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Abstract

Rod cell phototransduction is a prime example of a functional module
whose properties may strongly depend on its specific spatial embedding. The
rod outer segment has a highly regular layered geometry comprising disc mem-
branes that are densely filled with the photo-collecting Rhodopsins and their
G-proteins Transducin. Despite a wealth of functional studies on rod cell pho-
totransduction and a rather complete knowledge of the proteins involved in
the process, the spatiotemporal mechanism of the activation cascade is poorly
understood. Since recently, the existence of Rhodopsin patterns on the disc
and their possible effects on functional properties of photoactivation are highly
debated. In the present study we conduct spatiotemporal simulations of the
two-dimensional reaction-diffusion photoactivation processes on the disc mem-
brane with all protein copies explicitly resolved. We investigate the effects of
crowding, the spatiotemporal evolution of the activation, and different settings
of the reaction rates of the physicochemical events such as the dissociation of
G-protein subunits. Finally, we compare free diffusion of the involved proteins
with a situation where attractive interactions favor Rhodopsin-Rhodopsin ag-
gregations. In order to compare our results to a well-defined experimental
test system, the simulations are set up on a spherical membrane mimicking
experimentally prepared disc membrane vesicles for which extensive kinetic
studies exist. Our analyses yield insight into which space-time mechanisms
in the phototransduction activation module are possible and allow a number
of highly debated questions concerning microscopic rate constants, pattern
formation on the disc membrane, and sources of the single-photon response
uniformity to be reconsidered.
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1 Introduction
A cellular module is a functional unit of interacting molecules that goes through cy-
cles to perform specific task for the cell [28]. The functionality of modules and entire
cascades has classically been understood in terms of reaction networks, comprising
the players (proteins, RNA, co-factors, ions, etc) and their interactions (reactions,
aggregations). Recent years have seen increasingly many studies suggesting that
spatial effects such as crowding or space exclusion at membranes, localization in
the specific geometry of the cell, and the specific nature of the transport processes
between these localizations play a perhaps equally important role in determining
function. This is clear for molecules that exist in very low copy numbers, such
as RNA [15] or activated Rhodopsin in the dim-light regime [46], where transport
processes may become rate-limiting. Even when copy numbers are rather large,
spatial effects, ranging from patterns of few molecules [20] to the macroscopic cell
geometry [2, 6] may be determining modular function. Such spatial information is
not contained in classical reaction networks and adds an important dimension to
understanding modular function [45, 48, 2, 10, 6].

1.1 Rod cell phototransduction
As a guiding example, we consider the phototransduction module in the rod cell
that comprises the entire signaling cascade and consists of sub-modules responsible
for activation, shutoff, etc [28]. The rod cell phototransduction is the first step in
dark vision, and is well understood in terms of the relevant molecules and their
interactions [40, 53, 39, 36]. Rod phototransduction is initiated by light activa-
tion of Rhodopsin molecules that densely populate the intracellular disc membrane
stacks (Fig. 1a) which is then transduced along the disks via Transducin and PDE
molecules (Fig. 1b), resulting in concentration changes of freely diffusing second
messenger molecules, leading to closure of Ca2+ channels, in turn causing a de-
crease of the “circulating dark current” which acts as a neuronal output signal [35].
Despite this rather detailed knowledge of interactions, some key properties of the
rod vision signal transduction are still highly debated, in particular the nature of
the two-dimensional transport processes on the disk membrane, which were classi-
cally understood as ordinary two-dimensional isotropic diffusion [54, 14]. The first
steps of the G protein mediated visual signal transduction module are suggested
to be rate limited by the transport of Rhodopsin and Transducin along the disk
[5]. As the disks are densely populated with proteins, mainly Rhodopsins, Trans-
ducins and PDE in ratios of roughly 100:10:1, transport properties could be strongly
affected by crowding or formation of local patterns. Single molecule particle track-
ing experiments of fluorescently labeled Transducin C-terminal peptides [31] seem
to indicate anomalous diffusion behavior that may be induced by alterations in
Rhodopsin packing upon light activation. Wang et al. [52] have found evidence for
lipid microdomains on the disc which seem to accelerate the diffusion of the acti-
vated Gα subunit of Transducin remarkably. AFM Experiments have found bands
of Rhodopsin oligomers [21], [20] suggesting that Rhodopsin may be organized in
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extended areas of paracrystalline racks and patches. These bands would strongly
restrict the transport of Rhodopsins part of such oligomer bands, while they have
been suggested to promote the signal transduction to Transducin that could slide
along these bands [20], or to be part of a general control mechanism allowing sen-
sitivity adaptation of the photoreceptor [23]. The physiological relevance of these
experiments is highly debated, as the experimental setup itself could induce unnatu-
ral pattern formation [11]. Nevertheless, Rhodopsin has been shown to exist both in
monomeric and dimeric forms in detergents [30]. In a simulation study using coarse-
grained MD, it was found that Rhodopsins tend to oligomerize depending on lipid
bilayer thickness and composition [42]. A Monte-Carlo simulation of disks supports
that the existence of diffusion obstacles would strongly affect the overall transport
on the disk [13]. It is conceivable that oligomeric patterns are only metastable, i.e.
change dynamically, and are modulated by the activation state of Rhodopsin or by
the presence of Transducin. This has not been studied in detail yet.

These combined findings emphasize the significance of how spatial effects influ-
ence module function. More specifically, how do local arrangements / patterns of
molecules influence transport processes, and how do the properties of these transport
processes when embedded in the specific cellular geometry, propagate to functional
properties of modules or entire cascades? While experimental techniques are usually
restricted to observing individual properties or interactions, such a general question
calls for complex reasoning that may be guided by computer experiments. In com-
puter experiments, spatial models of the molecules and their interaction in specific
environments can be simulated in time, with all model properties being observable
and useful to calculating experimentally-measurable properties. This connection to
experiment is one the one hand necessary to validate computer model, on the other
hand, the computer model can then provide a structural, mechanistic and dynamical
explanation of experimental evidence. The present challenge is to setup computer
models that can describe the rod cell from the level of detailed molecular interactions
to the entire cell while still being computationally tractable.

1.2 Theoretical approaches to the system
In order to access module properties, transport across the entire disk membrane or
even the entire rod cell must be calculated, which is not feasible with models that
resolve details of individual proteins such as molecular dynamics. The standard
approach for modeling reaction or metabolic networks is using ordinary differential
equations (ODEs). Starting from defined initial conditions the ODE model describes
the change of metabolites over time due to reactions between them [45, 12]. ODEs
can be paired with Gillespie dynamics to simulate systems where particles with
low copy numbers are involved rendering a model with continuous concentrations
inadequate [22]. ODEs and Gillespie dynamics have been used to model rod cell
phototransduction [25, 24, 36]. However, ODEs and Gillespie dynamics assume that
the reaction container is well-stirred such that concentrations are homogeneous at
all times, and do not resolve any spatial information [45]. Thus, these approaches
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Figure 1: Overview over the different geometrical and signal transduction features
of the rod cell. (A) Sketch of the rod cell [9] next to an electron tomogram of the
rod outer segment, showing the layered disc geometry [38]. (B) Schematic of the
Phototransduction Cascade Activation and Inactivation [8]. Upper disc: Illustration
of inactive Rhodopsin (R), Transducin (Ga, Gb, and Gg subunits), and PDE (a, b,
and g subunits) in the dark. Middle disc: Illustration of the light-induced cascade
activation = Transducin and PDE activation. Lower disc: Illustration of the cas-
cade inactivation = R* inactivation via phosphorylation by Rhodopsin kinase (RK)
followed by Arrestin (Arr) binding and Transducin/PDE inactivation by the RGS9-
1.Gb5.R9AP complex. The Guanylate cyclase (GC) is shown as a component of the
plasma membrane; in real cells it is likely to be present within the disc membranes
as well. (C) Sketch of the pile of discs next to an atomic-force microscopy topograph
showing paracrystalline arrangements of Rhodopsin dimers [21] (D) Conformation
of a Rhodopsin dimer in recently obtained crystals (PDB ID 2I35). The proteinpro-
tein interactions in these dimers involve residues from helices I, II, and H-8, as well
as the palmitoyl chains covalently bound to the protein.
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are inadequate to address the present questions concerning the relevance of pattern
formation, transport processes and specific geometry.

Two-dimensional lattice-based simulations of the disk membrane [33, 34, 17, 13]
and three-dimensional reaction-diffusion simulations of the rod cell geometry [6,
10, 2] have been used to simulate rod phototransduction incorporating geometrical
information. In a more general sense, compartment or subvolume-based simula-
tion platforms exist, including Virtual Cell [49], MesoRD [26] and SmartCell [1].
While these approaches do provide mechanistic insight, they are still inadequate to
model complex local and possibly dynamical patterns such as formation Rhodopsin
oligomers [21] and realistic crowding behavior and some molecular processes, such
as the initial randomness after single photon absorption [25, 24] or the generation
of photocurrent following channel closure [6, 10, 2, 25, 24] need to be modeled with
imposed empirical laws that cannot be easily validated on a microscopic level, nor
do they yield a detailed understanding of the processes involved.

