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Smoothed Molecular Dynamics For Thermally Embedded SystemsChristof Sch�utteKonrad{Zuse{Zentrum BerlinHeilbronner Str. 10, D-10711 Berlin, Germanyschuette@zib-berlin.de29. Mai 1995AbstractThis paper makes use of statistical mechanics in order to con-struct e�ective potentials for Molecular Dynamics for systems withnonstationary thermal embedding. The usual approach requires thecomputation of a statistical ensemble of trajectories. In the context ofthe new model the evaluation of only one single trajectory is su�cientfor the determination of all interesting quantities, which leads to anenormous reduction of computational e�ort. This single trajectory isthe solution to a corrected Hamiltonian system with a new potential~V . It turns out that ~V can be de�ned as spatial average of the ori-ginal potential V . Therefore, the Hamiltonian dynamics de�ned by~V is smoother than that e�ected by V , i.e. a numerical integrationof its evolution in time allows larger stepsizes. Thus, the presentedapproach introduces a Molecular Dynamics with smoothed trajecto-ries originating from spatial averaging. This is deeply connected totime{averaging in Molecular Dynamics. These two types of smoothedMolecular Dynamics share advantages (gain in e�ciency, reduction oferror ampli�cation, increased stability) and problems (necessity of clo-sing relations and adaptive control schemes) which will be explainedin detail.Keywords: smoothed molecular dynamics, e�ective potentials, averaging,nonstationary heat bath embedding, expectation values, ensemble averages
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1 IntroductionIn Molecular Dynamics (MD) we are interested in a description of the dy-namical behaviour of a (macro)molecular system in the scope of classicalmechanics. Therefore we are concerned with Hamiltonian functions of theform H(q; p) = 12 pTM�1p + V (q) � 0 (1.1)which lead to the following Hamiltonian equations of motion:ddtq = DpH(q; p) = M�1pddtp = �DqH(q; p) = �DV (q); (1.2)where Dp and D = Dq are the di�erential operators with respect to p 2 R3Nand q 2 R3N, the momenta and space coordinates of the N atoms of theconsidered molecular system. We assume that the potential V is given, andthat it is a \good classical model" for the system. Then, if adequate initialconditions (q; p)(0) = (q0; p0) (1.3)are given, a solution of (1.2) describes the motion of the molecular systemwithout interaction with any other system. Thus, we only have to care for ane�cient, accurate, and stable numerical solution of (1.2).This is the idealized situation. There are several serious problems. Three ofthem will be explained in the following. They make up the starting point forthe considerations in this paper.Problem 1: Even if we accept that the exact solution of (1.2) gave us theanswers we are interested in, we are often not able to compute its numericalsolution on a su�ciently large time scale. In the typical situation the potentialV contains parts which stand for the bond interaction between bonded atomsin the molecule: V (q) = U(q) + 12 mXk=1 �k gk(q) (1.4)1



with e.g. harmonic models for gk for the k = 1 : : : m di�erent bond-types:gk(q) = Xi;j2B (kqi � qjk � Lk)2 ;where Lk is the equilibrium length of bond type k, qi 2 R3 the vector of thespace coordinates of the ith atom, and the summation runs over all bondedpairs. This g{part of the potential V causes highly oscillatory motions of thebonded atoms. Because of the typical magnitude of the �k, these bond vi-brations appear on a timescale of about 1 femtosecond and are the \fastestdegrees of freedom" of the molecule. Careful investigations have shown thatthe bond vibrations are an essential part of the nonlinear dynamics of themolecule, i.e. they cannot simply be eliminated or modelled [3][8].Thus, if we are interested in the accuracy of the numerical solution of (1.2),we have to resolve this timescale, i.e. we have to choose stepsizes � � 1 fsin the time discretization. And even if accuracy is less important we haveto use � � 1 fs in order to ensure numerical stability for the iteration ofthe discretization (at least for all conventional explicit discretizations [1]; formost implicit methods similar stepsize bounds result from the requirementof unique convergence of the iterative solution of the nonlinear equations ineach step).The typical time length of an MD simulation is tmax � 1 ps. Therefore wehave to make a large number tmax=� of time steps, i.e. only the large compu-tational e�ort of a typical MD calculation strictly limits its time length. InSection 2 the idea of \smoothed dynamics" will be discussed as a proposalfor reducing the e�ort of those computations.Problem 2: Normally, we are not interested in the motion of the molecularsystem without interaction with any other system. It is frequently desirableto simulate a system under conditions of constant temperature T , since thisis the condition under which most experiments are performed. Hence, wehave to model the heat bath embedding of the considered molecular system,\simply" solving (1.2) is not enough. But \temperature" and \heat bath em-bedding" can only be de�ned in a statistical sense, i.e. for an ensemble ofidentically prepared systems or in a stochastic theory for the single system.In addition, we are not interested in the pure equilibrium theory but in themotions, reactions, and structural changes of the molecular system embed-2



