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Introduction

Conformational transitions are critical to the function of proteins and nucleic acids.
These transitions span large ranges of length and time scales and include ligand
binding [1], complex conformational rearrangements between native protein sub-
states [2, 3], and folding [4, 5]. Understanding these processes is challenging as they
often involve various pathways via many intermediate conformations. A particular
feature of biomolecular systems is metastability which denotes their property of
being localized in a certain region of phase space for rather long period of times
before rapidly moving to another region in which the dynamics then, again, stays
for a very long time [6, 7, 17]. Here ”long” is meant with respect to the char-
acteristic time scale of the system, e.g., the typical duration of a molecular bond
oscillation.

The purpose of this article is to survey and extend available methods by which
one can identify metastable states in biomolecular time series and estimate transi-
tion probabilities between them. Both the identification of metastable states and
the analysis of the transitions rely on the mathematical concept of the transfer op-
erator that is associated with the Markovian dynamics and which, after a suitable
coarse-graining, encodes the desired information (as it was first shown in [23, 19]).
We describe the transfer operator approach following a three-step procedure. First
of all, we introduce metastability as a hierarchical concept in which the appropri-
ate number of metastable states depends upon the degree of spatial and temporal
resolution that is to be achieved (Section 1). Secondly, we will give precise math-
ematical statements about how to cluster a time series optimally into metastable
states; this involves the problem of how to identify metastable sets at all. For
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moderate state space dimensions the transfer operator can be computed explicitly
by clever discretization and the number of metastable states is determined by the
number of distinguished eigenvalues close to one (Perron cluster). The metastable
subsets are then determined by the corresponding eigenfunctions. In actual appli-
cations a discrete version of the transfer operator is estimated from a molecular
dynamics trajectory (Section 2). In addition to the error due to discretization of
state space, the transfer operator carries a statistical uncertainty due to finite data
which renders the corresponding eigenvalues and eigenfunctions to be inaccurate.
We propose a Monte-Carlo method that allows for sampling the variance of the
estimated transfer operator thereby providing estimators for the statistical error
of the eigenvalues and -functions. Knowledge of the statistical error may moreover
be exploited to optimally launch further simulations as to reduce the uncertainties
in the observables of interest [8, 9, 10, 11]. If the problem’s dimension is high,
the transfer operator can no longer be directly computed, which leads over to the
third topic (Section 3): if not the full state space can be discretized, we can em-
ploy Hidden Markov Models (HMM) that, to some extend, account for the missing
information due to neglected degrees of freedom. The HMM method turns out
to be extremely powerful in identifying metastable states and computing transi-
tion probabilities, as we combine it with dynamical output that comes in form
of stochastic differential equations (HMMSDE). The discretization of the transfer
operator based on incomplete information amounts to a very coarse discretization;
hence HMM assumes that the dynamics between the (hidden) coarse-grained states
is still Markovian, i.e., its transition probabilities depend only on the current state
but not on the system’s history.

Once metastable sets have been identified a typical problem consists in the
computation of the respective transition rates or transition pathways. To this
end we introduce the basic concepts of Transition Path Theory (TPT, Section
4). The objective of TPT is to analyse the ensemble of reactive trajectories be-
tween metastable sets thereby allowing, e.g., for a calculation of transition rates.
We illustrate all basic theoretical statements throughout this article with a small
molecular example and conclude the discussion by studying the folding dynamics
of a biophysically relevant protein (Section 5).

1. Metastability

Throughout this article we study homogeneous Markov processes Xt = {Xt}t∈T

on a state space X ⊂ Rn, where T is either continuous or discrete. The dynamics
of Xt is given by the stochastic transition function

p(t, x, A) = P[Xt+s ∈ A |Xs = x] , (1)

for every t, s ∈ T, x ∈ X and A ⊂ X. We write X0 ∼ µ, if the Markov process Xt is
initially distributed according to the probability measure µ, i.e., P[X0 ∈ A] = µ(A)
for all measurable subsets A ⊂ X. We denote by Pµ[·] the probability measure that
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is induced by Xt, X0 ∼ µ on X. The transition function satisfies the Chapman–
Kolmogoroff equation [12]

p(t + s, x, A) =

∫

X

p(s, y, A) p(t, x, dy) ,

and we say that the process Xt admits an invariant probability measure µ, if
∫

X

p(t, x, A)µ(dx) = µ(A) .

In the following we shall always assume that the invariant measure of the process
exists and is unique. A Markov process is called reversible with respect to µ, if

∫

A

p(t, x, B)µ(dx) =

∫

B

p(t, x, A)µ(dx)

for every t ∈ T and A, B ⊂ X. If moreover p(t, x, ·) is absolutely continuous with
respect to Lebesgue measure, then we denote by p(t, x, y) the associated flat-space
transition density, i.e., we have

p(t, x, A) =

∫

A

p(t, x, y)dy .

1.1. Transition Probabilities and Transfer Operators. Metastability of some
subset of the state space is characterized by the property that the dynamics is likely
to remain inside this subset for a long period of time before it eventually exits. In
the literature, there are various related but yet different definitions of metastability,
e.g., [13, 14, 15, 16]); cf. also [17].

In this article we will focus on an ensemble-based concept as will be outlined
below and is described in detail in, e.g., [17]. The objective is to find an optimal
decomposition of the state space into metastable subsets and the ”hopping dynam-
ics” between these subsets. Specifically, a decomposition D = {D1, . . . , Dm} of the
state space X consists of a collection of subsets Dk ⊂ X with the following prop-
erties: (1) positivity, i.e., µ(Dk) > 0 for every k, (2) disjointness Dj ∩ Dk = ∅ for
all j 6= k up to sets of measure zero, and (3) the covering property ∪m

k=1Dk = X.
Given a Markov process Xt with X0 ∼ µ, we define the transition probability

p(t, Dj, Dk) from Dj ⊂ X to Dk ⊂ X within time t as the conditional probability

p(t, Dj , Dk) = Pµ[Xt ∈ Dk |X0 ∈ Dj] =
Pµ[Xt ∈ Dk & X0 ∈ Dj ]

Pµ[X0 ∈ Dj ]
(2)

which, assuming absolute continuity of p(t, ·, y) with respect to µ, equals

p(t, Dj, Dk) =
1

µ(Dj)

∫

Dj

p(t, x, Dk)µ(dx) . (3)

In other words, the transition probability measures the dynamical fluctuations
within the stationary ensemble µ. Consequently, we may call a subset Dk ⊂ X

metastable on the time scale τ > 0, if

p(τ, Dk, Dc
k) ≈ 0 or, equivalently, p(τ, Dk, Dk) ≈ 1,

where Dc
k = X \ Dk denotes the complement of Dk in X.
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Transfer Operator. We define the semigroup of Markov propagators or forward
transfer operators P t : Lr(µ) → Lr(µ) with t ∈ T and 1 ≤ r < ∞ by

∫

A

P tv(y)µ(dy) =

∫

X

v(x)p(t, x, A)µ(dx)

for any measurable A ⊂ X. If µ is invariant under the dynamics Xt, then it is easy
to see that the characteristic function 1X ∈ L1(µ) of the entire state space is an
invariant density of P t, i.e., we have P t1X = 1X. As following from its definition,
P t conserves norm, ‖P tv‖1 = ‖v‖1 and positivity, i.e., P tv ≥ 0 whenever v ≥ 0.
Hence, P t is a Markov operator.

If we furthermore suppose that both µ and p(t, x, ·) are absolutely continuous
with respect to Lebesgue measure, the expression for the propagator P t becomes

P tu(y) =

∫

X

kt(y, x)u(x)µ(dx) , (4)

where µ(dx) =: µ(x)dx, and we have introduced the transition kernel

kt(y, x)µ(x) = p(t, x, y) (5)

that is defined for all x, y for which µ > 0. Obviously, the transition kernel satisfies

∫

X

kt(y, x)µ(y)dy = 1 , ∀(x, t) ∈ X × T . (6)

For a reversible process the transition kernel is symmetric, i.e.,

kt(x, y) = kt(y, x).

Key idea of the transfer operator approach. The identification of a metastable
decomposition is based on the following scheme.

Given τ > 0, the number of metastable states is given by the number
of eigenvalues of the propagator P τ close to its maximum eigenvalue
one including itself and counting multiplicity. The metastable sets can
then be computed from the corresponding eigenfunctions.

This strategy that is outlined in more detail below was first proposed by Dellnitz
and Junge [18] for discrete dynamical systems with weak random perturbations.
It has been successfully applied to molecular dynamics in various contexts, e.g.,
[17, 19, 20]. The key idea requires that two conditions on the spectrum of the
transfer operator P τ hold true, namely,

(C1) The essential spectral radius of P τ is strictly less than one.

(C2) The eigenvalue λ = 1 is simple and dominant, i.e., η ∈ σ(P τ ) with |η| = 1
implies that η = 1.
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In this work, we confine our attention to two types of Markov process: (1) over-
damped Langevin processes (i.e., diffusion processes), and (2) constant-temperature
molecular dynamics (e.g., Nosé–Hoover heat baths). For either case the dynamics
is reversible and the transfer operator is self-adjoint. For type (1) systems, condi-
tions (C1)–(C2) are known to be met under relatively weak growths conditions on
the potential (see [17]). For systems of type (2), it is unknown whether conditions
(C1)–(C2) hold. Nonetheless we include this class of systems here, for they are
prevalently used and it is typically assumed that they fulfil the requirements for
all practical purposes (i.e., for sufficiently high-dimensional molecules in solution).