Such detail is resolved by models that explicitly describe the motion of individual
particles in space and time. Several simulation platforms exist, including MCell [50],
Smoldyn [3], CyberCell [7] and Cell++ [48] where the position of particles in space
is propagated with diffusional dynamics and reaction-competent particles can react
when being in close enough distance.

In the present study we use an algorithm, based on the time but not space
discrete propagation of single particles and the evaluation of stochastic reactions
between them, to simulate the two-dimensional reaction-diffusion processes of the
two proteins that govern the initial steps in the primary Rod cell photoactivation
cascade: Rhodopsin and the G-protein Transducin. We restrict our study to the
case of single-photon activation and investigate the effects of crowding and assess
the behavior of the process in different regimes in which either the system could
be considered as well mixed and therefore be described by an ODE model or the
system is governed by individual single particle events. Finally, we outline a possible
method to compare free diffusion of the involved proteins with a situation where at-
tractive interactions favor Rhodopsin-Rhodopsin aggregations. In order to compare
our results to a well-defined experimental test system, the simulations are set up
on a spherical membrane mimicking the disc membrane vesicles prepared in [27].
Our analyses yield insight into which space-time mechanisms in the phototransduc-
tion activation module are possible and allow a number of highly debated questions
concerning pattern formation on the disc membrane to be reconsidered.
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2 Experimental basis: Investigation of the rod cell
disc membrane

The basis of this study is an experiment by M. Heck and K.P. Hofmann in which the
first steps of the rod cell photoactivation cascade are studied in detail. The following
section describes the biological system under investigation, the features and the
geometry of the experimental setup and the results obtained by the experiment.
For a more in-depth description please be also referred to the publication of the
experiment: [27].

2.1 First steps in seeing
As already pointed out in the introduction, signal transduction in the rod cell starts
with light induced activation of Rhodopsin molecules, being situated densely packed
in thousands of copies on the surface of disc membranes. Once activated by a pho-
ton, Rhodopsin traverses multiple intermediate states, the most pronounced being
MetaI, and eventually reaches an equilibrium between the MetaI and MetaII config-
uration from which the latter is capable of G-protein (G) activation, the subsequent
activation reactions in the signal cascade.

Rhodopsin in MetaII configuration (R∗) forms a complex with G-proteins which
induces a nucleotide exchange in the R∗-bound G-protein. In this exchange the
protein bound low-energy GDP is exchanged by a high-energy GTP, rendering the
G-protein to be in an active state (G∗). After R∗G∗ complex dissociation R∗ and G∗

are released and R∗ can continue to activate ground state G-proteins. The released
G∗ has a smaller membrane affinity than the G-protein in the ground state G. This
change in membrane affinity is the key element of the applied experiment which
uses kinetic light scattering to read out the number of G∗ dissociating from the
membrane. The following scheme gives an overview over all relevant reactions in
the experiment:

MetaI
k1−−⇀↽−−
k−1

MetaII(= R∗)

GGDP + R∗ k2−−⇀↽−−
k−2

GGDP R
k3(GDP )
−−−−−−⇀↽−−−−−−
k−3(GDP )

G0R∗ k4(GTP )
−−−−−−⇀↽−−−−−−
k−4(GTP )

GGTP R∗ k5−−⇀↽−−
k−5

GGTP + R∗

GGTP
k6−−⇀↽−−
k−6

GGTP (SOL)

The membrane binding reactions of already dissociated G∗ and free G in solution
are neglected here since they occur on too large time scales (in order of seconds) to
be relevant for our simulations.

2.2 Experimental setup and disc vesicles
To investigate the system described above, Heck and Hofmann prepared bovine rod
outher segments and hypotonically stripped off its disc membranes which, once in

10



Figure 2: In the experiment of Heck and Hofmann, disc membranes are stripped
off from the rod cells and form spherical shaped vesicles in buffer solution. In this
image, besides G-proteins (blue) Rhodopsin oligomers (brown) are here assumed to
be present on the disc membrane for illustration purposes. The question whether
this structures are present on real disc membranes has been highly debated to date
and could not been answered yet.

flat disc shape, take the form of a spherical vesicle in buffer solution, outside their
cellular environment. See here also Figure 2 for an illustration.

Because Rhodopsin is an integral membrane protein it is not washed away by
the purification steps to generate a solution of disc vesicles. This leads to a func-
tional model system of a disc membrane in which no proteins of the visual cascade
are present except Rhodopsin. Now a dynamic study was possible by adding con-
trolled amounts of G-proteins and nucleotides to the system in order to resolve the
underlying reaction mechanism and its kinetics.

2.3 Experimental results
Despite titrating the amount of nucleotides present in the system, Heck and Hof-
mann titrated also the amount of G-protein. The resulting cumulative signal of
G∗ dissociation events is depicted in Figure 3 and is characterised by a short delay
followed by a constant increase and an eventual plateau formation on different lev-
els indicating the respective initial amount of available G on the membranes. The
different G-protein concentration for the different setups can be found in Table 1.
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Figure 3: Experimental results and ODE model of the cumulative G∗ production
over time for different G concentrations. Color code of the setups: G10 blue, G20
cyan, G30 yellow, G40 orange, G50 magenta, G60 dark red. Upper plot: Complete
trajectory of the experiment (black) and the ODE model results. Lower plot: Detail
of the upper plot from 0 to 100ms. Dashed lines depict experimental results, straight
lines ODE results.

G10 G20 G30 G40 G50 G60

[G]µm2 346 655 1436 2530 3706 5444

Table 1: Different G-protein concentrations used in the different experimental se-
tups.
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Symbol Reaction k

k1 MetaI→R* 28 s−1

k−1 MetaI←R* 15 s−1

k2 R*+GGDP→R*GGDP 0.53 µm2

s

k−2 R*+GGDP←−R*GGDP 283 s−1

k3(GDP ) R*GGDP
−GDP−→ R*G0 607.5 s−1

k−3(GDP ) R*GGDP
+GDP←− R*G0 2.22 s−1 × [GDP ]

k4(GTP ) R*G0
+GTP−→ R*GGTP 2.6 s−1 × [GDP ]

k−4(GTP ) R*G0
−GTP←− R*GGTP 0 s−1

k5 R*GGTP−→R*+G* 48600 s−1

k−5 R*GGTP←−R*+G* 0 s−1

k6 G*−→∅ 10000 s−1

k−6 G*←−∅ 0 s−1

Table 2: Reaction rate constants k from the ODE model of Heck and Hofmann.

A system of ordinary differential equations (ODE) was applied to learn the kinetic
parameters of the involved reactions. Here they succeeded in simultaneously fitting
their data by one set of kinetic parameters. The curves of the ODE description
of the system can be found in Figure 3 and the resulting parameters are collected
in Table 2. These parameters are the basis on which the reactions in our in silico
simulation operate.

Our goal is to compare the results of our explicit reaction-diffusion particle dy-
namics simulation with the results of the ODE model as well as with the experimen-
tal results and highlight the differences that arise from the two modeling approaches
with explicit particles on the one hand and assumed well stirred concentrations on
the other.
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3 Theory
In this section, the theoretical basis of the particle simulation approach is discussed.

3.1 Theoretical background
Biological systems are often described as reaction-diffusion processes of interacting
chemical species. A traditional mathematical modelling approach to such processes
is their description in terms of concentrations that are either space independent and
evolve in time by using a system of ordinary differential equations (ODSs) or that
are spatially dependend and evolve in time by using a system of partial differential
equations (PDEs) [29]. However the use of concentrations has the limitation that it
is only valid for very large numbers of molecules. If these numbers become smaller,
e.g. there is only one activated Rhodopsin molecule that initiates the entire pho-
toactivation cascade during single photon responses of Rod cells, their description
in terms of a concentration can no longer be defined properly.

In such cases of low copy numbers it is necessary to give up the description in
terms of concentrations and use discrete numbers of particles instead. The resulting
algorithms are based on the stochastic Markov process that governs the dynamics
of particle movements and reactions and are called stochastic simulation algorithms
(SSAs).

There are two kinds of SSAs: The first subdivides the simulation volume ar-
tificially into small subvolumes [49, 26, 1]. Now particle movements in space are
modelled as random jumps between these volumes and reactions are only consid-
ered possible within a subvolume that is assumed to be well mixed. The description
of stochastic reactions based on discrete particle numbers in such a container is per-
formed according to the Gillespie algorithm [22]. The disadvantage of this formalism
is that is requires the assumption of well mixed parts in the system which limits the
resolution in space and can therefore not be used for the modeling of single particle
events.

The second kind of SSA is molecular based and simulates the trajectories of
diffusive motion of individual molecules via stochastic differential equations (SDEs)
[47]. Reactions between particles can occur if their distance is lower than the reaction
radius and are performed with a probability defined in [22]. Algorithms of this kind
include [50, 3, 7, 48].

Our approach is a derivative of this second kind of SSA. Due to the desired single
particle resolution we do not discretize space and only dicretize time. Our system
only involves diffusive Brownian motion of particles and reactions between them.
Directed motion does not occur in our system.