ded in an environment with constant temperature. Hence Section 3 shortlypresents the statistical formulation of (1.2) and a de�nition of an ensembleof molecular systems with nonstationary embedding in heat baths of tempe-rature T , which in particular is di�erent from the \canonical" equilibriumtheory.Problem 3: Another crucial point is the requirement for adequate initialconditions. The initial state of the molecular system is typically known frommeasurement. Therefore there is a fundamental uncertainty about the initi-al condition of (1.2) if they are adapted to experimental realizations. Moreprecisely, the coordinates q can only be given with a (small) degree of uncer-tainty qk(0) 2 fx : jx � q0kj � �kg 8k = 1 : : : 3N; (1.5)whereas the initial momenta p are typically not determined experimentally.As a consequence adequate initial condition can only be given in the frame-work of, again, an ensemble formulation. The statistical version of (1.2) (cf.Section 3) can be used for a concise de�nition of the \initial conditions", inparticular for the initial momenta.Problems 2 and 3 demand for a statistical formulation of (1.2). But the dy-namical behaviour of the statistical ensemble is \rich", the computationale�ort for its full simulation is far too large. One main aspect of the followi-ng sections is the reduction of this e�ort. This is realized by reducing therich ensemble{dynamics to the far simpler evolution of a single Hamiltoniansystem with a new Hamiltonian ~H. The other main aspect (construction ofa smoothed MD) is deeply connected to this because the ~H-trajectories aresmoother than the corresponding H-trajectories.2 Smoothed MD and Averaging in TimeAs stated above bond vibrations are the fastest motions in typical MD situa-tions and lead to hard restrictions for the stepsize � in (explicit) numericalintegration methods. Mostly, we do not want to compute all these \unessen-tial" oscillatory details. But we want to get correct information about thephysically relevant dynamical behaviour of the considered system, i.e. we3



cannot ignore the bond dynamics.2.1 Basic Ideas and ProblemsThe idea of smoothed dynamics is to compute only the \running average" q(t)p(t) ! := A�  qp ! (t)of the exact solution (q; p)T of (1.2). The average operator A� is given by(A�x)(t) := 1� ZR w �t� s� � x(s) dswith an appropriate weight function w with limt!1 w(t) = 0, e.g.w(x) = �[�1=2;1=2](x) = ( 1 : �1=2 � x � 1=20 : otherwise :Another possibility may be to choose w in a way which makesA� a low pass�lter with cut{o� frequencyO(1=�). Now, the task is to deduce a di�erentialequation for (q; p) from (1.2). We can use the fact thatddt A� x = A� ddt x; 8xto get using (1.2) that ddt 0@ qp 1A = 0@ M�1p�DV (q) 1A (2.1)The trajectories of (2.1) would be smooth, if A� was chosen in a way whichlets the \fastest oscillations" of (q; p) occur on a time scale �t � 1 fs, i.e.that the numerical integration of (2.1) allows stepsizes � � �t � 1 fs (cf.Figure 1).Unfortunately, we have to know the solution q(t) of (1.2) to compute theright hand side DV (q) of (2.1), because the nonlinear function DV (q) andA� do not commute:DV (q) = A�DV (q) 6= DV (A�q) = DV (q): (2.2)4
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t[fs]Fig. 1. Typical dynamics with bond vibrations (top) and its running average with avera-ging on di�erent time scales.And worse, up to now there is no way to deduce a function v withDV (q) = v (q) (2.3)using mathematical means only. Thus, we have to look for a physical alterna-tive: we may construct v by using additional physical insight in the dynamics,e.g. in form of additional postulates. [9] and [10] may be taken as examplesfor this approach. In [9] , a result from statistical mechanics (equipartition ofenergy for ergodic systems embedded in a heat bath of �xed temperature) isused as such a postulate. Then, it is shown that v can be written as v = D ~Vwith a corrected potential ~V , if the parameters �k in (1.4) are large enoughin comparison to all changes in the forces e�ected by U (gap condition):�k � maxt D2U(q(t)):In the new potential ~V the bond interaction part V � U is cancelled and a\smoother" correction term occurs, which models the inuence of the bondmotions on the \rest" of the motions. Conclusively, a statistical postulateallows to construct a smoother potential which models the inuence of bonddynamics instead of containing it explicitly. How can such a smoother poten-tial be constructed directly using a statistical formulation of (1.2)? Section4 gives an answer to this question. 5