We now come to define the metastability of a decomposition D as the sum
of the metastabilities of its subsets: Suppose, we fix τ > 0. Then, given an
arbitrary decomposition Dm = {A1, . . . , Am} of X into m distinct sets, we define
the metastability of Dm as

meta(Dm) =

m
∑

j=1

p(τ, Aj , Aj)/m.

Hence, for each m, the optimal metastable decomposition Dm can then be defined
as the decomposition that maximizes meta(·). The next result is due to [21] and
provides the rationale behind the key idea of the transfer operator approach.

Theorem 1.1. Let P τ : L2(µ) → L2(µ) be a reversible propagator that satisfies
(C1) and (C2). Then P τ is self-adjoint, and its spectrum is of the form

σ(P τ ) ⊂ [a, b] ∪ {λm} ∪ . . . ∪ {λ2} ∪ {1} ,

where −1 < a ≤ b < λm ≤ . . . ≤ λ1 = 1. The metastability of an arbitrary
decomposition Dm = {A1, . . . , Am} of X is bounded from above by

p(τ, A1, A1) + . . . + p(τ, Am, Am) ≤ 1 + λ2 + . . . + λm ,

where the isolated eigenvalues λ1, . . . , λm are counted according to their multiplic-
ity. Let further v1, . . . , vm be the corresponding normalized eigenfunctions, and let
Q denote the orthogonal projection of L2(µ) onto span{1A1, . . . ,1Am

}. The lower
metastability bound of the decomposition D then is

1 + κ2λ2 + . . . + κmλm + c ≤ p(τ, A1, A1) + . . . + p(τ, Am, Am) ,

where κj = ‖Qvj‖2
L2(µ) and c = a (1 − κ2 + . . . + 1 − κn).

Theorem 1.1 establishes a relation between the state space decomposition into
metastable subsets and the Perron cluster of dominant eigenvalues close to 1. In
particular it states that the metastability of an arbitrary decomposition Dm cannot
be larger than the sum of the first m eigenvalues of the transfer operator. The
lower metastability bound is close to the upper bound, whenever the dominant
eigenfunctions are almost constant on the metastable subsets A1, . . . , Am; in this
case, as can be seen easily seen, we have κj ≈ 1 and c ≈ 0. Moreover both lower
and upper bound are sharp and asymptotically exact [21].
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1.2. Metastability Analysis is Hierarchical. The fundamental finding of The-
orem 1.1 is that metastability analysis is a hierarchical endeavour; for instance,
if we have found the optimal metastable decomposition into, say, D2 using 2
metastable subsets, it might still be possible that one of the subsets can be decom-
posed further into metastable sets; this would give rise to a decomposition D3 into
three sets that would yield almost the same metastability, meta(D3) ≈ meta(D2).

If the spectrum of the transfer operator has a pronounced gap after the m-th
dominant eigenvalue, then the results in, e.g., [22, 13] show that any decomposition
into more than m sets will have a significantly reduced metastability in terms of the
function meta(·). In the context of molecular dynamics applications, however, one
should always be aware that particular aspects of interest may make it desirable
to explore the hierarchy of metastable decompositions up to a certain level that is
not necessarily optimal in the sense of maximizing metastability.

2. Discretization

Let χ = {χ1, . . . , χn} ⊂ L2(µ) denote a set of non-negative functions that are
a partition of unity, i.e.,

∑n
k=1 χk = 1X. We define the Galerkin projection

Gn : L2(µ) → Sn onto the finite-dimensional space Sn = span{χ1, . . . , χn} as

Gnv =

n
∑

k=1

〈v, χk〉µ
〈χk, χk〉µ

χk.

If we apply the Galerkin projection to the infinite-dimensional eigenvalue problem
P τv = λv we obtain an eigenvalue problem for the discretized propagator P τ

n =
GnP τGn acting on the finite-dimensional space Sn. The matrix representation of
the finite-rank operator P τ

n is an n × n transition matrix T = (Tkl) with entries

Tkl =
〈P τχk, χl〉µ
〈χk, χk〉µ

. (7)

The finite-rank operator P τ
n inherits basic properties of the transfer operator P τ :

Its matrix T is a stochastic matrix with invariant measure that is given by the
projection invariant measure µ of P τ to Sn. Moreover, T is reversible, if P τ is
self-adjoint, and, assuming the discretization is fine enough, it also exhibits a Per-
ron cluster of eigenvalues that approximates the corresponding Perron cluster of
P τ with eigenvectors that approximate the dominant eigenvectors of the origi-
nal transfer operator [17]. Hence the transition matrix T allows for computing
metastable sets by computing the dominant eigenvectors and employing an aggre-
gation technique that is known by the name of ”Perron Cluster Cluster Analysis”
(PCCA) and which is based on the identification strategy described on page 4; we
refer to [23, 24] for details.

The entries of T can be computed from realizations of the underlying Markov
process Xt. Letting Ex denote the expectation of Xt started at X0 = x, and using
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that p(τ, x, Dl) = Ex(χl(Xτ )), where Dl = supp(χl), we have

Tkl =
1

〈χk, χk〉µ

∫

X

χk(x)Ex[χl(Xτ )] µ(dx).

If x0, . . . , xN denote a time series obtained from a sufficiently long realization of
the Markov process with time step τ , then the entries of T can be approximated
by the relative transition frequencies

Tkl ≈ T
(N)
kl =

∑N
j=1 χk(xj) · χl(xj+1)
∑N

j=1 χk(xj)2
. (8)

The rightmost expression in the last equation is the Maximum-Likelihood esti-
mator of the spatially discretized transfer operator T ; see formula (9) below, where
also the sampling error of the transition matrix is discussed. The calculation of
the relative frequencies may become problematic, even though the time series is
very long. Let alone the dimension of state space, we often face what is called

the trapping problem. The rate of convergence of T
(N)
kl → Tkl as N → ∞ depends

on the smoothness of the partitioning functions χk as well as on the mixing prop-
erties of the Markov process [25]. Especially mixing is crucial as convergence is
geometric with a rate constant λ1 − λ2 = 1 − λ2, where λ2 denotes the second
largest eigenvalue. If the system is metastable, we have λ2 ≈ 1, hence convergence
is extremely poor. For realistic biomolecular system this will typically be the case,
and, in fact, there is a huge amount of articles in the literature that deals with
the question of how to overcome the trapping problem in molecular simulations.
We will not take up the discussion about the sampling problem that is beyond the
scope of this article and refer the interested reader to the relevant literature, e.g.,
[26, 27].

Henceforth we shall suppose that we have already a ”sufficiently long” time
series in the sense that it contains enough statistical information about some —
but not necessarily all — revelant metastable states of the system. We denote this
time series by {Xt}t=t0,...,tN

with Xti
∈ X ⊆ Rn being either the atomic posi-

tions and/or momenta or some lower-dimensional observable, e.g., certain dihedral
angles or base-pair parameters. Let us further assume that {Xt0 , Xt1 , . . .} comes
with a uniform time step τ = tk−1 − tk. Setting t0 = 0 we thus have tk = kτ and
T = tN = Nτ which, to simplify notation, will be often written as t = 0, ..., N .

A remark is in order: it can be proved [17] that the finite-dimensional Galerkin
basis χ = {χ1, . . . , χn} yields a transition matrix (Tij) that converges to the con-
tinuous operator as n → ∞ and diam(supp(χk)) → 0. That is, if the partition
defined by χ is sufficiently fine we can approximate the continuous transfer opera-
tor by simply counting transitions between the sets on which the χk are supported,
provided the time series is sufficiently long. However avoiding a combinatorial ex-
plosion of discretization ”boxes” as the dimension of state space increases, we will
often employ a very coarse partition, e.g., by considering only parts of the variables
that are assumed to be significant for the conformation dynamics (in this case the
χk are supported on non-compact cylindrical sets). We shall suppose that the
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dynamics between the coarse sets is Markovian, i.e., the transition probabilities to
go from one set to another depends only the current state but not on the process’
history; this will be, for example, the case if the unresolved part of the dynamics
is sufficiently fast mixing. In general, the appropriate choice of the discretization
boxes so as to ensure the Markov property is non-trivial, and we refer to, e.g., the
articles [28, 29, 30] for a discussion of the subject.

Furthermore, as we will see in Sec. 2.3.5, that it may be of interest to use
Galerkin subspaces that are not spanned by characteristic functions belonging
to some kind of discretization boxes but subspaces spanned by smooth functions
with overlapping support (so-called fuzzy Galerkin discretizations of the transfer
operator, cf. [58]).

2.1. Error Estimation. Let χ = {χ1, . . . , χn} be characteristic functions, i.e.:
χk(x) ∈ {0, 1} ∀x, such that the transitions between discrete states are unam-
biguously identifiable and countable. We furthermore assume that jump process
between discrete states is Markovian.