The next sections describe in detail the used mathematical model for both par-
ticle diffusion and reaction threatment and their discretization in time.
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3.2 Particle diffusion
Which is the correct equation for describing the diffusional motion of particles? A
key modeling decision made here is that only some particles (which are of inter-
est for the functional modules under investigation) are resolved. Thus, only a few
particles will be explicitly described, while the presence of the nonresolved par-
ticles needs to enter the dynamical equations implicitly. This setting is covered
by the Mori-Zwanzig formalism [55, 37], yielding a generalized Langevin equation,
which describes particle motion subject to their interaction forces (repulsion at small
distances and attraction for particles that tend to aggregate), friction, noise (due
to random collisions with the nonresolved particles) and their history (neglecting
particles creates memory effects). Furthermore, particles in fluids are subject to
hydrodynamic forces which are due to long-range density correlations resulting from
displacement of large particles (e.g. pressure waves).

In our model we make the following further assumptions:

1. We are interested in timescales long enough such that instantaneous particle
velocities can be ignored (e.g. the velocity autocorrelation of liquid water
decays within ∼500 fs [44], which is much faster than a single integration time
step - see Sec. 4). This sets us in the overdamped limit, allowing the friction
term in the Langevin equation to be dismissed.

2. We are interested in timescales long enough such that memory effects aris-
ing from neglecting the nonresolved particles have died out. This allows the
memory term in the generalized Langevin equation to be dismissed.

3. Long-range density correlations (hydrodynamics) are relevant at the time- and
length-scales interesting to us. However, the cell is crowded with particles of
different sizes and forms, most of which are not resolved here. Treating hydro-
dynamics only amongst those particles resolved would result in an undesirable
bias. We assume that these hydrodynamic contributions average out. Note
that this assumption may be invalid in situations where there is a net transport
in a region of the cell that would creates anisotropic hydrodynamic effects, e.g.
motor proteins dragging vesicles along actin fibers.

4. Particles are treated as spheres. Molecules that strongly deviate from spherical
form (such as fibers) need to be modeled as a collection of interacting spheres.
This allows us to model the particle configuration based only on the positions
of their centers (ignoring orientations), and to treat diffusion isotropically with
a scalar diffusion coefficient.

Combining these assumptions leads to isotropic Brownian dynamics (also known as
Smoluchowski or overdamped Langevin dynamics):

dx(t)

dt
= −∇V (x(t))

γm
+

√
2kBT

γm

dη(t)

dt
, (1)
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where x(t) ∈ Rn is an n-dimensional vector indicating the instantaneous position
of all n particles at time t, dx(t)/dt is change of these positions over time,∇V (x(t)) is
the gradient (spatial derivative) of the potential, γ is the friction, m the particle mass
and the first term on the right hand side is the resulting deterministic force. The
second term on the right hand side is a stochastic force where kB is the Boltzmann
constant, T is the temperature, kBT is the thermal energy and η(t) ∈ Rn is a n-
dimensional Wiener process, i.e. each component is an independent random process
with normally distributed increments η(t2)− η(t1) ∼ N (0, t2− t1). The fluctuation-
dissipation theorem relates friction and temperature via the diffusion constant D:

D =
kT

γm
(2)

which allows Eq. (1) to be rewritten as:

dx(t)

dt
= −D

∇V (x(t))

kT
+
√

2D
dη(t)

dt
. (3)

Due to the fluctuation-dissipation theorem, the diffusion constant is proportional
with temperature (assuming that we are far away from a phase transition point),
i.e. the diffusion constant can be parametrized at a given temperature:

Dref = Tref
k

γm

and based on this the diffusion constants at other temperatures can be obtained:

D(T ) =
T

Tref
Dref .

The above equation is solved numerically by employing an Euler discretization
with constant time step ∆t, obtaining a discrete sequence of configurations in time,
xt, related by:

xt+∆t = xt −∆t D
∇V (x(t))

kT
+
√

2D∆tηt (4)

where the noise is realized by independent normal variables ηt ∼ [N (0, 1), ...,N (0, 1)]T .
∆t needs to be chosen shorter than the smallest timescale of the system, i.e. it de-
pends on the stiffness of the potential and on the diffusion constants. When ∆t is
sufficiently small, the Brownian Dynamics will, in absence of reactions, sample from
the stationary distribution that is fully defined by the potential, Eq. (6). This fact
is exploited in order to test the numerical correctness of the integration scheme.

3.3 Microscopic versus macroscopic diffusion
Two different concepts of diffusion constants exist, microscopic (model) diffusion
constants D, and macroscopic diffusion constants Dobs which are usually those that
are observable by experiments sensitive to particle motion. In order to understand
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their relationship, let us first consider a single particle that does currently not inter-
act with any other particle. Thus, the equation of motion for this particle is given
by pure Brownian motion:

dx(t)

dt
=
√

2D
dη(t)

dt
. (5)

Assuming that our particle is at x(0) = 0 initially and solving this equation for
different realizations of the noise gives the probability distribution of finding the
particle at a position x(t) at time t as:

x(t) ∼ N (0, 2Dt Id),

i.e. a normal distribution with variance 2Dt. Thus, the expected mean square
displacement of the particle over time, defined by

msd(t) = 〈(x(0)− x(t))2〉
has two limits characterized by the characteristic times t1 < t2. At short times:

msd(t < t1) ≈ 2Dt,

i.e. it increases linearly with time with slope 2D. This is a characteristic behavior
of diffusion and D is called the microscopic diffusion constant as it governs the
motion of particles within their implicit media while neglecting the composition of
the particle system, i.e. the interaction with other particles.

Now assume that the system is densely packed with particles that interact in
some way (e.g. repulsion at small distances, but perhaps also other, additional
forces). While on very short timescales, most particles may move freely with diffusion
constant D, at longer timescales particles will bump into each other. Consequently,
on long timescales the mean square displacement of particles will not grow with
2Dt, but usually slower, because the particle motion is hindered by crowding. On
long enough timescales, many such collision events will average out, again giving
rise to an effective diffusional behavior. On these long timescales, the mean square
displacement will also have the form

msd(t > t2) ≈ 2Dobst,

but now with a different effective diffusion Dobs that accounts for the composition
and geometry of the system that the particle(s) of interest are moving in. Due to
restrictions on size and timescale resolution, Dobs is usually the diffusion constant
that can be obtained from experiments, while D is the diffusion constant used in a
simulation model.

3.4 Reactions
Reactions are events which transform a number of nearby particles into other par-
ticles. Reactions in the sense of this simulator are not only chemical reactions, but

17



may have various physical realizations (including chemical reactions, conformational
changes, aggregations, etc). We limit ourselves to uni- or bimolecular reactions, i.e.
the types:

E
k→ P1, ..., Pm

and

E1 + E2
k→ P1, ..., Pm

where E1 and E2 are “educts”, i.e. the particles that are consumed by the reaction
and Pi are the products, i.e. the particles that are created by the reaction. Reactions
involving more than two educts can be modeled by splitting them up into multiple
bimolecular reaction steps.

The reaction rate constant, k, expresses the fraction of the educts converted into
products per time unit. Unimolecular reactions have a simple behavior. The prod-
ucts are produced with rate k, leading to the simple ordinary differential equations
[4]:

dcP1(t)

dt
= ... =

dcPm(t)

dt
= k cE(t),

where cx is the time-dependent concentration of particle type x. In unimolecular
reactions, the reaction rate constant k represents a single-molecule event - it mea-
sures the inverse mean time needed for the educt to decay into the products. Thus,
unimolecular reaction rate constants determined by experiments are identical to the
microscopic reaction rate constants used in a model description.

The situation is more difficult for biomolecular reactions. The total rate, i.e. the
total number of executions of the reaction per time unit of a bimolecular reaction
taking place in a homogeneous reaction container is given by [4]:

dcP1(t)

dt
= ... =

dcPm(t)

dt
= k cE1(t) cE2(t).

with cE1(t) and cE2(t) being the particle numbers of educts and k being the
rate constant. In this macroscopic model, k hides many details that influence the
reaction rate. In particular, for a reaction event to occur, one copy of E1 and E2

each must be in contact distance, such that the binding or aggregation event required
for the reaction can take place. Once such an encounter or collision complex has
been formed, there is subsequently a certain rate with which the two molecules
will eventually overcome the chemical/physical reaction barrier. The first step, the
encounter formation, happens via particle diffusion:

separate molecules

E1, E2
diffusional encounter−→

encounter complex

E1 : E2
activation−→

products

P1, ..., Pm

In a particle simulation, the location and diffusional motion of each particle is
explicit. We therefore need to distinguish the encounter and activation processes, as
the motion leading to the encounter complex is directly simulated, and the activation
can then only be conducted for those pairs of molecules that are close enough to
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form an encounter complex. For each particle, a reaction radius R (see Table 3) is
defined. When the inter-particle distance is smaller than the sum of reaction radii
involved, we have an encounter complex:

d12 ≤ R12 = R1 + R2.