2.2 Reduction of Error AmplificationPotentials with steep gradients can lead to a strong ampli�cation of numericalerrors along the trajectories of the corresponding Hamiltonian system. Forhighly oscillatory trajectories a \successful smoothing" can e�ect an essentialreduction of this error ampli�cation. This should become clear if one considersthe following 4-dimensional test system:H(q1; q2; p1; p2) = 12  p212 + p222 + !2 (q2 � q1)2! + V (q1) (2.4)with a strong harmonic part (! � 1) and the morse potential (cf. Figure 2)V (q) = 12 (1 � exp(�a q))L with a > 0 and L 2 N: (2.5)It can be shown (using perturbation analysis or the results of [9]) that for ! �a (gap condition) and time intervals not too large the smoothed evolution of(2.4) is approximately given by the solution of the 2d{Hamiltonian systemwith H(q; p) = 12 p2 + V (q):This allows us to compare the error propagation in the two systems: Assumethat we have made an (numerical) error � for the state (q; p) of a system att = 0. How strong will it be ampli�ed by the evolution of the system? Let�t be the phase ow of (2.4), i.e. �tx0 is the solution of (2.4) with initialconditions x0 = (q; p)(0) = (q0; p0). Then we are interested in the intervalcondition number�[0; t] := maxs2[0;t] sup� k�t(x0 + �) � �tx0kk�k ; (2.6)in an arbitrary norm k � k (for the theoretical background of this concept see[2]). Figure 3 shows the evolution of �[0; t] in time t for the original and for thesmoothed system. We observe that, �rstly, the ampli�cation of errors can bestrong for collision potentials like (2.5) and that, secondly, this ampli�cationcan be reduced by smoothing the dynamics. Thus, smoothing techniques willnot only help to increase stepsize and e�ciency but also allow accurate MDintegration on larger time intervals. 6



−0.2 0 0.2 0.4 0.6 0.8 1

0

0.5

1

x

V

Potential V

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.8

0.9

1

1.1

1.2

t

q1

Original dynamicsFig. 2. Potential V from (2.5) for a = 4 and L = 8 and corresponding initial dynamicswith resolution of the fast oscillations.
0 5 10 15 20

−0.5

0

0.5

1

1.5
q1−component of original dynamics

t
0 5 10 15 20

10
0

10
1

10
2

10
3

10
4

10
5

Condition of original dynamics

t

0 5 10 15 20
10

0

10
1

10
2

10
3

Condition of smoothed dynamics

t
0 5 10 15 20

−0.5

0

0.5

1

1.5
q1−component of smoothed dynamics

t

Fig. 3. Interval condition numbers �[0; t] and q1{components of the original (bottom) andthe smoothed (top) dynamics of (2.4) with ! = 100, a = 4, and L = 8. Fast oscillations oforiginal dynamics graphically not resolved (cf. Fig.2). Note that �[0; t] is 100 times largerfor the original system. 7