Let then the frequency matrix C = (cij) count the number of observed transi-
tions between states, i.e., cij is the number of observed transitions from state i at
time t to state j at time t+ τ , summed over all times t. In the limit of an infinitely
long trajectory, the elements of the true transition matrix are given by the trivial
estimator:

T̂ij(τ) =
cij

∑

k cik
=

cij

ci
, (9)

where ci :=
∑m

k=1 cik is the total number of observed transitions leaving state i.
For a trajectory of limited length, the underlying transition matrix T (τ) cannot
be uniquely determined. The probability that a particular T (τ) would generate
the observed trajectory is given by:

P[C|T ] =

m
∏

i,j=1

T
cij

ij

Conversely, the probability that the observed data was generated by a particular
transition matrix T (τ) is

P[T |C] ∝ P[T ]P[C|T ] = P[T ]
∏

i,j∈S

T
cij

ij , (10)

where P[T ] is the prior probability of transition matrices before observing any
data. It turns out that T̂ (τ), as provided by (9), maximizes P[C|T ] and therefore
also P[T |C] on condition that the transition matrices are uniformly distributed a
priori. In the limit of infinite sampling, P[T |C] converges towards a delta distribu-
tion with its peak at T̂ (τ). When sampling is finite, the uncertainties of the entries
of T̂ (τ) may be estimated by the element-wise standard deviations of P[T |C].

In general, one is interested in computing a particular property, f(T (τ)), from
the transition matrix. The symbol f may represent any smooth function, de-
composition or algorithm, such as the eigenvalues- or eigenvectors. One is then
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interested how the uncertainty of the transition matrix, induced by the distribu-
tion P(T |C), carries over to uncertainties in the target function. In other words,
for a given observation C, what is the distribution of target functions, P[f(T )|C]
and its standard deviation?

Approaches to estimate the standard deviation based on first-order perturba-
tion theory and Dirichlet sampling have been proposed in [8]. While being com-
putationally efficient, these approaches do not allow for conserving of a number of
physically meaningful constraints. In particular, only stochastic matrices should
be considered (Tij ≥ 0 and

∑

j Tij = 1 ∀i, j), and for molecular transitions that
are in equilibrium (not driven by an external force), detailed balance is expected
to hold (πiTij = πjTij ∀i, j), where πi is the stationary probability of state i. A
general method to sample transition matrices according to these constraints can
be based on Markov Chain Monte Carlo (MCMC): Here, one generates a series of
matrices, T (k), k = 1...N , distributed according to P[T |C], which can be used to
compute a distribution of f(T ). MCMC iterates proposal and acceptance steps.
Given a current matrix T (k), a new matrix T ′ is proposed based in some stochas-
tic manner. There are many possible choices of proposal steps. For correctness,
it is only required that the probabilities for the forward and backward proposal,
P[T (k) → T ′] and P[T ′ → T (k)], can be evaluated, and that any matrix of the dis-
tribution can be generated from any other matrix within a finite series of proposal
steps. Then, the proposed matrix is accepted with probability:

paccept =
P[T ′ → T (k)]

P[T (k) → T ′]

P[T ′|C]

P[T (k)|C]
. (11)

Upon acceptance, the proposed matrix becomes a member of the sample,
T (k+1) := T ′, while upon rejection, the previous matrix is accounted for again:
T (k+1) := T (k). Efficient approaches to generate transition matrices according to
such a scheme are described in [57].

2.2. Illustrative Example and PCCA. In the following we present results for
the analyis of the dynamical behaviour of trialanine, a small peptide composed of
three alanine amino acid residues.

For the molecular dynamics simulation of trialanine we have used the Gromos96
vacuum force field [31] in which trialanine is represented by 21extended atoms. The
structural and dynamical properties of this molecule are mainly determined by two
central peptide backbone angles Φ and Ψ. In addition, at very high temperatures,
the otherwise planar peptide bond angle Ω may also undergo some conformational
transition (see Figure 1).

The time series of 50000 steps has been generated by means of Hybrid Monte
Carlo (HMC) at a temperature of 700 K [32]. The deterministic proposals for
HMC are generated by running a 500fs trajectory employing the Verlet integration
scheme with a time step of 1fs, yielding an acceptance rate of about 93 percent.

From the thus obtained time series we compute the observation sequences in
Φ, Ψ, and Ω. The space spanned by these three torsion angles is the compact
3-torus T3 = S1 × S1 × S1 and will be called the torsion space in the following.
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Figure 1. The trialanine molecule shown in ball-and-stick representation. At room tem-
perature the overall structure of trialanine is sufficiently described by the two torsion
angles Φ and Ψ, whereas at higher temperature also the dynamics of the peptide bond
angle Ω becomes nontrivial.

The empirical distribution on torsion space is shown in Figure 2, where we have
shifted the periodic intervals so as to avoid cut-offs.

Figure 2. Observation time series from MD simulation of trialanine. Empirical distribution on
torsion space.

We find that the molecular dynamics torsion space does not explore the 3-torus
uniformly; rather we see five clearly pronounced clusters in left panel of Figure 3.
The different colours for the clusters have been assigned by clustering the entire
data set using the K-means algorithm, whereby each data point is assigned to
exactly one cluster. As the K-means algorithm clusters data according to geometric
distance in torsion space, we call the resulting clusters geometric clusters. Other
algorithms for geometric clustering result in almost the same cluster assignment
in this case.

Uniform box discretization. The available time series is now used to discretize
the transfer operator according to the procedure described on page 4. We choose
a uniform box discretization of torsion space into 303 boxes, i.e., each dimension
is uniformly discretized into 30 boxes. This results in a transition matrix with
many null columns and rows, for not all boxes are visited by the dynamics. By
ignoring such boxes 1451 boxes remain, and we end up with a reversible 1451×1451
transition matrix T . Figure 4 illustrates the sparsity pattern of T ; the numerically
computed first six eigenvalues are shown in Table 1. Assuming that the data
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Figure 3. Left: Clustering of sampling distribution in torsion space into 5 geometric clusters
(see text). Right: Colouring of the original time series according to geometric cluster assignment.
Remark: In the subsequent the following numbering of these geometric clusters is used: number
1 corresponds to the red cluster, number 2 to the blue one, 3 to green, 4 to black, and 5 to yellow.

set contains indeed five metastable sets and clustering according to the five first
eigenfunctions, it turns out that the metastable sets are almost identical with the
geometric clusters obtained by K-means (see also the discussion below Figure 6).

k 1 2 3 4 5
λk 1.0000 0.9993 0.9992 0.9937 0.9773

Table 1. Five dominant eigenvalues of the transition matrix as resulting from direct
discretization of the transfer operator by uniform discretization of torsion space into 303

boxes. All following eigenvalues are considerably smaller.

Of course, we might as well try to identify, say, the first M = 3 dominant
metastable sets. To this end we carry out the robust version of the Perron-Cluster
Cluster Analysis (PCCA) described on page 4. A detailed description of this
particular variant, PCCA+, can be found in [24]. PCCA+ proceeds by plotting
the entries of the second eigenvector v2 to the dominant eigenvalue λ2 against the
the entries of the third eigenvector, v3, corresponding to λ3: the first eigenvector,
v1, is constant and can be ignored. The entries of v2 and v3 represent the values of
the eigenvectors in the respective discretization box in torsion space, i.e., each box
is mapped to a point in v2-v3 plane. It has been shown in [24] that the resulting
points lie in the edges of a triangle as is illustrated in the right panel of Figure 4
below. PCCA+ eventually identifies the three dominant metastable sets as the
aggregation of boxes belonging to the same cluster in the triangle.

If each point in the right panel of Figure 4 is coloured according to the scheme
that is described in the caption of Figure 2, it turns out that the first two metastable
sets found by PCCA+ are identical with the black and blue geometrical clusters,
respectively, while the the third metastable set is the aggregation of the three
remaining geometric clusters (see Figure 5).

Finally, we can aggregate the transition matrix into a 3 × 3 matrix coupling
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Figure 4. Results of uniform discretization of the transfer operator. Left: Sparsity pattern of
the resulting dicretization matrix after uniform discretization of torsion space into 303 boxes.
Right: Plot of second versus third eigenvector; colouring according to the scheme introduced in
the caption of Figure 2. Obviously, all boxes from the black cluster get mapped to almost the
same point, while the outmost blue squares also represents thousands of images of boxes from
the blue cluster.

matrix between the three dominant metastable sets as resulting from PCCA+ after
discretization of the torsion space transfer operator into 303 boxes:

TPCCA,discr =





0.9999 0.0001 0.0000
0.0024 0.9975 0.0001
0.0051 0.0022 0.9927



 .

Next, we let PCCA+ find M = 4 dominant metastable sets, in the course of
which the hierarchical aspect of metastability analysis should become clear. The
analysis is now based on the eigenvectors v2, v3 and v4, and we have to consider
the projections onto the v1-v2-v3 space as is shown in Figure 6. By comparison
with the right panel of Figure 4 this demonstrates that the first three of the four
dominant metastable sets are given by the black, blue, and red geometric cluster,
while the fourth is the aggregation of the yellow and the green geometric cluster.
That is, the four dominant metastable sets results from decomposition of one of
the three dominant metastable sets into two different subsets.

Discretization based on geometric clustering. Several articles advocate tak-
ing geometric clusters as discretization boxes for the transfer operator, e.g., [29].
Following this route yields the discretization matrix

T =













0.9328 0 0.0522 0 0.0149
0 0.9952 0 0.0048 0

0.0091 0 0.9486 0 0.0423
0 0.0000 0 0.9999 0.0001

0.0011 0 0.0143 0.0021 0.9825













,

where the boxes are numbered according to numbering given in the caption of
Figure 3. Its eigenvalues are given in Table 2 below.
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Figure 5. Aggregation of distribution in torsion space into 3 metastable sets according to PCCA+
based on uniform box discretization of the transfer operator.
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Figure 6. Results of uniform discretization of the transfer operator. Two different projections
of the v1, v2, v3-map. Left: onto the v1-v3 plane. Right: onto the v2-v3-plane.