The reaction radii are chosen based on physico-chemical intuition in order to
represent a distance at which reaction partners are close enough such that their
subsequent interaction is specific for this pair of molecules and can no longer be
treated by a diffusional description in which the molecules may move independently.
In other words, R12 may be regarded as the distance at which the interaction between
these two molecules switches from a weak to a strong interaction. Changing this
distance would change the encounter rate, and thus also change the activation rate
needed to represent a given total reaction rate. Thus it is clear that the separation of
the total rate constant into encounter and activation rate constants is not objective
but is to some degree arbitrary, hence we use the convention that R12 is fixed first.

What is the activation rate constant needed in our model to reproduce a mea-
sured total rate constant k when a reaction distance R12 has been defined? We dis-
tinguish two types of reactions: Firstly, we consider a bimolecular reaction in three
dimensions. For this, we assume a homogeneous mixture of particles of types E1 and
E2, which freely diffuse with diffusion constants D1 and D2, form an encounter at
distance R12 and then react with an activation rate ka. The rate at which encounter
complexes at distance R12 are formed is given by the Smoluchowski rate as

dc(E1E2)(t)

dt
= kenccE1(t) cE2(t)

with encounter rate constant

kenc = 4π(DE1 + DE2)R12.

Further taking into account that educts when having diffused into a distance of R12

are degraded with a rate ka yields a total (macroscopic) rate that has an analogous
form, but with a smaller effective radius (see [16] for derivation), given by:

k = 4π(DE1 + DE2)

(
R12 −

√
DE1 + DE2

ka
tanh

(
R12

√
ka

DE1 + DE2

))
.

thus, for a given measured k and our definition of R12, ka can be determined as the
solution of this equation. However this derivation is only valid in three-dimensional
geometry and is therefor not applicable to our system of membrane diffusion.

For this reason, using an analogous derivation (see 8.1), we derived a rate equa-
tion for biomolecular reactions taking place between educts diffusing on a two-
dimensional surface (e.g. membrane proteins). This yields a total rate of:

k = 2πR12

√
DE1 + DE2

√
ka

I1

[
R12

√
ka

DE1+DE2

]

I0

[
R12

√
ka

DE1+DE2

] ,
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where Iα[x] denotes the Modified Besselfunction of order α.
In the particle simulation, time is discretized into segments of ∆t. The reaction

rate must therefore be converted into a probability that the reaction will take place
in a given time step. When making the assumption that a single particle cannot
undergo multiple reactions in one time step (which is only true if the time step is
sufficiently small compared to the reaction rates involved). The reaction probability
is then obtained from the Poisson probability of finding at least one reaction event
with rate ka in a time window ∆t [51]:

p(∆t) = 1− exp(−ka ∆t).

3.5 Interaction potentials and stationary distributions
Inter-particle potentials are useful for modeling space exclusion (e.g. crowding ef-
fects), reversible protein aggregations and correlation of particle motions due to
electrostatic interactions. The potential assigns a potential energy to a particle
configuration x(t), here denoted by V (x(t)) : Rn → R. Note that both the terms
active in V and the length of the position vector x will change over time because of
particle reactions which change the particle composition of the system. However, in
between two reaction events, V is unique and during this time, the potential has an
associated stationary density given by

p(x) = Z−1 exp

(
−V (x)

kBT

)
(6)

where Z =
´

x exp
(
−V (x)

kBT

)
is the partition function. In many real simulations, p(x)

will not be sampled from because of the reactions taking place that drive the system
out of equilibrium. However, p(x) is useful to parametrize the particle interactions
in regimes where it can approach equilibrium (e.g. disc membranes in the dark
equilibrated state). Since p(x) is a stationary property of V (x), we can also use it
as a reference to evaluate the numerical correctness of the particle dynamics in the
absence of reactions. p(x) is useful to calculate all kinds of stationary properties,
for example the radial distribution function between particles of set I with those of
set J , defined by the ensemble average:

p(d) =

ˆ

x

dx p(x)
∑

i∈I

∑

j∈J

δ(|xi − xj|− d), (7)

where xi and xj are the subvectors of x describing the locations of particles i
and j. This density is in practice approximated with a histogram obtained from a
set of configurations at time-steps T :

p(d) ≈ |{(i, j, t) | ||xi(t)− xj(t)|− d| < ∆d/2, i ∈ I, j ∈ J , t ∈ T}|
NT NINJ

. (8)
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3.6 Markov chain Monte Carlo sampling scheme for probing
the stationary distribution of a particle composition

In absence of reactions, the particle composition will not change and the only dy-
namical process in the system is diffusion of particles driven by thermal motion.
This dynamics is in equilibrium, i.e. it has a well-defined stationary distribution
given only by the potential, Eq. (6). In order to have an independent reference to
test the implementation of our dynamics, we specify a Monte Carlo (MC) procedure
for sampling p(x):

Algorithm 1 Monte Carlo sampling scheme for the stationary distribution.
1. Start with time t = 0, an initial particle configuration xt=0 and an initial

energy Et=0 of xt=0.

2. Repeat for N steps (total simulation time of N∆t):

(a) For each particle p with position xp
t generate a new random position x̂p

t

with xp
t−x̂p

t ∈ [0,
√

2Dp∆t]. This displacement scheme mimicks Brownian
motion of particles to be more comparable to our Brownian dynamics
simulator. Any other random displacement would also be valid for the
MC algorithm.

(b) Compute the energy E ′
t of the new configuration x′t = xt\{xp

t} ∪{ x̂p
t}

using the particle repulsion potentials and compute ∆Et = E ′
t − Et.

(c) Accept the new particle position with probability min
[
1, exp(∆Et

kBT )
]

with
Boltzmann constant kB and temperature T .

3.7 Choosing the appropriate coordinate system
The experimental setup of Heck and Hofmann [27] renders the former flat two di-
mensional disc membranes of Rod cells to become disc vesicles of near spherical
shape. This makes the description of the reaction-diffusion system more difficult
because of this special geometry but also more interesting because e.g. there exist
no borders on the surface of a sphere. However the mathematical and algorithmitcal
approaches to that problem have to be different from those describing ordinary two
dimensional diffusion on a plane.

It would be possible to describe spherical diffusion and reactions by a setup
simulating all three space dimensions and subjecting particles to potentials that
force them to reside in a specified area (here the surface of a sphere). Such an
implementation would have computational complexity O(n3). Though in this setup
the implementation itself would be straight forward its efficiency would be rather low
because the volume necessary to incorporate the simulated sphere would be almost
completely empty and much computation power would be wasted by simulating
vacuum.
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The solution to this problem is the usage of a spherical coordinate system that
defines a point p in space via its distance from the origin r ∈, its inclination θ ∈ [0, π]
and its azimuth φ ∈ [0, 2π]; p = (r, θ,φ) (see Figure 4 ). Since the size of a vesicle
is fixed during a simulation and all particles reside on the vesicle surface, r is fixed
for every particle. So a particle is defined by only two degrees of freedom; p = (θ, φ)
wich would reduce the computational order to O(n2) and exclusively describes the
area on the vesicle surface. On the other hand the implementation, especially the
neighborhood calculations becomes more complicated which will be described in the
following sections.

Coordinate system conversions

In the following, the functions for coordinate transformations between the spherical
and the Cartesian coordinate systems are briefly stated. (r, θ,φ) and (x, y, z) refer
to the spherical and the Cartesian representations of the same point respectively. It
is assumed, that both systems have the same origin.

Cartesian to spherical coordinates

r =
√

x2 + y2 + z2

θ =cos−1(
z

r
)

φ =tan−1(
y

x
)

spherical to Cartesian coordinates

x =r sin θ cos φ

y =r sin θ sinφ

z =r cos θ

3.7.1 Distance calculations on a sphere

The computation of distances between particles is essential for the simulation algo-
rithm. All particle-particle interactions e.g. particle repulsion and also all reactions
are based on that. Having given two particle positions in their spherical repre-
sentations, p1 = (θ1, φ1), and p2 = (θ2, φ2), the distance between v and w can be
computed via the spherical law of cosines

cos c = cos a cos b + sin a sin b cos C.

This law applies for a spherical triangle between three points on a sphere. To-
gether with the north pole n = (0, 0), p1 and p2 constitute such a spherical triangle.
For the further derivation we follow the nomenclature of Figure 5: n =̂ u, v =̂ p1
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x

y

z

Figure 4: The spherical coordinate system. Point p = (r, θ,φ) is defined by its
distance from the origin r, its inclination θ between the x-z axis and its azimuthal
angle φ between the x-y-axis. The unit vectors in point p: r̄, θ̄,φ̄ are illustrated as
well. Rotations around these vectors leave the name giving coordinate unchanged
e.g. rotation around φ̄ leaves the φ value of the points unchanged.

and w =̂ p2. So we want to compute the distance c between the two particles v and
w.

Using the formula above we need the distance a, between u and v and distance b,
between u and w. Since u is the north pole, a and b are given by arc length between
the north pole and the respective particle coordinates v and w, which are just their
θ-values multiplied by the radius of the sphere r:

a = rθ1, b = rθ2.

The unknown variable left is the angle C between the vertices a and b of the
spherical triangle. These are also known when we define u to be the north pole:

C = min(abs(φ1 − φ2), 2π − abs(φ1 − φ2)).