2.3 Adaptation of StepsizesFigure 3 shows another important aspect of the smoothed dynamics: For theoriginal, highly oscillatory solution and for each discretization scheme thereis a �xed stepsize �0 which is overall optimal with respect to e�ciency (� =a �xed fraction of the average period of the oscillation), i.e. stepsize controlcannot increase e�ciency. For the corresponding solution of the smootheddynamics this is not the case, because the oscillations are \cancelled" (cf.Figure 1: you can make large timesteps except in the region of the two jumps).Thus, in order to be e�cient, smoothed MD requires stepsize control schemes.Up to now, it has not become clear how to solve this problemmost e�ciently:in the scope of explicit, symmetric extrapolation schemes (cf. [4] or [2]) orby use of symplectic discretizations [5][6].3 Statistical formulation of Molecular DynamicsThis Section is concerned with the question of how to give an ensemble for-mulation of (1.2) and of the additional heat bath embedding of the molecularsystem.3.1 Probability Density and Expectation ValuesWe consider a statistical ensemble of identically prepared molecular systemswhich are described by the Hamiltonian H from (1.1). The basic concept ofthe formulation is the introduction of a (phase space) probability densityf : R3N �R3N �R ! [0; 1]:for this ensemble. f(q; p; t) must be interpreted as the relative frequency ofsystems in the ensemble which occupy state (q; p) at time t. The equation ofmotion for f is the well{known Liouville equation@t f = [H ; f ]= DqH �Dpf � DpH �Dqf (3.1)= DV (q) �Dpf � Dqf �M�1 p8



with the Poisson brackets [�; �]. Let us assume that a normalized initial densityf(�; �; 0) = f0 : R3N �R3N ! [0; 1] with ZR6N f0(q; p) dq dp = 1is given (see Section 3.3). Let �t again be the phase ow of (1.2), i.e. �t(q0; p0)is the solution of (1.2) with initial conditions (q; p)(0) = (q0; p0). Then, theformal solution of (3.1) can be given:f ��t(q; p) ; t� = f0 (q; p) : (3.2)From (3.2) we see that (3.1) describes the transport of the initial densityalong the integral curves of (1.2). Moreover, it is obvious that a solutionof (3.1) is equivalent to the evaluation of the total ow �t, i.e. equivalentto the solution of an in�nite number of initial value problems with (1.2) asdi�erential equation.Fortunately, we are not interested in f itself but in the expectation values ofphysical observables with respect to f , i.e. with respect to our ensemble. Anobservable is a su�ciently smooth and f{integrable functionA : R3N � R3N ! Rm; m 2 Nand its expectation value is de�ned ashAi(t) = ZR6N A(q; p) f(q; p; t) dq dp:So far, this can be found in textbooks on Statistical Mechanics, e.g. [7]. Now,Liouville's equation (3.1) gives us equations of motion for the expectationvalues (via partial integration):ddt hAi = hDqA �M�1pi � hDpA �DV i: (3.3)In particular, the equation of motion for the position and momenta observableA(q; p) = (q; p)T is ddt 0@ hqihpi 1A = 0@ M�1hpi�hDV (q) i 1A (3.4)9



and we observe the same fundamental problem of noncommutativity as wehad in Section 2 (eq. (2.2)):hDV (q)i 6= DV (hqi); (3.5)i.e. equation (3.4) is not closed, we need knowledge about f for the evaluationof its right hand side. More precisely, we do not need f but only the reduceddensity F (q; t) := ZR3N f(q; p; t) dp; (3.6)because of hDV (q) i = ZR3N DV (q)F (q; t) dq: (3.7)But again, we are not able to deduce this knowledge mathematically withoutsolving (3.1) and we have to construct it using a physical model, i.e. we have toconstruct a closing relation hDV (q)i) = D ~V (hqi) for the statistical equationof motion (3.4). For the case of (nonequilibrium) thermal embedding ~V canbe constructed via a heuristical model for f (cf. Section 4). But before goinginto details we must give some comments on the de�nition of \temperature",\heat bath embedding", and the initial density f0 (\solving" Problem 2 and3 from the introduction).3.2 Temperature and Heat Bath EmbeddingAll densities f(q; p) =  (H(q; p)) with a smooth and su�ciently decreasingfunction  : R+ ! [0; 1] are stationary solutions of Liouville's equation (3.1).One of these, the well{known canonical ensemblefc(q; p) = 1Q exp(��H(q; p)) with Q = ZR6N e��Hdp dq; (3.8)is used to de�ne \temperature": fc is the probability density of our ensemblei� the ensemble is in equilibrium with a heat bath of temperatureT = 1kB � ; kB : Boltzmann constant:10