We observe that all 5 clusters are metastable sets (as expected). However, we
also observe significant deviation between the fourth and fifth of these eigenvalues
and the respective eigenvalues resulting from uniform box discretization (see Table
1). The deviations may be explained by the coarseness of the geometric clusters
as discretization boxes, but it also raises the question of the statistical reliability
of the corresponding eigenvalues. Indeed, Figure 7 shows the distribution of the
eigenvalues that is obtained from the distribution of the clusters’ transition matri-
ces which indicates a large variance of fourth and fifth eigenvalue (cf. Section 2.1).

In order to identify the three dominant metastable sets based on the K-means
discretization we again apply PCCA+ to the eigenvectors associated with the three
dominant eigenvalues. The result is visibly indistinguishable from the one displayed
in Figure 5. The similarity of the result to the result of the uniform discretization
demonstrates that in this particular case the geometric clusters give the appropriate
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k 1 2 3 4 5
λk 1.0000 0.9986 0.9952 0.9415 0.9173

Table 2. Complete set of eigenvalues as resulting from discretization of the transfer
operator by discretization of torsion space into 5 boxes resulting from K-means clustering.
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Figure 7. Distribution of eigenvalues as computed from the distribution of reversible transition
matrices.

discretization boxes.

A warning. We have to keep in mind that the geometric clusters are based
on Euclidean distances, and hence do not incorporate kinetic information. Ac-
cordingly geometric clustering cannot distinguish between geometrically similar
configurations that are kinetically separated. This problem is expected to become
more severe as the dimensionality of the system increases, for situations may easily
occur in which a strong change in one important degree of freedom leads into a
new metastable set while a slight changes in many variables does not lead into a
new metastable set; nonetheless, these two changes may be similar in terms of Eu-
clidean distances. This results in general inappropriateness of geometric clusters
for discretization of the transfer operator. In contrast to ”blind” geometric cluster-
ing, the adaptive refinement of geometric clusters in such a way as to maximize the
metastability between sets may be a useful approach for high-dimensional systems
[29]. In typical cases the resulting cluster discretization can contain quite large
numbers of geometric clusters that resolve rather fine details of the underlying
distribution in state space (see Section 5).

2.3. Kernel Approximation. The discretization of the transfer operator be-
comes a tedious issue, or even impossible, if the dimension of state space is high.
On the other hand, geometric clustering methods may provide a loophole from
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the curse of dimensions, but are in danger of ignoring the kinetic separation of
geometrically close conformations. Consequently, we shall ask: is there a way to
apply geometric clustering without ignoring the kinetic separation of states? For-
tunately, we can answer this question in the affirmative, and we devote the next
section to this problem. We start with some preliminary considerations.

2.3.1. Ornstein–Uhlenbeck kernels. Consider an Ornstein–Uhlenbeck (OU)
process

dXt = −F (Xt − x̄) + ΣdWt , X0 = x0 (12)

with W (t) denoting Brownian motion in X ⊆ Rn Σ ∈ Rn×n, and F ∈ Rn×n

being symmetric and positive definite. Its solution Xt is a time-homogeneous
Markov process with transition function that is absolutely continuous with respect
to Lebesgue measure on Rn. If we set B = ΣΣT , the flat-space transition density
at time t assumes the form

p(t, x0, x) = Z(t) exp

(

−
1

2
(x − ξ(t))T C(t)−1(x − ξ(t))

)

,

where we have used the shorthands ξ = x̄ + exp(−tF )(x0 − x̄) and Z = (2π)−n/2

(detC)−1/2. The symmetric, positive definite matrix C can be shown to be the
unique solution of the Lyapunov equation

C(t)FT + FC(t) = B − exp(−tF )B exp(−tFT ) .

The corresponding invariant measure is absolutely continuous with respect to
Lebesgue measure. Its density reads

µ(x) = Z∞ exp

(

−
1

2
(x − x̄)T C−1

∞
(x − x̄)

)

,

with Z∞ = (2π)−n/2(detC∞)−1/2 and C∞ being the unique positive-definite solu-
tion of the Lyapunov equation C∞FT + FC∞ = B. The associated (unweighthed,
i.e., flat-space) Markov propagator P t : Lp → Lp then is

P tf(x) =

∫

p(t, x0, x)f(x0)dx0 .

The object of interest in this section is the sampling kernel

κt(x0, x) = p(t, x0, x)µ(x0) , (13)

that can be directly computed from numerical trajectories of the OU process as
we will show below. The µ-weighted version of the transition kernel, equation (5),
has been introduced in Section 1. In terms of the sampling kernel the weighted
transition kernel reads

kt(x, x0) =
1

µ(x)
p(t, x0, x) =

1

µ(x)
κt(x0, x)

1

µ(x0)
.
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Using the expression for µ above, the sampling kernel can be expressed as

κt(x0, x) = Z(t)Z∞ exp

(

−
1

2
((x − x̄)T , (x0 − x̄)T )C(t)−1

(

x − x̄
x0 − x̄

))

(14)

with

C−1 =

(

C−1 C−1 exp(−tF )
exp(−tFT )C−1 exp(−tFT )C−1 exp(−tF ) + C−1

∞

)

.

The sampling kernel is in one-to-one correspondence with the parameters of
the OU process, and can therefore be used to estimate the unknown parameters
of a stochastic process. If the transition kernel is given in terms of its covariance
matrix C, the respective parameter matrices are given by

exp(−tF̂ ) = M−1
11 M12

Ĉ−1
∞

= M22 − MT
12M

−1
22 M12

B̂ = Ĉ∞F̂T + F̂ Ĉ∞ ,

(15)

where we used the notation

C−1 =

(

M11 M12

MT
12 M22

)

.

2.3.2. Invariant Measure of Transition Kernels. Whenever the sampling
kernel κt is known, the associated invariant measure is obtained upon integration,
viz.,

µ(x) =

∫

p(t, x0, x)µ(x0)dx0 =

∫

κt(x0, x)dx0 .

Here p(t, ·, ·) denotes the associated flat-space transition function. For Gaussian
transition kernels with stationary covariance matrix C we get

µ(x) ∝ exp

(

−
1

2
xT Ĉ−1

∞
x

)

, Ĉ∞ = M22 − MT
12M

−1
11 M12.

2.3.3. Gaussian approximation of sampling kernels. Let κt(x, y) denote
the sampling kernel of some Markov process. Our algorithmic strategy will be to
approximate κt by a superposition of Gaussian sampling kernels: Let some not loo
large integer M be given. We are interested in finding the optimal approximation
of κt by a superposition of M Gaussian sampling kernels, i.e., we intend to solve
the optimization problem

∥

∥

∥

∥

∥

κt(x, y) −
M
∑

k=1

αiκi,t(x, y)

∥

∥

∥

∥

∥

→ min
αi,κi,t

, (16)

where the αi are positive weights, {κi,t}i is a collection of Gaussian sampling
kernels and ‖·‖ is some appropriate norm. There are several algorithms for solving



Conformation Dynamics 17

this optimization problem even in higher dimensions, e.g., [33, 34], where the
appropriate algorithm clearly depends on the specific choice of ‖ · ‖.

Apart from the question of how to solve the optimization problem it is impor-
tant to notice that the kernel approximation requires to solve only a purely static
problem that, nevertheless, incorporates the complete dynamics via the sampling
kernel κt, thereby respecting the kinetics of the problem.

2.3.4. Additive kernels and metastability. In order to understand the prop-
erties of processes which sampling kernels are superpositions of Gaussian kernels
we first have to study additive kernels.

Let ki,t, i = 1, . . . , M , be collection of Markovian transition kernels with ab-
solutely continuous invariant probability measures µi on the joint state space X.
We consider the mixed kernel

µ(x)kt(x, y)µ(y) =

M
∑

i=1

αiµi(x)ki,t(x, y)µi(y) ,

that is a convex combination of the ki,t, i.e., the coefficients αi sum up to one. By
linearity it then follows that µ =

∑

i αiµi is the invariant measure of the mixed
kernel that is absolutely continuous with respect to Lebesgue measure. We need
the following definition.

Definition 2.1. Suppose that µ > 0 almost everywhere. The (mixed) transition
kernel kt is called ǫ-metastable, if and only if

Oij =

∫

X

µi(x)µj(x)

µ(x)
dx ≤ ǫ.

for all i, j = 1, . . . , N with i 6= j.

Almost invariant densities of k. It is convenient to weight the µi against the
invariant measure µ of the mixed process. The weighted densities

Φi(x) =
µi(x)

µ(x)

are obviously in L1(µ). The condition for ǫ-metastability translates into

Oij = 〈Φi, Φj〉µ ≤ ǫ , (17)

where 〈·, ·〉µ denotes the inner product in L2(µ),

〈u, v〉µ =

∫

X

u(x)v(x)µ(x) dx .

The following statement can be proved.
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Theorem 2.1. Let the mixed transition kernel kt =
∑M

i=1 ki,t be ǫ-metastable with
invariant measure µ > 0 (almost everywhere). Assuming that the probability mea-
sures µi of the local kernels ki,t are absolutely continuous with respect to Lebesgue
measure µi, we have

‖kt ◦ Φi − Φi‖1,µ ≤ 2(1 − αi) ǫ.

for all i = 1, . . . , M , where

(kt ◦ Φi) (y) =

∫

X

kt(y, x)Φi(x)µ(x)dx .