The min in the formula handles the 2π periodicity in azimuthal spherical coor-
dinates and prevents the reflex angle from being used. Excluding the reflex angle
introduces a maximal boundary of distances between two points of half the circum-
ference of the circle on the sphere defined by the two points. Larger distances on a
sphere are naturally not possible since an increase in distance in one direction would
decrease it in the other direction around the sphere.

Finally applying the inverse of the cosine we are left with the following formula
to compute the distance between two points on the surface of a sphere:
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Figure 5: Illustration of the spherical law of cosines.

c = acos[cos a cos b + sin a sin b cos C]
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4 In silico model and particle simulation
Our model consists of the two-dimensional diffusional motion of Rhodopsin and the
G-protein Transducin on a vesicle (as extracted from a disc membrane [27]) and
the primary phototransduction reactions between them. Table 3 lists the particle
species included in the model.
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Symbol D/µm2

s Dobs/
µm2

s Rc/nm R/nm

Rhodopsin
R 0.95 0.7 [43] 1.745 PDB: 2I36 2.29

Light-activated Rhodopsin (not G activation capable)
MetaI 0.95 0.7 [43] 1.745 PDB: 2I37 2.29

Light-activated Rhodopsin(G activation capable)
MetaII (R∗) 0.95 0.7 [43] 1.745 PDB: 2I37 2.29

Transducin
G 1.63 1.3 [43] 0.58 (Rout

c = 3.0)
PDB: 1GOT

0, 58

Activated Transducin (output)
G∗ 1.63 1.3 [43] 0.58 (Rout

c = 3.0)
PDB: 1GOT

0, 58

Activated Rhodopsin - Transducin complex (GDP bound)
R∗GGDP 0.95 0.7 (same as R) 2.0 (Rout

c = 3.0)
PDB: 1GOT+2I37

3.0

Activated Rhodopsin - Transducin complex (empty state)
R∗G0 0.95 0.7 (same as R) 2.0 (Rout

c = 3.0)
PDB: 1GOT+2I37

3.0

Activated Rhodopsin - Transducin complex (GTP bound)
R∗GGTP 0.95 0.7 (same as R) 2.0 (Rout

c = 3.0)
PDB: 1GOT+2I37

3.0

Table 3: Simulated Particles. D: microscopic diffusion constant that enters the
dynamical equations, Dobs: observed macroscopic diffusion constant arising from
diffusion in a crowded environment, Rc: intrinsic collision radius, R: intrinsic reac-
tion radius. All diffusion constants are measured at 22◦C.

The simulation model propagates the positions and states of the particles in-
volved in discrete time steps. In each time step, it performs two actions (1) diffu-
sion of the different particle species in a potential and (2) reactions between them.
Starting with an initial particle configuration, the simulation algorithm integrates
the Brownian dynamics equation of motion subjected to an interaction potential
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between particles (see Sections 4.2). In our case, this potential is a pair potential
which only depends on particle distances dij = |xi − xj| of pairs of particles i,j. It
contains repulsive terms to avoid overlap of particles, and attractive terms to model
protein aggregation.

Besides this particle movement, in every time step, the algorithm considers all
reactions that are possible for each particle, chooses a reaction according to its rate
constant and performs it with a certain probability (see Sec. 4.3).

In summary, the simulation algorithm can be outlined as given in Algorithm
2, the implementation and parametrization of particle diffusion and reactions are
described subsequently.

Algorithm 2 Particle simulation algorithm
1. Start with time t = 0, an initial particle configuration xt=0 and corresponding

pairwise distances dij = |xt,i − xt,j|.

2. Repeat for N steps (total simulation time of N∆t):

(a) Advance the Brownian dynamics by one step of length ∆t based on the
interaction potential determined by the pairwise distances dij (see Table
4) and the particle type dependent diffusion constants D (see Table 3).

(b) Create a list of reactions that can occur (see Sec. 4.3 and Table 5). For
each particle that can react, choose a reaction with probability depending
on its rate constant and execute the reaction with probability p = 1 −
exp(−ka ∆t).

(c) Update pairwise distances dij.

4.1 Particle diffusion on a sphere
As already explained in Section 3.2 , particle diffusion subjected to a potential can
be simulated numerically via the following equation:

xt+∆t = xt −∆t D
∇V (x(t))

kT
+
√

2D∆tηt

It states, that the particle position in the next timestep xt+∆t depends on the
current position plus a potential and a noise contribution. Their computation in
spherical geometry is explained in the following.

4.1.1 Potential contributions

The potentials regarded in our system are particle pair potentials that depend on
pairwise distances. In Cartesian coordinates it would be straight forward to compute
the change in distance according to the potential since the Cartesian coordinate
system is space conserving. For example if one adds the perturbation vector (1, 1)
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once to the origin and once to the vector (10, 10), the resulting perturbation from
the original point is in both cases the same namely |(1, 1)|=

√
2. This means that

in Cartesian coordinates one would be able to evaluate potential contributions, say
perturbations, and simply add them to the respective point’s position without the
need to involve the actual position itself.

Unfortunately the same is not true for the spherical coordinate system. In our
case a point has coordinates (r, θ,φ), where the radius r is fixed for one setup so
(θ, φ) is sufficient to define a point in space. If we apply the same example as in the
Cartesian case, namely perturbing two different points with the same perturbation
we will immediately see the problem. Having a perturbation of say (π

4 , π
4 ) that we

want to apply once to the north pole (0, 0) and once to a point on the equator, say
(π

2 , 0). The resulting points will have travelled different distances, namely π
4 ≈ 0.8

in the first and 1.05 in the second case which is a result of the non space conserving
property of the spherical coordinate system. To ensure proper perturbation due
to potential contributions in our system we applied the following method, in the
following called north pole approach:

If we assign a middle point to a pair of particles that is subjected to a pair
potential and then rotate the entire system such that the middle point is now at the
north pole position we make the observation, that every perturbation of the particle
positions only leads to a change in their θ components. Particles are being pushed
together or apart from each other but this movement is limited to the circle on the
sphere that is defined by the two points. In their original positions a movement
on this arc would have resulted in a change in φ and θ coordinates of the point
but since the circle now incorporates north and south pole due to the rotation, a
position change only affects the θ coordinate of the point. Now we can apply a
perturbation, obtain the resulting new positions and finally rotate the system back
in its original position. With this rotation procedure we can avoid the problem of
non space conservation of the spherical coordinate system.

From the resulting perturbed coordinates, individual perturbation vectors can
be computed for each point that can be used to calculate the total force acting on a
point during the same timestep via perturbation vector addition. The details of the
approach are explained in the following. Please see also Figure 6 for an illustration.

The approach can be separated into four distinct steps:

Midpoint calculation: Given two points v = (θ1, φ1), w = (θ2, φ2) with θi ∈ [0, π]
and φi ∈ [0, 2π] then the midpoint pm = (θm, φm) of v and w is

pm = (θ̂ + dθ, φ̂ + dφ)

with θ̂ = min(θ1, θ2), φ̂ = min(φ1, φ2) ,

dθ =
1

2
min(abs(θ1 − θ2), π − abs(θ1 − θ2))

and
dφ =

1

2
min(abs(φ1 − φ2), 2π − abs(φ1 − φ2)).
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Figure 6: North pole approach for particle pair potentials. 1. For a pair of initial
particle positions (blue) a midpoint (red) is computed from which a rotation matrix
to the north pole is constructed for the initial points. 2. After the rotation the pair
potential (dark red arrow) is evaluated on the north pole which only results in a
perturbation of the θ component of the particles. 3. The perturbed points (green)
are rotated back to the original position. 4. The result is a correct perturbation due
to the pair potential.
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This midpoint is the prerequisite for the calculation of the rotation to the north
pole.

North pole rotation In order to turn the pair of points to the north pole in such
a manner, that repulsion and attraction effects are only affecting their θ coordinates,
we must apply a rotation that would turn the midpoint exactly to the north pole.
For this reason the rotation angle is just the negative signed inclination angle θm of
the midpoint. Since we require the rotation of the points to preserve their φ angles
upon rotation, we take as rotation axis the unit vector in φ direction of the midpoint
φ̄m (see also Figure 4 for an illustration) :

φ̄m = (−sin φm, cos φm, 0)

With the rotation angle α = θm and the rotation axis u = φ̄m we can set up the
following rotation matrix:

R =




cos α + u2

xζ uxuyζ − uzsin α uxuzζ + uzsin α
uyuxζ + uzsin α cos α + u2

yζ uyuzζ − uxsin α
uzuxζ − uysin α uzuyζ + uxsin α cos α + u2

zζ



 , with ζ = (1−cos α).

To rotate v and w we first have to converse them to Cartesian coordinates vc and
wc via the formula given in 3.7, rotate them to the north pole obtaining vc

N and wc
N

and transform them back to spherical coordinates to eventually obtain vN and wN .