This statistical way of de�ning temperature has an interesting consequencefor Hamiltonian of the form (1.1): If h�i is the expectation value with respectto fc it is hpi = 0 and with the dyadic product (p
 p)kl = pkpl we �nd:hp
 pi = 1� M = M kBT;ifM = diag(mk) is diagonal (what we assume in the following). Together wehave hp 
 pi � hpi 
 hpi = 1� M: (3.9)In particular, the deviation of the measurement of hpli in the canonical en-semble is controlled by the temperature:�(pl) := hp2l i � hpli2 = ml� = mlkBT:A concrete computation of an expectation value hAi with respect to fc re-mains a very hard problem, because a careful approximation of the corre-sponding high{dimensional integrals (e.g. in the evaluation of Q) producesdramatically large computational e�ort. Moreover, in the typical MD con-text, we often are not interested in describing the equilibrium state of themolecular system. Certainly, we want to simulate the system in interactionwith a heat bath of �xed temperature but not necessarily in equilibriumwithit. Thus, our question is how to construct a density which describes this si-tuation? This is a crucial point. Let us be careful and therefore precise. Thesolution f of Liouville's equation with initial condition f(�; 0) = f0 describesan ensemble of single system of type S, which all are totally characterized bythe Hamiltonian H, i.e. the evolution of each single systems is totally deter-mined by H and the corresponding initial condition for this system. But Hdoesn't include the heat bath: systems of type S are free, i.e. they are notinteracting with a heat bath. Then, what is the meaning of the statement\fc describes equilibrium heat bath embedding of the S{ensemble"? It states,that there is a particular initial density f0 = fc which models the situationof heat bath embedding of S in the sense that the expectation values withrespect to the corresponding solution f(�; t) = fc of Liouville's equation arecorrect descriptions for S in thermal equilibrium! This shows the importanceof the initial density in this statistical approach, i.e. the importance of the11



initial preparation of the ensemble. If f0 6= fc we do not know how to mo-del \thermal embedding". We may go the way of changing the HamiltonianH ! Ĥ, e.g. by adding additional stochastic forces. Or we may construct amodel for the density f which, then, must no more ful�l Liouville's equationfor H but a \corrected" one. This last approach is realized herein (cf. Section4). As a �rst step it should be noted that (3.9) is not equivalent to the cano-nical ensemble, i.e. if (3.9) is ful�lled for the expectation values with respectto a density f this does not imply f = fc. We may use this freedom and de-�ne that a density f which ful�ls (3.9) describes an ensemble in interactionwith a heat bath with temperature T = 1=kB� (in local equilibrium).3.3 Initial DensityWhat is the \right" initial density f0 = f(�; �; 0) for (3.1) if we are in thesituation explained in Problem 3 in the introduction? Equation (1.5) leadsus to the following model for the \spatial part" of f0:f0(q; p) = �(p) 3NYk=1 wk  qk � q0k�k !where � must still be de�ned and the wk : R ! [0; 1] are suitable weightfunctions with R w(x)dx = 1. If we assume normal distribution for the errorof the spatial measurements we will e.g. usewk(x) = 1p� exp(�x2):If f0 is the initial density of an ensemble in interaction with a heat bath oftemperature T = 1=kB�, the usual model for � is normal distribution witha variance controlled by temperature�(p) = 1� exp ��2 pTM�1p!with � so that f0 is normalized, i.e.f0(q; p) = 1� exp ��2 pTM�1p! 3NYl=1 wk  qk � q0k�k ! (3.10)12