Key observation: Too much metastability. When one considers additive
kernels that result from the optimal approximation of the sampling kernel of a
given process then one typically observes the following (cf. [35]): The almost
invariance of the Φi that is estimated via Theorem 2.1 is far more pronounced
than the metastability in the original process. A moment of reflection tells us why:
for unweighted norms the optimal Gaussian approximation of the sampling kernel
in the sense of (16) does not lead to an accurate approximation in the improbable
transition regions between the main centers of the metastable sets. In fact, the
localized Gaussian kernels decay exponentially fast in the overlap regions, whereas
the transition regions of the full transition kernel are significantly larger, though,
still small enough such that they do not contribute to the total approximation
error. Hence, the approximate kernel

∑

i αiκi is much smaller in the transition
regions than the original sampling kernel, thus the frequency of transitions is much
smaller and the metastability is much more pronounced. In order to correct for this
problem we have to add an appropriate amount of transitions to our description.

2.3.5. Assignment to metastable and transition states. In order to esti-
mate the number of transitions correctly we count the transitions in an available
molecular dynamics time series X = {Xk}k=1,...,N+1. From this we obtain the
time series Z = {Zk}k=1,...,T with Zk = (Xk, Xk+1) that is underlying the sam-
pling kernel.

Let us suppose that we decompose the dynamics into M metastable sets. Then
each point in the time series X can be assigned to either state by means of the
almost invariant densities Φi, i = 1, . . . , M , i.e., we define the core sets

Mi = {Xk : 1 ≤ k ≤ N + 1, Φi(Xk) > θ‖Φi‖∞}, i = 1, . . . , M .

where θ > 0.5 is some appropriate user-selected threshold (e.g., θ = 0.95). These
core sets may thought of the regions surrounding the deepest energy minima of
the system, which were defined manually in Ref. [36] If the overlaps between the
local densities Φi are small enough, we may assume that Mi ∩Mj = ∅ for i 6= j.
All other data points Xk will be assigned to the transition set

M0 = {Xk : 1 ≤ k ≤ N + 1, Φi(Xk) ≤ θ‖Φi‖∞, i = 1, . . . , M} .
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Transitions are events (k, Xk) with Xk ∈ Mj for any j = 0, . . . , M and Xk+1 6∈ Mj.
Accordingly, we can classify transitions in terms of the time series Z. To this end
we define

Mij = {Zk = (Xk, Xk+1) : 1 ≤ k ≤ N, Xk ∈ Mi and Xk+1 ∈ Mj} .

If we let #A denote the number of elements in the set A, then

#Mi =
∑

j

#Mij , i = 0, . . . , M ,

counts the transitions to the coarse-grained sets M0, . . . ,MM within a single time
step. The corresponding optimal Maximum-Likelihood transition matrix under
the observation {Xk}k=0,...,T has the entries

p(i, j) =
#Mij

#Mi
. (18)

If the transition set M0 is further subdivided to optimize metastability this way
of deriving a transition matrix between metastable sets is quite similar to the
approach suggested in [36], where the trajectory was cut into pieces, each of which
connected two different core regions, counting a transition for each such piece. This
similarity become very close, if we use the Φi as Galerkin ansatz functions for the
discretization of the transfer operator.

2.3.6. Illustrative example revisited. We consider the trialanine example
from the previous section, and define the sampling sequence Z = {Zk}k=1,...,N

with Zk = (Xk, Xk+1) from the original time series X = {Xk}k=1,...,N+1. Next,
we solve the discrete analogue of the optimization problem (16): Find κ =

∑

i αiκi

with stationary Gaussian kernels κi that optimally approximate the empirical dis-
tribution generated by Z. One possibility to do this is to maximize the likelihood of
observing of Z given κ. This leads to the following Maximum-Likelihood problem:
Let M be fixed, identify κi by its mean z̄i and its covariance matrix Ci, aggregate
z̄ = (z̄1, . . . , z̄M ) and C = (C1, . . . , CM ), then maximize

P [Z|α, z̄, C] =
N
∏

j=1

M
∑

i=1

αiκi(Zj) (19)

over all admissible parameters α, z̄, C, where admissible means that the Ci are
symmetric and positive definite, and

∑

αi = 1. Herein, we use the HMMGauss
algorithm to compute the optimal parameters (α, z̄, C) for the trialanine data;
see the next section for details. Setting M = 5, the output of HMMGauss is
employed to, firstly, compute the functions Φi and the sets Mi for i, j = 1, . . . , 5
with the resulting Mij , and then, secondly, the transition set M0 following to the
procedure described in the last subsection. The result is illustrated in the top
panel of Figure 8.

We observe that the five metastable sets Mi, i = 1, . . . , 5 are almost identical
with the five geometric clusters. Additionally, the transition set M0 is clearly
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Figure 8. Aggregation of the empirical distribution on torsion space via kernel approximation
based on HMMGauss (see text). Right: Aggregation into 6 sets: Mi, i = 1, . . . , 5, and the
transition set M0. The five metastable sets Mi, i = 1, . . . , 5 almost agrees with the geometric
clusters (colouring accordingly); points in M0 are shown as magenta crosses. Left: Further
aggregation into 3 metastable sets as resulting from PCCA+ (see text).

visible between the green and the yellow set. Taking these six sets as discretization
boxes for the discretization of the transfer operator and applying PCCA+ with the
aim of finding three dominant metastable sets yields the PCCA+ triangle shown
in Figure 9. The PCCA+ clustering again indicates that, on a coarser level, three
of the metastable sets (red, green, yellow) and the transition set M0 form a single
metastable set.
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Figure 9. Plot of second versus third eigenvector; colouring according to the assignment of the
respective box to the 6 clusters identified via kernel approximation.

The resulting transition matrix of the three dominant metastable sets is

T =





0.9998 0.0001 0.0001
0.0030 0.9967 0.0004
0.0071 0.0024 0.9906



 ,

which agrees with the previously computed transition matrix within the achievable
statistical accuracy.
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2.4. Concluding Remarks. The previous steps of this section have demon-
strated that we ought to use algorithms for the Gaussian approximation of the
sampling kernel which can still be used for dimensional problems. The local Gaus-
sian sampling kernels κi with the corresponding weights αi give then rise to a
coarse-graining of state space into M metastable sets M0, . . . ,MM (core sets),
including a transition set M0, that can be used to discretize the transfer operator
in order to identify the dominant M̂ < M metastable sets. We will revisit this
procedure in Section 5.

Another perspective on kernel approximation. The procedure results in
a specific reduced model for the original molecular dynamics problem. The very
flexibility of the approach is due to possible choices of the local kernels as we
shall illustrate briefly. To this end let κi,t denote the local sampling kernel of

the metastable set with index i ∈ {1, . . . , M̂}, and let pi(t, ·, ·) be the (flat-space)
transition function associated with κi,t; the local transition function approximates
the dynamical behaviour of the process while being in set Mi. In addition, we have
a jump process switching between the metastable sets according to the transition
matrix T . The state space Ŝ of the reduced model is composed of M̂ copies of the
original state space S, i.e.,

Ŝ = S × {1, . . . , M̂}.

The overall (flat-space) transition function p that is generated by the local transi-
tion functions and the jump process thus has the form

p : [0,∞) × Ŝ × Ŝ → R+ , p(t, x, i, y, j) = pj(t, x, y)Tij . (20)

If, for instance, the local transition Gaussian functions pi are the transition func-
tions of an OU process, we can find matrices F (i), Σ(i) and vectors x̄(i), such that
pi is generated by

dXt = F (i)
(

Xt − x̄(i)
)

dt + Σ(i)dWt .

In this case, the reduced model that generates the overall transition function (20)
has the form of switched stochastic differential equations,

dXt = F (q)
(

Xt − x̄(q)
)

dt + Σ(q)dWt

qt = Markov jump process with states 1, . . . , M̂ ,
(21)

where the jump process is governed by the transition matrix T .

3. Hidden Markov Models

In this section we further develop the considerations from the last paragraph and
answer the question of how the metastable states can be identified and analysed,
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if the dimension of state space is too high as to admit a direct discretization of the
transfer operator. As before we assume that we are given a sufficiently long time
series {Xt}t=t0,...,tN

of micro-states x ∈ X ⊆ Rn (i.e., atomic positions and/or
momenta). The time series may also be given in terms of certain distinguished
observables f : Rn → Rm, y = f(x) that are nonlinear functions of the microscopic
states x ∈ Rn such as dihedral angles or base-pair parameters.

The approach using Hidden Markov Models (HMM) can be summarized as
follows: By analysing a (possibly incomplete) time series we (1) construct a finite-
state Markov jump process that models the hopping between metastable conforma-
tions; then, (2), we parametrize appropriate stochastic models that approximates
the dynamics within each conformation. The HMM method is used to construct
an unobserved (hidden) jump process thereby accounting for lack of information
due to incomplete observations. Over the last few years, various algorithms in this
direction have been developed combining HMM with Maximum-Likelihood based
parametrization of the local stochastic models; see, e.g., [37, 38, 39]. We will review
this framework now.

The idea of HMM. Roughly speaking, a HMM is a stochastic process with
both hidden and observable states; the hidden states of a HMM are described by a
Markov jump process, while the observable states are understood as their output
that, e.g., follows a certain probability distribution conditional on the hidden state.