Potential application Once the points have been rotated to the pole (vNand
wN) the application of the potential is straight forward. The potentials used in the
presented model (see Table 4) are harmonic potentials or a composition of these and
only depend on the distance between two points. This distance dvN ,wN is computed as
already stated in 3.7.1. The perturbation of the particle positions is now computed
as follows:

Since we are in the overdamped limit, the mass of the particles can be neglected
and it is the diffusion constant D that governs the magnitude of a displacement due
to a potential. Since the potentials used in this system are symmetric, each particle
is subjected to one half of the total force generated by the potential. This leads to
the following displacements ∆vN , ∆wN for the two particles:

∆i = −1

2
∇V (dvN ,wN )

∆t Di

kT
with i ∈ (vN , wN). Di means here the diffusion constants of the respective particle
that is displaced.

To translate this displacement in means of spherical coordinates, we can use the
fact, that we rotated the points to the north pole. Here all displacements manifest
themselves in the θ-coordinate of the points. By using the formula for the arc length
of circles we can obtain the displacement angle ∆θi by dividing the displacment ∆i
by the radius of the sphere r:
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∆θi =
∆i

r
.

The new, displaced coordinates of the original points then read v′N = vN +(∆θvN , 0)
and w′

N = wN + (∆θwN , 0) respectively.

Back rotation Now the new displaced points v′N and w′
N have to be rotated back.

For this procedure the rotation matrix is the same as in the north pole rotation in
the first place except for the opposite sign of the rotation angle. The coordinates of
the resulting points v′ and w′ can now be used to compute the actual perturbation
vectors that can directly be added to the initial points v and w.

∆v = v − v′ and ∆w = w − w′

These perturbation vectors are necessary since during a simulation timestep all
potential contributions of a particle are computed sequentially to be added up in the
end to obtain the final perturbation vector (the total force acting on that particle)
that is the result of all different contributions of potentials and perturbations during
that timestep.

4.1.2 Noise contributions

Concerning the noise term, √
2D∆tηt

in Cartesian two dimensional Brownian motion, the random displacement would be
realized by drawing a Gaussian distributed random vector of two dimensions for ηt.
However in the spherical coordinate system we are faced with the same problem
of non space conservation. A Gaussian distributed random vector in θ, φ - space
would result in different displacements depending on the point on the sphere where
the displacement is appled. To overcome this problem we again use the north pole
approach but in a slightly modified form. We compute the Gaussian displacment at
the pole and subsequently rotate it to the point where it is meant to be applied.

Random displacement at the pole If we assume to be on the north pole a
Gaussian distributed random displacement in two dimensions can be realized by first
drawing randomly a direction φN , uniformly distributed in φ-space: φN ∈ [0, 2π]. If
we assume a walker standing on the pole, φN stands for the direction in which he
decides to leave the pole in southward direction. A second, now Gaussian distributed
random variable dN is drawn that resembles the distance between -1 and 1 the walker
walks in φN direction. Since the walker stands on the north pole, every change in
his position towards the south is a change in the θ-coordinate of its position. We
can compute this change from dn simply by dividing it by the radius r of the sphere:

θN =
dN

r
What we are left with is a Gaussian distributed random displacement in spherical
coordinates, namely (θN , φN).
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Adjusting the displacement by rotation For an arbitrary point p on the sphere
that is meant to be randomly displaced as described above, the just computed dis-
placement d =(θN , φN) has to be adapted. This is achieved by rotating the displace-
ment vector to the coordinates of p which assumes that p has been at the north pole
from which the displacement started. Here the same methodology as described for
potential related displacements is used. First we calculate a rotation matrix from
the rotation axis, here being the unit φ-vector of p, and the rotation angle, here
being p’s θ-coordinate. Using this rotation matrix we rotate the displacement d
towards the position of p resulting in the point p′.

In analogy of the potential displacement case we finally compute the point
adapted displacement vector ∆p = p− p′.

4.2 Parametrization and validation of the Brownian dynam-
ics

Brownian dynamics depends on the particle interaction and the diffusion constants.
Table 4 lists the particle interactions that have been used in simulations conducted
here (not all potentials are active in all simulations - see Table 6 for details). These
potentials are simple pair potentials of the form:

V (x(t)) =
n−1∑

i=1

n∑

j=i+1

Vij(dij)

whose terms only depend on inter-particle distances dij = |xi − xj|. The terms
occurring in the present simulation model are listed in Table 4, and discussed sub-
sequently.
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Interaction
pair

Description U(d)

#1 - #2 Repulsion
between all
pairs

{
k
2 (d−Rc)2 if d < Rc

0 else

G - G G - G repulsion

{
k
2 (d− 2Rout

c )2 if d < 2Rout
c

0 else

R - R Rhodopsin
attraction
potential






k
2 (d−Rc)2 − α, if d < Rc,

−αk
β2 (d−Rc)2 − α, if Rc ≤ d < Rc + β

2 ,

−αk
β2 [d−Rc − β]2, if Rc ≤ d < Rc + β,

0, if d ≥ Rc + β.

Table 4: Interaction potential functions between particles. For the attraction po-
tential α resembles the potential depth and β the distance between the potential
minimum and the point when the potential is 0 again. Abbreviations used are
d = |x1 − x2| and Rc = Rc,1 + Rc,2.

The most important inter-particle term is the repulsive term that prevents that
particles to penetrate each other and is thus the basis for crowding and pattern
formation effects on the membrane. It is described by a quadratic potential that is
active if the distance dij between two particles i,j is smaller than the sum of their
collision radii Rc,i+Rc,j that resemble the spatial lateral extent of the particles inside
the vesicle membrane. While Rhodopsin is integral to the membrane, Transducin
consists of a very small anchor being in the membrane interior and a larger part
situated on top of the membrane. For this reason, Transducin is assigned an inter-
membrane collision radius Rc and additionally an outer-membrane collision radius
Rout

c which is relevant for Transducin-Transducin interactions. In order to choose
the force constant k, we have computed the radial distribution functions (rdf) (Eqs.
(7) and (8)) of a simulation setup with only Rhodopsin (see Table 6, setup 0)
composition with 25% area coverage. Since the simulation time step depends on
the potential used, these rdfs were calculated without a dynamical simulation and
instead using the Monte Carlo algorithm described in appendix A4. The result
shown in Fig. 7 suggests that a force constant of 0.25 is sufficient to maintain spatial
exclusion of the proteins. Hence, k = 0.25 was used for all repulsion potential terms.
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Figure 7: Radial distribution function of Rhodopsin-filled membranes (setup 0) with
different force constants for particle repulsion.

In order to test the effect of Rhodopsin pattern formation on the phototrans-
duction module, an attractive potential between Rhodopsins was considered as well.
Its functional form is given in Table 4. It consists of the repulsive quadratic po-
tential described above, down shifted by the depth of the potential α, plus two
additional terms g(d) and h(d). Together these functions describe a potential which
is repulsive for particle distances between 0 and the sum of the particle distances
Rc = (Rc,1 + Rc,2), has a minimum at this point Rc of value α (U(r0) = α) and
rises again to 0 over a length of β (U(d) = 0, if d > β). This potential is up to
now only used for theoretical studies of particle crowind effects on the vesicle (see
Section 7.1).
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Figure 8: The potential functions used in the simulator. A purely repulsive potential,
B repulsive-attractive potential used in simulation setup B.

For a given definition of the potential, the Brownian dynamics simulation time
step ∆t must be adjusted. This is because the time discretization (4) is a local
linearization of the nonlinear potential, which is only a good approximation when
the time step is small enough compared to the curvature of the potential. Thus,
stiffer potentials require shorter time steps. Here, we chose an initial value for
the diffusion constant of D = 3Dmacro and adjusted the time step such that the
Brownian dynamics simulation yielded the same stationary behavior as the Monte
Carlo algorithm described in Appendix A4. Fig. 9 shows a comparison of the
Rhodopsin-Rhodopsin radial distribution functions (see Eq. (7) and (8)) calculated
with the Monte Carlo algorithm, and the Brownian dynamics discretization using
time step ∆t = 7.5 ns, which was used henceforth. Significantly larger time steps
resulted not only in differences of the radial distribution function, but also in an
undesirable dynamical behavior, where particles were observed to cause clashes,
and the large forces caused them to make large steps that often caused other clashes
immediately. Using time steps of 7.5 ns or less is thus essential for a stable simulation
given the present inter-particle potential settings.
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Figure 9: Validation of the numerical correctness of the simulation. The radial
distribution function of Rhodopsin in a pure Rhodopsin simulation is calculated
with Monte Carlo method (blue line, see Appendix for description of the method)
and Brownian dynamics simulation using a time step ∆t =7.5 ns (red line, see Sec.
3.2).

Finally, the microscopic diffusion constants needed to be adjusted such that
the resulting macroscopic diffusion constants matched the experimentally measured
diffusion constants of R and G. Fig. 10 shows the mean square deviations for a
simulation containing both R and G (simulation setup A, see Table 6) of 10 µs length.
The differences between microscopic and macroscopic diffusion are clearly visible
due to the linear fits on short and long timescales. The R-G mixture is apparently
dilute enough such that the difference between microscopic and macroscopic diffusion
constants is small. Setting D = 0.85 and 1.55 µm2s−1 for R and G, respectively,
yielded macroscopic diffusion constants similar to the experimental values of Dobs =
0.7 and 1.3 µm2s−1 [43].
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Figure 10: Microscopic versus macroscopic diffusion constants for Rhodopsin (R)
and Transducin (G) on a disc membrane: The mean square displacements (msd)
msd = 〈(x(0) − x(t))2〉 of R (lower curve / green fit) and G (upper curve / red
fit) were estimated from a 1 µs simulation trajectory of a pure R/G mixture on a
vesicle. The msd’s have a slope of 2D for short times and then converge to lines
with slope 2Dobs for long times. D was adjusted so as to obtain the experimentally
measured diffusion constants as value as Dobs (see text).