with � =  p2�p� !3N 3NYk=1 �kpmk:This construction guarantees that f0 ful�ls (3.9) and thathpi = 0 and hqki = q0k: (3.11)In particular, the form of the spatial part shows that f0 6= fc, i.e. the initialpreparation of our ensemble given by the spatial measurement (1.5) does not�t in the context of thermal equilibrium (see above).4 Smoothed MD and Spatial AveragingIn \standard" MD{approaches the statistical nature of our problem may betaken into account by computing a representatively large number of trajec-tories with di�erent, f0{distributed initial values and (1.2) as equation ofmotion. Then, interesting expectation values are computed as mean valuesover all these trajectories. If this is done carefully it produces an enormouscomputational e�ort. Is it possible to evaluate these expectation values fromone trajectory only, for instance the solution of our statistical equations ofmotion (3.4)? This would only be possible if we found a closing relationhDV (q)i = D ~V (hqi) for (3.4) and adequate initial values. In the followi-ng such a closing relation and initial values are constructed from a modelfor the nonstationary probability density for thermally embedded systemswhich �ts to the initial conditions (3.10). The reformulated equation of mo-tion will again be Hamiltonian with a smoothed e�ective potential ~V leadingto smoother trajectories. But let us start proving some useful properties of\separable" densities.4.1 Separable DensitiesIn this subsection we assume that the considered density f is separable, i.e.for all t � 0 it holds f(q; p; t) = Q(q; t) � P (p; t) (4.1)13



with both, Q and P , being normalized and withlimjpk j!1P (p; t) = limjqk j!1Q(q; t) = 0 8k = 1; : : : ; 3N: (4.2)In this situation the following theorem holds:theorem 1. Let h�i be the expectation value with respect to a separabledensity. Then the equations of motion (3.4) for the position and momentaexpectation can be written in closed form and as a new Hamiltonian systemddthqi = Dp ~H(hqi; hpi) = M�1hpiddthpi = �Dq ~H(hqi; hpi) = �D ~V (hqi); (4.3)with a corrected Hamiltonian~H(q; p) = 12 pTM�1p + ~V (q): (4.4)Thus, the closing relation for system (3.4) is deduced: hDV (q)i = ~DV (hqi).The new potential ~V only depends on the old one V and on the initial densityf(�; �; 0).Proof. (4.1) implies for the reduced density (3.6)F (q; t) = Q(q; t)and, in particular: ZR3N pP (p; t) dp = hpi(t): (4.5)In this situation we can deduce an equation for F = Q alone. Therefore,integrate (3.1) over p and use (4.2) to get@t F = �DqF � M�1 ZR3N p P (p; t) dp= �DqF � M�1 hpi: (4.6)14



If hpi(t) and the initial reduced densityF0 = F (�; 0)are known, the solution of (4.6) can be written asF (q; t) = F00@q � M�1 tZ0 hpi(s) ds1A ;and we can use our general formula (3.4) to getM�1 tZ0 hpi(s) ds = hqi(t) � hqi(0)and from this F (q; t) = F0 (q � hqi(t) + hqi(0)) :If we switch to the centered initial density~F0(q) := F0(q + hqi(0)) (4.7)we �nally have F (q; t) = ~F0(q � hqi(t)); (4.8)i.e. the initial probabilities ~F0(q) are transported along the curves hqi(t) ofthe spatial expectation value (cf.(3.2)). With (4.8) the desired consequencesfor the equation (3.4) follow directly: From (3.7) we gethDV (q)i(t) = ZR3N DV (q)F (q; t) dq= ZR3N DV (q) ~F0 (q � hqi(t)) dq= ZR3N DV (q0 + hqi(t)) ~F0(q0) dq0= Dq ~V (hqi(t))with a new potential ~V (q) := ZR3N V (q0 + q) ~F0(q0) dq0: (4.9)15



This implies the statement of the theorem.Our theorem has additional nice consequences. If we consider an arbitraryspatial observable A = A(q) one can show by the same calculations startingwith (3.3) that ddthAi = D ~A(hqi) M�1hpi (4.10)with a new function ~A(q) := ZR3N A(q0 + q) ~F0(q0) dq0;i.e. solving (4.3) makes the computation of all spatial expectation valuespossible.4.2 Probability Density for Thermally Embedded SystemsWe want to construct a density f� for an ensemble which describes (non-stationary) thermal embedding. This density shall allow us to �nd a closingrelation for (3.4). Theorem 1 states that we can deduce the desired closingrelation if f� is separable. Therefore, consider the following density:f�(q; p; t) = F (q; t) � 1� exp � �2 (p � hpi(t))TM�1(p � hpi(t))! (4.11)with � = 3NYl=1 s2�ml� :It is separable in the sense of (4.1), nonstationary, ful�ls the initial condition(3.10) with F (q; 0) = F0(q) = 3NYl=1 1�k wk  qk � q0k�k ! (4.12)and hpi(0) = 0;and has the property hp 
 pi � hpi 
 hpi = 1� M;16