Suppose we consider a system admitting a metastable decomposition D =
{B1, . . . , Bm}. Then, at any time t, the system will be in one of the metastable
sets Bq ⊂ X with q = 1, . . . , m. Hence, for each t the integer value of the metastable
state, q, represents a jump process qt between the metastable states. The task then
is, given a series of observations {Xt}t=t0,...,tN

, to identify the underlying (hidden)
time series of metastable states, {qt}t=t0,...,tN

.
We assume that the observed data {Xt}t=t0,...,tN

comes with a uniform time
step τ = tk−1 − tk. Setting t0 = 0 we thus have tk = kτ and T = tN = Nτ . In the
generic case one assumes that the probability of observation Xk given the hidden
state qk and the previous observation Xk−1 can be modelled by a certain family
ρθ of observation distributions, i.e.,

P [Xk|Xk−1, qk] = ρθ(qt)(Xk|Xk−1) ,

where θ denotes the parameters of this family of distributions (e.g., mean and
covariance matrix of a family of normal distributions), and the dependence of θ
on the hidden state qk indicates that each hidden state gives rise to a different
observation distribution. Provided that the hopping dynamics is Markovian, the
probability to go from one metastable (i.e., hidden) state q = i to another one,
q = j, within one time step τ is given by Tij = p(τ, Bi, Bj). That means, we may
regard the sequence {qt} as a, yet unknown, realization of an M -state Markov
chain with transition matrix T . Conversely, the observations Xt are considered
as a priori unknown random functions of the qt, where the random functions are
the local models in each of the conformations. Given a class of local models, e.g.,
certain linear probability distributions, the Maximum-Likelihood approach consist
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in finding the most likely sequence of hidden states q ∈ {1, . . . , M} given a series
of observations {Xt}.

As yet, HMM assumes that the number of metastable conformations, M , is
known. However, as we will argue below, it is sufficient to start the data analysis
with a sufficiently large M and determine the optimal such M̂ ≤ M afterwards, for
instance, by clustering states according to the eigenvalues of the transition matrix.

The likelihood. The hidden states q ∈ {1, . . . , M} typically correspond to dif-
ferent observation distributions ρθj

, j = 1, . . . , M , where the values θj and the
M2 entries of the transition matrix T are a priori unknown. We summarize all
unknown parameters in one parameter vector

Θ = (θ1, . . . , θM , T ).

The likelihood of the parameters Θ is a probability density P[X, Q|θ] of the pos-
sible observations X considered as a function of Θ and the hidden path Q =
{qk}k=0,...,N , i.e., L : (Θ, Q) 7→ P[X, Q|Θ]. We have

L(Θ, Q) = ν(X0|q0)

N
∏

k=1

Tqk−1,qk
ρθ(qk)(Xk|Xk−1) , (22)

where ν denotes the system’s initial distribution. In the HMM framework the
sequence of hidden path Q appears as an unknown parameter that has to be
determined. But as Q is hidden, finding it by maximizing the likelihood is not an
option; instead, we have to estimate simultaneously the hidden path Q as well as
the parameters Θ which is done employing the Expectation-Maximization (EM)
algorithm [40].

The idea is as follows: integrating over all possible hidden paths, we obtain

P [X |Θ] =
∑

Q

L(Θ, Q) , (23)

by which we can introduce the distribution of the hidden path conditional on the
observation, viz.,

P [Q|X, Θ] =
P [X, Q|Θ]

P [X |Θ]
. (24)

An EM algorithm iteratively improves an initial estimate Θ0 of the optimal pa-
rameters by constructing iterates Θ1, Θ2, . . . by the following procedure:

Θn+1 = argmax
Θ

Q(Θ, Θn) (25)

with Q being the expected value of the log-likelihood

E [logL(Θ, Q)|X, Θn] =
∑

Q

P [Q|X, Θn] logP [Q, X |Θ] ,
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i.e., the expectation of the log-likelihood over the hidden path given the parameters
Θn of the last step. In each step of the EM algorithm the following two sub-steps
have to be performed: computation of the expected log-likelihood (the E-step) and
maximization of Q (the M-step).

Under rather general, non-pathological conditions the EM-iteration converges
to a local optimum Θ∗ by successively increasing the likelihood. EM is a partially
non-Bayesian, Maximum-Likelihood method. Its final result gives a point estimate
for Θ together with a probability distribution over the hidden path (see below).
After convergence of the EM algorithm the optimal hidden path is eventually
determined by

Q∗ = argmax
Q

L(Θ∗, Q). (26)

The thus obtained path is called the Viterbi path, and its efficient computation is
possible by means of the Viterbi algorithm; for more details see [37]. While Viterbi
and EM algorithms are integral parts of each HMM procedure, different choices
for the family of observation distributions generate different HMM models. We
discuss two different cases.

HMMGauss: Stationary, normally distributed observation. The perhaps
easiest observation model is the family of normal distributions

ρθ(x) ∝ exp

(

−
1

2
(x − x̄(q))T C−1

(q) (x − x̄(q))

)

with the unknown parameters

θ = {(x̄(1), . . . , x̄(M), C(1), . . . , C(1)) : x̄(i) ∈ Rn, C(i) = CT
(i) > 0}.

In this case, the observation of current state Xk does not depend on the previous
state Xk−1, but only on the hidden state (via the dependence of the parameters)
as is indicated by the index (q).

HMMSDE: Dynamical SDE Output. As local output of the HMM, we con-
sider Ornstein–Uhlenbeck (OU) processes

dXt = F (q)
(

X − x̄(q)
)

dt + Σ(q)dWt ,

where, again, (q) indicates the dependence of the parameters on the hidden state;
see also equation (21) in the last section that was the result of the kernel approxi-
mation procedure. From the formal solution

Xt+τ = x̄ + eτF (Xt − x̄) +

∫ τ

0

e(τ−s)F ΣdWs .

of the OU process on the time interval [t, t + τ ] we can compute the probability
density ρθ(Xk+1|Xk) of an observation of Xk+1 at time tk+1 = tk + τ given an
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observation Xk at time tk, namely,

ρθ(Xk|Xk−1) =
exp

(

− 1
2 (Xk+1 − µk)T R(τ)−1 (Xk+1 − µk)

)

(2π)−d/2
√

detR(τ)
(27)

where

µk = x̄ + eτF (Xk − x̄) , R(τ) =

∫ τ

0

esF ΣΣT esF T

ds . (28)

It is easy to see that the conditional observation distribution equals the flat tran-
sition function of the OU process, i.e., ρθ(Xk|Xk−1) = p(τ, Xk−1, Xk).

Algorithm. Realizations of the EM algorithm for both stationary Gaussian and
dynamical OU output are discussed in [37, 38, 39, 41]. In either case the necessary
computational effort for one step of the EM algorithm scales linearly with the
length of the observation sequence and quadratically with the number of hidden
states.

Each E-step together with the initial condition of the hidden state and the
transition matrix T yields occupation probabilities νk(q) at time tk. That is, νk(q)
denotes the probability to be in hidden state q ∈ {1, . . . , M} at time tk at each
step of the EM iteration based on the previous parameter values Θn. In the M-step
the next parameter estimates Θn+1 = argmaxQ(·, Θn) can be computed based on
these occupation probabilities. For HMMGauss and HMMSDE this optimization
can be carried out analytically as we shall show next.

M-step in HMMGauss. Denote the ν-weigthed mean and covariance of the
time series {X1, . . . , XT } in the state q by

x̄
(q)
N =

(

N−1
∑

k=1

νk+1(q)

)−1 N−1
∑

k=1

νk+1(q)Xk

cov
(q)
N (X) =

(

N−1
∑

k=1

νk+1(q)

)−1 N−1
∑

k=1

νk+1(q)
(

Xk − x̄
(q)
N

)(

Xk − x̄
(q)
N

)T

.

The optimal estimator for Θn+1 hence involves θq = (x̄
(q)
N , cov

(q)
N ) provided that

cov
(q)
N is positive definite.

M-step in HMMSDE. Let x̄
(q)
N , cov

(q)
N ) be defined as above and introduce in

addition the weighted one-step correlation

cor
(q)
N (X) =

(

cov
(q)
N (X)

N−1
∑

k=1

νk+1(q)

)−1

×
N−1
∑

k=1

νk+1(q)
(

Xk+1 − x̄
(q)
T

)(

Xk − x̄
(q)
N

)T

.
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The optimal estimators F̂ (q), and µ̂(q) for the parameters F (q), and µ(q) follow
from the next statement that is due to [38]

Theorem 3.1. Let cov
(q)
N be positive definite at each iteration step in the EM

algorithm. Then, at each step, the optimal estimators satisfy

exp(τF̂ (q)) = cor
(q)
N (29)

µ̂(q) = x̄
(q)
N +

(

Id − cor
(q)
N

)−1

∆
(q)
N . (30)

where

∆
(q)
N =

(

N−1
∑

k=1

νk+1(q)

)−1 N−1
∑

k=1

νk+1(q) (Xk+1 − Xk) .

Equation (30) requires that ‖cor
(q)
N ‖ < 1, which will be always the case, if all

eigenvalues of the estimated stiffness matrix F̂ (q) have strictly negative real part.
In addition, we obtain a linear matrix equation for the estimator of the noise

covariance Σ̂(q)Σ̂(q)T

,

e−τF̂ (q)

W (q) = Σ̂(q)Σ̂(q)T

eτF̂ (q)T

− e−τF̂ (q)

Σ̂(q)Σ̂(q)T

, (31)

where

W (q) = Ω(q)F̂ (q)T

+ F̂ (q)Ω(q),

Ω(q) =

(

N−1
∑

k=1

νk+1(q)

)−1 T−1
∑

k=1

νk+1(q)d̂
(q)
k d̂

(q)T

k

d̂
(q)
k =

(

Xk+1 − µ̂(q) − eτF̂ (q)
(

Xk − µ̂(q)
))

.