4.3 Particle reactions
The reactions in the present simulation setups are mainly realized via unimolecular
reactions. This is due to the fact that GTP and GDP are not built into the simulation
explicitly but the rates which depend on availability of GDP and GTP from the
solution are set depending on their concentration (in our setup, [GDP] = 1 and
[GTP] = 3000). This assumes that GDP and GTP are homogeneously distributed
at all times, which is a good approximation as their diffusivity is about a factor
of 100 greater than the diffusivities of R and G. Thus, the spatial distributions of
GDP and GTP can be assumed to be averaged out on the timescales relevant to the
on-membrane events.

An overview over all reactions involved gives the following network:

MetaI
k1−−⇀↽−−
k−1

MetaII(= R∗)

GGDP + R∗ k2−−⇀↽−−
k−2

GGDP R
k3(GDP )
−−−−−−⇀↽−−−−−−
k−3(GDP )

G0R∗ k4(GTP )
−−−−−−⇀↽−−−−−−
k−4(GTP )

GGTP R∗ k5−−⇀↽−−
k−5

GGTP + R∗

GGTP
k6−−⇀↽−−
k−6

GGTP (SOL)

The reaction rates are taken from [27] see also Section 2.
Table 5 gives an overview over all possible reactions and their rates and proba-

bilities.
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Symbol k ka p

k1 28 s−1 .. 2.1 × 10−7

k−1 15 s−1 .. 2.125 × 10−7

k2 0.53 µm2

s 20710.5 s−1 1.553 × 10−4

k−2 283 s−1 .. 2.123 × 10−6

k3(GDP ) 607.5 s−1 .. 4.556 × 10−6

k−3(GDP ) 2.22 s−1 × [GDP ] 2.22 s−1 1.665 × 10−8

k4(GTP ) 2.6 s−1 × [GDP ] 7800 s−1 5.85 × 10−5

k−4(GTP ) 0 s−1 .. 0

k5 48600 s−1 .. 3.644 × 10−4

k−5 0 s−1 .. 0

k6 10000 s−1 .. 7.5 × 10−5

k−6 0 s−1 .. 0

Table 5: Reactions between particles involved in the current simulation, the rate
constants k of the activation step, the microscopic rate constants ka (if different
from k) and the probability that such a reaction happens on base of a timestep of
∆t = 7.5 ns.

4.4 Initial conditions and parameters of the simulation
In this section all initial conditions and parameters for our simulations are summa-
rized:

Global parameters The global parameters governing our simulation is the tem-
perature which has been 22◦C in the experiments and the timestep of 7.5 ns that
we use for all of our simulations.

Vesicle size We simulate a disc vesicle of radius 70 nm which makes 1
10 of the

area, Heck and Hofmann assumed the standard vesicle to have in their experiments.
We decided to simulate this fraction for computational cost issues since one 100 ms
trajectory of this small vesicle already takes two weeks for computation.

Particle configuration Based on the experiments of Heck and Hofmann we took
six setups of different G-protein concentration around the physiological concentra-
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tion of G40. See Table 6 for an overview.

G10 G20 G30 G40 G50 G60

R 1538 1538 1538 1538 1538 1538

MetaII (R*) 1 1 1 1 1 1

G 21 40 88 156 228 335

Table 6: Simulation parameters that are either global or local parameters that vary
in different simulations. The other particle species available in the simulation are
not present in the initial setups but can be created during the simulation. Setup
G40 resembles G-protein concentration under physiological conditions.

Each setup starts with the physiological number of 1539 Rhodopsin molecules
from which one is in its active form. In the experiment at time t = 0 the light flash
is applied to the system which induces some Rhodopsin molecules to immediately
change its conformation to a pre-active state MetaI which, after a certain time,
changes to the active state MetaII. The average waiting time for such an event to
happen is 35.7 ms. Concerning our maximal trajectory length of 100 ms we would
end up simulating nothing interesting for around 1

3 of our time until a MetaII form of
Rhodopsin appears that can activate G-proteins and can induce interesting processes
to happen.

For this reason we discard this initial delay of the dynamics for our simulation
and start directly with MetaII at time t = 0. The next paragraph explains how the
effect of the MetaI - MetaII delay can be applied to the finished trajectories after
the simulation without the need to have it included in the dynamics.

Meta II effect The reaction from MetaI to MetaII is a unimolecular decay re-
action with rate 28 s−1. When we start our simulation with a MetaII instead of a
MetaI but leave all other reactions, e.g. the back reaction from MetaII to MetaI, in
the system, the only thing that differs in our simulated trajectories compared to real
ones is a certain delay that is not present in our simulations caused by the slowly
increasing probability that the first reaction from MetaI to MetaII has happened
already.

However this delay can be specified exactly to be:

p(t) = 1− exp[−t k]

which means the probability, that the reaction with rate k has happened from time
t0 = 0 up to time t , is p(t). The shape of p(t) is illustrated in Figure 11. After
100 ms p(t) is > 90%.
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Figure 11: Probability that the reaction from MetaI to MetaII has happened already
from time t0 = 0 to time t.

We can obtain a recovery of the real dynamics from our simulated one where the
first reaction from MetaI to MetaII is neglected by weighting the simulation results
by p(t).

Equilibration of the start structure All simulations start from an initial struc-
ture where all particle species present at time t = 0 are uniformly distributed on the
simulated vesicle surface. However, since our particles have a certain extension in
space, this random structure is likely to produce very unfavorable overlaps between
particles. A simulation start from this conformation would get the system to ex-
plode within few steps since large repulsion forces between the overlapping particles
would cause them to be diverted very fiercely which is very likely to produce other
overlaps somewhere else starting a chain reaction.

To avoid this behavior the first uniform distributed random conformation has
to be equilibrated first. We do this by applying the Monte Carlo (MC) algorithm
described in 3.6 for 3000 steps at a timestep ∆t = 100ns. Figure 12 depicts the initial
random structure and the result of the minimization. Furthermore the trajectory
of the potential energy of the structure is plotted which shows a very high initial
energy due to multiple particle-particle overlaps. From this high maximum, the
energy drops quite fast to fluctuate after about 1000 steps around a minimum energy.
Having reached a plateau at the minimum means that the structure is equilibrated
and major clashes between particles have been removed.

Due to the large timestep used during minimization, the random displacements
of particles during the MC-algorithm still produce minor clashes between particles
which leads to a fluctuation around the minimal energy in the trajectory of the
potential energy. However these minor overlaps can be handeled by the Brownian
dynamics simulator and disappear there within few hundreds of timesteps.

Particle parameters and diffusion constants Please see Table 3 for an overview
over all particle species used in the simulation and their respective parameters in-
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Figure 12: Minimization of initial structures using Monte Carlo (MC) sampling for
3000 steps at a timestep of ∆t = 100ns: Generating uniform distributed random
structures on a sphere leads to multiple clashes between particles (A). These clashes
have to be removed first before the conformation can be used as initial conformation
in the Brownian dynamics (BD) simulation. Applying the MC-algorithm penalizes
unfavorable clashes that lead to a high potential energy. In consequence the po-
tential energy is minimized and reaches a minimal plateau (lower left figure). The
generation of minor particle-particle overlaps in each timestep leads to a fluctuation
around the minimal energy (lower right figure). After 3000 steps the simulation
is converged and all major clashes between particles have been removed (B). This
structure can now be used as input for the BD simulator.
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cluding their microscopic and macroscopic diffusion constants.

Reaction Rates Table 5 gives an overview over all reactions used in the simula-
tion together with their microscopic and macroscopic rates and their probability to
happen during our timestep of ∆t = 7.5 ns in the Brownian dynamics simulation.

4.5 Efficient neighbor calculation
In particle dynamics simulations the task of calculating neighbors of particles occurs
very frequently. All particle-particle interactions as repulsions or reactions are based
on the spacial proximity of particles and involves in consequence the calculation of
inter particle distances as a prerequisite.

The naive approach to this problem would simply be the caluculation of all
pairwise particle distances in the system for each time step. However this approach
would have run time complexity of O(n2) which would dominate our whole algorithm
which otherwise only consists of parts of linear complexity O(n). In the following,
methods are described that allow neighbor searching in linear complexity as well.

4.5.1 Lattice approach for neighbor calculation

For most purposes, at least for all occuring in our simulation, effects involving
particle distances are limited on a certain range. E. g. reactions only occur between
particles if they come closer to each other than a certain interaction distance ri.
The same applies for particle repulsion where two particles A, B start to repell each
other if they have a smaller distance than the sum of their radii rA + rB. In such
cases it makes sense only to scan the direct neighborhood of a particle for possible
interaction partners than to check every particle in the system for possible proximity.