which is (3.9), our de�ning equation for nonstationary embedding in a heatbath of temperature �.Thus, f� models the situation which we wanted to describe with the \correc-ted spatial Liouville equation"@t F = �DqF � M�1 hpi (4.13)and ddthpi = � ZR3N DV (q)F (q; t) dpas equations of motion (cf. the proof of Theorem 1) and (4.12) as initialcondition.
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qFig. 4. Original (solid line) and smoothed potential (dotted line) and the correspondingHamiltonian dynamics. Already in this simple example numerical integration of the smoo-thed dynamics needs 3 times less steps than in the original case.Finally, we know from Theorem 1, that the separability of f�, the initialconditions (4.12), and the new potential ~V from (4.9) give us new and clo-sed Hamiltonian equations of motion for the expectation values of ensembles17



modelling nonstationary thermal embedding:ddthqi = M�1hpi hqi(0) = (q0k)k=1;:::;3Nddthpi = �D ~V (hqi) hpi(0) = 0: (4.14)4.3 Averaged Potentials for MD CalculationsAccording to (4.14) we have to use (4.9) to compute the new potential ~Vwith a centered density ~F0 given by (4.7) and (4.12):~V (q) = ZR3N V (q + q0) 3NYl=1 1�k wk  q0k�k! dq01 � � � dq03N : (4.15)This means that ~V is constructed from V by weighted (spatial) averaging onscales �l, e.g. with Gaussians~V (q) = ZR3N V (q + q0) 3NYl=1 1p��k exp0@ q0k�k!21A dq01 � � � dq03N : (4.16)Therefore, the new system (4.14) has smoothed trajectories in comparisonto the original system (1.2) and its integration produces less computationale�ort (cf. Figure 4). Because of this, things explained in Sections 2.2 and 2.3are valid for (4.14), too.For typical MD potentials V the explicit evaluation of the integrals in (4.15)is possible, because they are sums of \simple" potentials V (k):V (q) = mXk=1 X(j1:::jNk )2Bk V (k) �q j1; : : : ; q jNk� ;wherein Nk is small for all types k = 1; : : : ;m. Realization of this evaluationand e�cient numerical integration of (4.14) for realistic molecular systemswill be subject of further work. 18



5 ConclusionTypical MD simulations for (macro)molecular systems with nonstationarythermal embedding necessarily require the computation of a representative-ly large (statistical) ensemble of trajectories and expectation values as cor-responding ensemble averages. In addition, the evaluation of each of thesetrajectories produces large computational e�ort because hard stepsize limi-tations are demanded in order to ensure stability of the time integration.We have presented an approach which leads to a reduction of computationale�ort in both cases:The construction of a model for the nonstationary probability density for theconsidered situation allows us to deduce a closing relation for the equationof motion (3.4) which is the equation for the (q; p){observable. Thus, we areable to evaluate the expectation values of all spatial observables via (4.10)by computing only one trajectory (hqi; hpi) as the solution of a new Hamil-tonian system (4.14) with uniquely determined initial values. The potential~V of this Hamiltonian system is determined as a weighted spatial average ofthe original potential V . Thus, in comparison to the original trajectories, oursingle trajectory (hqi; hpi) is smoother, i.e. it allows larger stepsizes and hasalso the other advantages of a smoothed MD (gain in e�ciency, reduction oferror ampli�cation, increased stability).References[1] M.M. Chawla. On the order and attainable intervals of periodicity ofexplicit Nystroem methods for y00 = f(t; y). SIAM J. Numer. Anal.,22:127{131, 1985.[2] P. Deuhard and F. Bornemann. Numerische Mathematik II. De Gruy-ter, Berlin, New York, 1994.[3] M. Fixman. Classical statistical mechanics of constraints: a theorem andapplications to polymers. Proc. Nat. Acad. Sci., 71:3050{3053, 1974.[4] E. Hairer, S.P. N�rsett, and G. Wanner. Solving Ordinary Di�erentialEquations I, Nonsti� Problems. Springer Verlag, Berlin, Heidelberg,New York, Tokyo, 2nd edition, 1993.
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