Again, the Lyapunov (31) has a unique and symmetric, positive definite solution,
if and only if the eigenvalues of F̂ (q) lie in the open left half complex plane.

Theorem 3.1 allows for carrying out the maximization in the EM algorithm
by basically computing weighted autocorrelation matrices which is numerically
cheap. However, a remark is in order: the computation of F̂ (q) from exp(τF̂ (q))
is not trivial at all, for the matrix logarithm is not unique. We refer to [38] for a
detailed discussion of possible difficulties and various algorithmic solutions.

Number of metastable states. All HMM techniques require to select the un-
known number of hidden states in advance. There is no general solution to this
problem, and often the best way to handle this problem is a mixture of insight and
preliminary analysis. However, we should recall that we can easily cluster hidden
(metastable) states following the route taken in the transfer operator approach
to metastability. therefore we suggest to start the EM algorithm with any suffi-
ciently large number of hidden states M that should be bigger than the expected
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number of metastable states. After termination of the EM algorithm, we can take
the resulting transition matrix and aggregate the M hidden states into M̂ ≤ M
metastable states using the PCCA method described in Section 2. By construction
the thus clustered hidden states are metastable states of the dynamics.

3.1. HMMSDE and VAR Processes. Let us revisit the problem of the esti-
mating optimal parameters for the single n-dimensional OU process (12). Theo-
rem 3.1 makes an assertion about estimating optimal parameters θ = (exp(τF ), x̄, Σ)
from a given observation X1, . . . , XN . The optimal parameters are found by max-
imizing the likelihood

L(θ|X) =

N−1
∏

k=1

ρθ(Xk+1|Xk),

with the one-step transition probability

ρθ(Xk+1|Xk) ∝ exp

(

−
1

2
(Xk+1 − µk)T R(τ)−1(Xk+1 − µk)

)

, (32)

with µk and R(τ) as given by (28). Unfortunately there is no known analytic
solution to the maximization problem of L with respect to the parameter set
(x̄, F, Σ); Theorem 3.1 yields the optimal parameters θ = (exp(τF ), x̄, Σ), and
the matrix logarithm is not surjective. Yet another drawback, from a statistical
viewpoint, is that L is not integrable over the unrestricted parameter space which
can be easily seen by setting F = 0 and integrating over x̄. This imposes cer-
tain constraints on the admissible parameters, thereby complicating sampling of
the Maximum-Likelihood estimators. A possible loophole consist in rewriting the
transition probability (32) according to

Xk+1 ∼ N (x̄ + exp(τF )(Xk − x̄), R)

which can be equivalently expressed as

Xk+1 ∼ (Id − exp(τF ))x̄ + exp(τF )Xk + N (0, R), (33)

Equation (33) resembles an autoregressive model of order one, VAR(1). If we
define the shorthands

Φ :=
(

(Id − exp(τF ))x̄, exp(τF )
)

∈ Rn×(n+1)

ξ :=

(

1 . . . 1
X1 . . . XN−1

)

∈ R(n+1)×(N−1)

Y :=
(

X2, . . . , XN

)

∈ Rn×(N−1)

ǫ :=
(

N1(0, R), . . . ,NN−1(0, R)
)

∈ Rn×(N−1) (i.i.d.) ,

we can recast (33) in the form

Y = Φξ + ǫ .



28 Ch. Schütte, F. Noe, E. Meerbach, Ph. Metzner and C. Hartmann

The likelihood of the new parameter set θ̃ = (Φ, R) reads

L̃(θ̃|X) = (det R)
N−1

2 exp

(

−
1

2
tr((Y − Φξ)(Y − Φξ)T R−1)

)

. (34)

Maximum-likelihood estimators for Φ̂ and R̂ can be found in the relevant literature,
e.g., [43, 44]. We have

Φ̂ = Y ξT (ξξT )−1 and R̂ =
1

N − 1
(Y − Φ̂ξ)(Y − Φ̂ξ)T .

Using θ̃ and L̃ for the parameter estimation has the advantages that (1) the dis-
tribution of the discrete observations is fully characterized by θ̃, (2) analytical
Maximum-Likelihood estimators are available, and (3) the likelihood L̃ is inte-
grable over the unconstrained parameter space.

Moreover, the VAR(1) model has a straightforward extension to VAR(p) models
that allow for adding non-Markovian memory effects to the description. Last but
not least, we can do change-point detection for VAR processes so as to detect
changes in the time series parametrization on-the-fly; such parametrization changes
can occur if, for instance, the system makes transition between metastable sets.
We refer the reader to [45] for a detailed treatment of this subject in the framework
of Bayesian statistics.

4. Transition Path Theory

Transition Path Theory (TPT) is concerned with transitions in Markov processes.
The basic idea is to single out two disjoint subset in the state-space of the chain
and ask what is the typical mechanism by which the dynamics transits from one of
these states to the other. We may also ask at which rate these transitions occur.

The first object which comes to mind to characterize these transitions is the
path of maximum likelihood by which they occur. However, this path can again be
not very informative if the two states one has singled out are not metastable states.
The main objective herein is to show that we can give a precise meaning to the
question of finding typical mechanisms and rate of transition in discrete state spaces
for continuous time processes which are neither metastable nor time-reversible. In a
nutshell, given two subsets in state-space, TPT analyzes the statistical properties of
the associated reactive trajectories, i.e., the trajectories by which transition occur
between these sets. TPT provides information such as the probability distribution
of these trajectories, their probability current and flux, and their rate of occurrence.

The framework of transition path theory (TPT) has first been developed in [46,
47, 48] in the context of diffusions. However, we will follow [49] and focus on
continuous-time Markov chains, but we note that the results to outlined can be
straightforwardly extended to the case of discrete-time Markov chains. In the next
section we will illustrate TPT with an example from molecular dynamics, but the
tools of TPT presented here can be used for data segmentation as well. In this
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context, TPT provides an alternative to Laplacian eigenmaps [50, 51] and diffusion
maps [52, 53] which have become very popular recently in data analysis.

Notation. We consider a Markov jump process on the countable state space S
with infinitesimal generator (or rate matrix) L = (lij)i,j∈S ,

{

lij ≥ 0 for all i, j ∈ S, i 6= j
∑

j∈S lij = 0 for all i ∈ S.
(35)

We assume that the thus defined process is irreducible and ergodic with respect to
the unique, strictly positive invariant distribution π = (πi)i∈S satisfying

0 = πT L. (36)

We will denote by {Xt} a (right-continuous with left limits) trajectory of the
Markov jump process. We also denote by {X̃t} the time-reversed process which
has the same invariant distribution and an infinitesimal generator L̃ = (l̃ij)i,j∈S

given by

l̃ij =
πj

πi
lji. (37)

Finally, recall that if the infinitesimal generator satisfies the detailed balance equa-
tion πilij = πj lji, the process is reversible and the direct and the time-reversed
process are statistically undistinguishable. We do not assume reversibility in the
subsequent.

Reactive trajectories. Let A and B two nonempty, disjoint subsets of the state
space S. By ergodicity, any equilibrium path {Xt} oscillates infinitely many times
between set A and set B. If we view A as a reactant state and B as a product
state, each oscillation from A to B is a reaction event. To properly define and
characterize the reaction events, we proceed by cutting a long ergodic trajectory
{Xt} into pieces that each connect A and B. We shall then try to describe various
statistical properties of the statistical ensemble of these pieces. For details on the
pruning procedure, see [49].

Committors. The fundamental objects of TPT are the committor functions.
The discrete forward committor q+ = (q+

i )i∈S is defined as the probability that
the process starting in i ∈ S will reach first B rather than A. Analogously, we define
the discrete backward committor q− = (q−i )i∈S as the probability that the process
arriving in state i has been started in A rather than B. It has been proved in [49]
that the forward and backward committor satisfy a discrete Dirichlet problem that
is the exact finite-dimensional analogue of the respective continuous problem [46],
namely,











∑

j∈S lijq
+
j = 0, ∀i ∈ (A ∪ B)c

q+
i = 0, ∀i ∈ A

q+
i = 1, ∀i ∈ B

(38)



30 Ch. Schütte, F. Noe, E. Meerbach, Ph. Metzner and C. Hartmann

and











∑

j∈S l̃ijq
−

j = 0, ∀i ∈ (A ∪ B)c

q−i = 1, ∀i ∈ A

q−i = 0, ∀i ∈ B

(39)

Probability distribution of reactive trajectories. The first relevant object
for quantifying the statistical properties of the reactive trajectories is the distri-
bution of reactive trajectories mR = (mR

i )i∈S . The distribution mR gives the
equilibrium probability to observe a reactive trajectory at state i and time t. Ac-
cording to [49] the probability distribution of reactive trajectories is given by

mR
i = πiq

+
i q−i , i ∈ S. (40)

Probability current of reactive trajectories. Next we are interested in the
average current of reactive trajectories flowing from state i to state j per unit of
time. This probability current of reactive trajectories fAB = (fAB

ij )i,j∈S satisfies

fAB
ii = 0 for all i ∈ S and is given by [49]

fAB
ij =

{

πiq
−

i lijq
+
j , if i 6= j

0, otherwise
(41)

Transition rate and effective current. Further we may ask for the average
number of transitions from A to B per time unit or, equivalently, the average
number of reactive trajectories observed per unit of time (transition rate). That
is, let NT be the number of reactive trajectories in the interval [−T, T ] in time.
The transition rate kAB is defined as

kAB = lim
T→∞

NT

2T
. (42)

Due to [49] the transition rate is given by

kAB =
∑

i∈A,j∈S

fAB
ij =

∑

j∈S,k∈B

fAB
jk . (43)

Notice that the rate equals

kAB =
∑

i∈A,j∈S

f+
ij , (44)

where the effective current is defined as

f+
ij = max(fAB

ij − fAB
ji , 0). (45)
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Reaction Pathways. A reaction pathway w = (i0, i1, . . . , in), ij ∈ S, j =
0, . . . , n from A to B is a simple pathway with the property

i0 ∈ A, in ∈ B, ij ∈ (A ∪ B)c j = 1, . . . , n − 1.

