from time series, we showed how to restate the problem into
a change point detection problem for VAR models. We tackled the problem by em-
ploying a Bayesian approach to model selection. Since we have assumed the lack of
prior knowledge about parameters of change points we avoided the need to specify
proper prior distributions using a fractional Bayes approach, which we formulated
in a way to deal with the relatively high dimensional parameter space. We finally
achieved an algorithmic procedure which is clear and easy to implement. In the last
section we demonstrate the applicability of the procedure to actual data from molec-
ular dynamics simulations, showing promising results. Of course, the algorithm relies
on the a priori identification of significant observables in the system (such as appro-
priate reaction coordinates) which can be locally modeled by linear dynamics. As we
have argued throughout this article, this approximation is sensible and, as we have
shown, the change point detection algorithm can reliably detect persistent macro-
scopic transitions. The algorithm has also the advantage that it does not rely on any
assumptions behind the dynamics of such transitions, such as Markovianity of the
transition times between macroscopic states, as in HMM-VAR methods. In terms of
the numerical complexity of the algorithm, since we encode all the information of the
time series into the moment matrix M , the computational cost grows linearly in the
length T of the time series. The numerical complexity in terms of the dimension d
of the time series and the memory length p of the VAR-process is a different issue.
Since we cannot assume a priori any sparsity properties of the moment matrix M ,
we must assume then that the numerical complexity in these terms is O

(
d3p3

)
, since

the algorithm requires a Cholesky factorization and the calculation of determinants.
This algorithm is then suitable for time series of medium-size dimensionality.
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Appendix A. Integration of the Likelihood function. Integration of the
integral in (5.1) is rather straightforward but for completeness we will derive it in this
appendix, i.e. we want to integrate f(Z|Φ,R)πD(Φ,R) ,with πD the diffusive prior
as given in Eq. 4.4 and f the density as given in 3.9, over all Φ ∈ Rd×(dp+1) and over
all positive definite matrices R ∈ Rd×d, where Z is a given time series of length T
and dimension d. With the notation in § 3.2 and § 3.4 we have,∫

f(Z|Φ,R)πD(Φ,R)dΦdR =∫
|2πR|−

T−p
2 exp

(
− 1

2

(
tr
(
(Y − ΦX )(Y − ΦX )′R−1

)))
|R|−

d+1
2 dΦdR.

The argument of the trace function can be Taylor expanded around the MLE of Φ
yielding,

∫
|2πR|−

T−p
2 exp

(
− 1

2

(
tr
(
(Y − Φ̂X )(Y − Φ̂X )′R−1

+ (Φ− Φ̂)′[R−1 ⊗XX ′](Φ− Φ̂)
)))
|R|−

d+1
2 dΦdR,
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where Φ, resp. Φ̂, denote the vectorised notation of Φ, resp. Φ̂, and ⊗ the Kronecker
product. Next Φ can be integrated out as it is normal distributed, which results in,∫

|2πR|−
T−p

2 |R|−
d+1
2 |2π(R−1 ⊗XX ′)−1| 12

· exp

(
− 1

2

(
tr
(
(Y − Φ̂X )(Y − Φ̂X )′R−1

)))
dR,

which can be simplified to,

(2π)−
d(T−p−dp−1)

2 |XX ′|− d
2

∫
|R|−

T−(d+1)p+d
2

· exp

(
− 1

2

(
tr
(
(Y − Φ̂X )(Y − Φ̂X )′R−1

)))
dR.

The resulting integrand is proportional to an inverted Wishart distribution with T −
p+ d− dp d.o.f’s, which has a defined density as long as T > p+ dp+ d, cf. [18, ch.
3.4]. Therefore R can be integrated out giving rise to

π
d(d−1)

4 |XX ′|− d
2 |π · (Y − Φ̂X )(Y − Φ̂X )′|−

T−p−dp−1
2

d∏
j=1

Γ

(
T − p− dp− j

2

)
.

The form stated in (5.1) is obtained by simply using the notation introduced in § 3.4.
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tification of almost invariant aggregates in reversible nearly uncoupled Markov chains,
Linear Algebra and its Applications, 315 (2000), pp. 39–59.

[12] P. Deuflhard and M. Weber, Robust Perron cluster analysis in conformation dynamics,
Linear Algebra and its Applications, 398 (2005), pp. 161–184.

[13] R. Elber and M. Karplus, Multiple conformational states of proteins: a molecular dynamics
analysis of Myoglobin., Science, 235 (1987), pp. 318–321.

[14] Paul Fearnhead and Zhen Liu, On-line inference for multiple changepoint problems, Journal
of the Royal Statistical Society. Series B (Methodological), 69 (2007), pp. 589–605.

[15] Alexander Fischer, Sonja Waldhausen, Illia Horenko, Eike Meerbach, and Christof
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elling in molecular dynamics: Biomolecular conformations as metastable states, in Com-
puter Simulations in Condensed Matter: Systems: From Materials to Chemical Biology.
Volume I, M. Ferrario, G. Ciccotti, and K. Binder, eds., no. 703 in Lecture Notes in Physics,
Springer, 2006, pp. 475–497.
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