The crucial observation which leads to a characterization of bottlenecks of reac-
tion pathways is that the amount of reactive trajectories which can be conducted
by a reaction pathway per time unit is confined by the minimal effective current
of a transition involved along the reaction pathway: the min-current of w is

c(w) = min
e=(i,j)∈w

{f+
ij }. (46)

Accordingly we shall characterize the ”best” reaction pathway as the one with the
maximal min-current, and, eventually, we can rank all reaction pathways accord-
ing to the respective weight c(w). Efficient graph algorithms for computing the
hierarchy of transition pathways can be found in [49].

5. Application to MD Simulations

The methods introduced in the Sections 2–4 are now illustrated with a biophys-
ically relevant molecular dynamics example, the synthetic hexapeptide MR121 -
GSGSW [54]. This is a linear polymer the central part (GSGS) of which contains
a repeat of the Glycin and Serine amino acids that are found in the loop regions of
many proteins. In order to study the folding of the loop, two additional chemical
groups (MR121 and W/Tryptophan) were attached to the peptide in the exper-
iments reported in [54]. These two groups contain ring systems which provide
an experimentally detectable signal when forming immediate contact. Here, we
study a 1 microsecond molecular dynamics (MD) simulation of this system which
was performed in explicit water at the experimental temperature 293 K with the
GROMACS software package [31] using the GROMOS96 force field [55]. During
this simulation, the peptide frequently folds and unfolds and visits various different
conformations. We shall analyse its conformational dynamics in the following.

To distinguish all relevant conformations of the system, the peptide coordinates
were fitted to the extended structure, and the state space was partitioned into
small regions using a K-means clustering with K=5000. In order to determine
the lagtime at which transitions appear Markovian, the microscopic transition
matrix T micro(τ) ∈ R5000×5000 was computed for different τ and the time scales, t∗i ,
implied by the corresponding spectrum Λ(τ) = (λ1(τ), ..., λ5000(τ)) were examined:

t∗i = −
τ

log λi(τ)
. (47)

At lagtimes large enough for the dynamics to be Markovian, the implied time
scales are expected to be constant in τ [56]. As visible from Figure 10, this is the
case for about τ ≥ 1 ns.
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Figure 10. Slowest implied time scales of the MR121-GSGSW peptide dynamics.

In order to concentrate on the slow conformation dynamics, the Maximum-
Likelihood transition matrix at τ = 1ns is used with the PCCA algorithm [19, 24,
28] to cluster the 5000 microstates into 34 metastable states, providing a discrete
trajectory Xt ∈ {1, ..., 34}, t ∈ [0, 1µs]. The number 34 was arbitrarily chosen,
such that the implied time scale of the 34-th eigenvalue is twice the characteristic
time scale τ = 1ns of the transition matrix. Since approximately constant time
scales are not a sufficient condition for the dynamics to be Markovian, it is checked
whether the transition matrix can actually reproduce the observed dynamics on
long time scales. For this, the estimated Maximum-Likelihood transition matrix,
T (τ) with τ = 1ns, was used to compute the decrease of population of state i as a
function of time, i.e.,

pi(kτ) = [T k(τ)]ii. (48)

This is then compared with the corresponding probability that is directly ob-
served in the simulation trajectory,

P[Xt+kτ = i | Xt = i]. (49)

The result is shown in Figure 11 for 5 representative states. It is seen that the
predictions of the transition matrix model are similar to the actual observations
from the simulation trajectory.

Since only a limitied number of transitions between metastable states is ob-
served in the MD trajectory, the transition matrix is not uniquely determined but
carries some statistical uncertainty. Consequently, the decay curves in Figure 11
are uncertain as well. In order to assess this uncertainty, the distribution of tran-
sition matrices (10) induced by the observed transition counts at τ = 1ns, were
sampled with a Monte Carlo algorithm [57]. For each matrix of the sample, the
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Figure 11. Relaxation of the population out of 5 representative metastable states. The
predictions of the transition matrix model (bullets) agree, within the error, well with
the actual observations from the simulation trajectory (dashed lines). The confidence
intervals correspond to one standard deviation.
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Figure 12. Distributions of the eigenvalue spectrum of T for different simulation lengths.

relaxation curves were computed using equation (48), and the resulting standard
deviations of the distribution give rise to the confidence intervals in Figure 11.
The deviations between the predictions from the transition matrix and the obser-
vations from the MD trajectory are mostly within 1 standard deviation (except
for the green state, for which no long-time observations are available in the MD
trajectory), thus reassuring the reliability of the transition matrix model.

Next, the transition pathways between the conformational states of the system
were studied. For this purpose, the core sets of the 34 conformations were identified
as described in Section 2.3.5 and a transition matrix T TP (τ) with, now, τ = 200fs)
was computed employing equation (18) and then further subdividing the transition
set in order to optimze metastability; the trajectory was used both forwards and
backwards in time, such that the transition matrix is reversible and has a real
spectrum. It was then verified that the long-time behaviour (∆t ≥ 1ns) of this
transition matrix also agrees with the observations from the MD trajectory. Since
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all eigenvalues of T TP are real and positive, its generator L could in principle
be computed by taking the matrix logarithm. Since, additionally, the lagtime
τ = 200fs is very short as compared to the typical lifetimes of states, the transition
matrix is metastable and all its eigenvalues are close to 1, such that the generator
is well approximated by

L =
1

τ
log T TP (τ) ≈

1

τ
(T TP (τ) − I) .

We study the slowest transition in the system by selecting the two conforma-
tions, A and B, with the largest positive and negative element in the second left
eigenvector. As is shown in Figure 13, A and B correspond to structures in which
the loop is closed and the ring systems of the end-groups are in contact. Hence
A → B corresponds to an exchange of the stacking order of the end-groups, and we
can use TPT to study the set of transition pathways for this process. Employing
(38) we compute the discrete committor function q for the transition A → B for
all 34 states. Then, from q and L, the TPT effective currents to the transition
A → B are obtained according to (45). The resulting flux network for A → B is
complex, involving significant transition pathways via most of the 32 intermediate
states. The network of the 30% most populated transition pathways is shown in
Figure 13. It turns out that the most populated pathway is in fact the direct
transition, but other pathways are also significant, including pathways via closed-
loop intermediates and pathways via unfolded intermediates. Eventually, the total
transition rate obtained by TPT is similar to the experimentally-measured slowest
rate of the system.

Finally, we emphasize that statistical errors due to lack of convergence is an
important issue regarding all MD simulations: By sampling the sampling error
of the estimated transition matrix, we have examined how the length of the MD
trajectory affects the uncertainties of any quantity computed from T . In particular,
we were interested in the spectrum of T for fixed lagtime of τ = 1ns, i.e., its
eigenvalues Λ = (λ1...λ34) and the implied time scales of the transition processes,
t∗i , that were computed according to equation (47). The time scales t∗2, t

∗

3, ... thereby
correspond to the time scales of the slowest and next-slowest transition processes.
However, since there is a whole distribution of transition matrices T , the spectrum
of eigenvalues for a given observed transition count C is not unique, but rather a
distribution of spectra. Certainly, the distribution of the λi will get sharper as the
number of observed transitions increases, thus explaining that some eigenvalues
λi are sharper than others. Figure 12 shows the spectral distribution for several
simulation lengths. For simulation times up to 100ns, the spectral distribution has
no distinctive features. But as the simulation length is increased, some of the larger
eigenvalues become distinguishable. From 400ns on, the slowest transition process
at λ2 ≈ 0.75 can be clearly distinguished and continues to narrow as the simulation
gets longer. At 1000ns, eventually, the spectrum exhibits a lot of structure in the
range λ ≥ 0.5. However, apart from λ2 no peaks are clearly separated which
indicates that even for our small peptide, 1µs simulation time is rather short if one
wants to obtain good convergence of the kinetics (e.g., rates).
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Figure 13. The network of the 30% most populated transition pathways for the slowest
transition process in the MR121-GSGSW peptide. The thickness of arrows is proportional
to the net flux along each edge. The loop segment is shown in yellow, the MR121 and W
end-groups in red and blue, respectively. The transition end-states A and B are shown
on the left and right side.
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[3] Noé, F., Krachtus, D., Smith, J.C., Fischer, S., Transition networks for the com-
prehensive characterization of complex conformational change in proteins.J. Chem.

Theory and Comput. 2 (2006), 840–857.
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