This can be achieved by setting up a grid in particle space with a box spacing
rbox that is the maximum over all interaction distances and particle radii in the
system: rbox = 2 × max(rinteractioni ,∀rparticlej). If we now look for the possible
interaction partners for a certain particle p and know it’s grid box, we only have to
check all particles in the first layer of boxes around it for potential candiates. Per
construction of the grid, all particles not within these boxes are too far away from
p for any interaction.

In the worst case, using a grid in this way will not perform better than O(n2).
In such a scenario all particles would be placed in the same box which would still
require the calculation and comparison of all particle-particle distances. Yet this is
a very unlikely case in real world examples Especially in our simulation all particles
are more or less homogeneously distributed in space and have shapes and interaction
radii that allow for a very fine-meshed grid. Here, in each neighborhood analysis, an
average number of particles have to be checked that is much smaller than the total
number of particles in the system. This would lead in our case to a linear average
complexity of O(n).

42



4.5.2 Lattice on a sphere

The setup of a grid as described in the previous subsection is straight forward in
Cartesian coordinates but has to be handled carefully in spherical coordinates. As
depicted in Figure 13, simply drawing a grid over θ-φ-space (A i) results on the
sphere (A ii) in grid boxes of different sizes and even worse differently distorted
shapes.

To construct a grid of the desired properties, we first have to assess in which way
the space is distorted by the coordinate transformation from spherical to Cartesian
coordinates. Starting from the transformation rules as already given in Paragraph
3.7 we evaluate the Jacobian matrix

J(r, θ,φ) =





∂x
∂r

∂x
∂θ

∂x
∂φ

∂y
∂r

∂y
∂θ

∂y
∂φ

∂z
∂r

∂z
∂θ

∂z
∂φ



 =




sinθ cosφ r cosθ cosφ −r sinθ sinφ
sinθ sinφ r cosθ sinφ r sinθ cosφ

cosθ −r sinθ cosφ 0





and calculate its determinant

Det(J) = r2 sinθ.

We see that the determinant is independent of the φ-angle which means that the
space transformation from spherical to Cartesian coordinates is also independent of
φ. The most important dependence lies in the θ-angle. Here the area of a surface
element changes with the sinus of the θ-angle at its position which means, given the
range of θ being in [0, π], that the area is preserved at the equator (θ = π

2 ) and is
compressed to 0 at the poles (θ = 0; θ = π). With this observation we can setup a
grid on a spherical surface whith near uniform area elements. However the number
of these grid elements will vary, depending on the position on the sphere.

In more detail the observations above result in a grid that has a constant number
of subdivisions on the θ axis, in the following called θ-stripes but the number of
subdivision in each stripe in the φ dimension varies according to the θ value of
the stripe. More specificly, following from the spatial dependence of the coordinate
transformation upon the respective θ-value, the number of subdivisions in each θ-
stripe is the ceiling of the desired maximal number of subdivision at the equator
Nφmax weighted by the sinus of the θ-value of the given stripe:

Nφ(θi) = 1Nφmax sin θi2.

where θi is the θ-value of stripe i, being its midpoint. There is however one exception
to this rule: The first and the last θ-stripes contain per definition only one box
because they contain the pole regions, the areas with infinite area distortion upon
coordinate transformation. Any subdivision in these areas would fail.

The result of this calculation is illustrated in the following example: Say that
we want a box size of π

7 ×
π
7 . We first compute the number of θ-stripes and their

midpoints: If we equally subdivide the range of θ ∈ [0, π] in parts of length π
7 , we

obtain 7 stripes with midpoints i
14π, i ∈ {1, 3, 5, 7, 9, 11, 13}. See also Figure 14
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Figure 13: Illustration of the special properties for constructing a lattice in spherical
coordinates. The setup of a uniformly spaced grid in (θ, φ)-space (A i) results in
distorted and unhomogeneous grid boxes in Cartesian space (A ii). The desired
properties of homogeneous grid boxes in Cartesian space can be achieved by still
subdividing θ uniformly into θ-stripes, but subdividing φ depending on the respective
θ-value of the stripe (B i). Remark that the poles are covered by one box only
because here the space distortion becomes infinitely high. The result is projected to
Cartesian coordinates reveals the success of the approach.
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Figure 14: Illustration for the computation of the number of subdivisions in a θ-
stripe. The red pointed needles resemble the borders of θ-stripes. The dashed line
depicts Nφmax×sinθ which is only evaluated and rounded to the ceiling at the mid-
points (blue) of the respective θ-stripes. The first and the last stripe, incorporating
the north and the south pole of the sphere are covered by one box only.

where the stripes and their midpoints are depicted. In the next step we compute
the number of subdivisions for each θ-stripe: Nφmax is the number of boxes at the
equator which is the number of subdivisions of length π

7 in which we can split the
range of φ ∈ [0, 2π]. This evaluates to 14 subdivisions. Using the formula above we
compute Nφ(θi) for each stripe, resulting in {1, 9, 13, 14, 13, 9, 1}.

With this information we can setup a grid that has the desired properties of
equally sized boxes. See also Figure 13for an illustration of the constructed grid
from the example.

4.5.3 Neighborhood assignment in a spherical lattice

As outlined before, the setup of the lattice is only a prerequisite for the actual
task: The computation of the neighborhood of a current box within a grid. Again
this appears to be a special problem in spherical coordinates compared to a grid in
Cartesian coordinates. See Figure 15 for an illustration.

Following the setup of the grid as described above we end up with a number
of θ-stripes that contain different numbers of boxes. Say we want to compute the
neighborhood of point p, having index (i, j) in the grid. From this index we can
compute the neighboring indices in that particular θ-stripe Sθ of p, being (i− 1, j)
and (i + 1, j).

To obtain the neighboring boxes in the θ-stripes to the left Sθ−1 and to the right
Sθ+1 we do the following: We add and substract 1.5 times the φ-box length in Sθ to
and from the midpoint mp of the grid box of p (orange arrows in Figure 15). The
resulting points mp− and mp+ points lie on the outer boundary of the neighboring
boxes in Sθ. From each of these points we now go in θ-direction for ± the box length
in θ (red arrows in Figure 15).

We now have generated four points mp±± around the initial grid box that each
can be assigned to a grid box themselves. mp−+and mp−− lie in the θ-stripe Sθ−
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Figure 15: Illustration of the neighborhood search in a spherical lattice (B) compared
to a grid in Cartesian coordinates (A). In the spherical case additional boxes have to
be taken into account for the neighborhood because of the space distortion during
the transformation from spherical to Cartesian coordinates. Note the equidistant
subdivisions in θ in contrast to the changing number of boxes in each θ-stripe.
The orange and red arrows depict the method of midpoint extension to find the
neighborhood in spherical case.

to the left of Sθ, and mp++ and mp+− lie in the stripe to the right Sθ+. We now
define all boxes as neighboring boxes of p that lie between these four points in Sθ−
and Sθ+. This method may lead to a neighborhood that is sometimes larger than
necessary but it will in no case miss a potential neighbor.

4.6 Runtime of the algorithm
Fig. 16 shows the CPU time required for a single time step in order to illustrate
the linear scaling and the efficiency of the particle simulator. For this, vesicles
of different sizes containing differently many simulation particles (but keeping the
concentrations of R and G constant) were simulated. The tests were run on single
cores of quadcore Intel Xeon CPU E5345 with 2.33 GHz. The scaling of the CPU
time with the number of particles is linear up to ∼15,000, the slightly superlinear
behavior after that is probably due to memory effects. This linearity is due to
an efficient neighbor look-up scheme used in each simulation iteration before inter-
particle distances are calculated (see Appendix for details), without which the scaling
would be quadratic. For the given implementation, one iteration of the simulation
setup containing ∼1,500 particles takes ∼64 ms, considering the simulation time
step of 7.5 ns this means that trajectories of 10 ms can be simulated within about
one wall-clock day on a single CPU core. Note that much of this efficiency is due to
the fact that only membrane proteins are simulated here. Soluble molecules diffuse
about a factor of 100 faster and would thus require a simulation time step about
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100 times smaller, also slowing down the simulations effectively by a factor of 100.
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Figure 16: CPU time required (using single standard CPU cores) for one iteration
of the simulated systems including Brownian dynamics and reactions, depending on
the number of particles simulated. The red curve indicates the particle Simulation
without reactions, the blue one had reactions included.
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Figure 17: An example trajectory of our system with accellerated reaction rates,
simulated for 1.5 ms. The following particle species are visible: Inactive Rhodospin
(white), active Rhodopsin MetaII (yellow) and inactive G-protein (cyan) that is
depicted with its membrane internal radius (small, opaque) and its radius on top
of the membrane (large, transparent). The trajectory of MetaII is illustrated in
colors ranging from red over white to blue, indicating its time course during the
simulation time. Activated G-proteins, once activated, dissolve very quickly from
the membrane. The spots where such dissociation events from activated G-proteins
happened are marked with small blue dots.

5 Results
In the following section the results of the modeling and simulation work are pre-
sented. Unfortunately the ordinary visual inspection of simulation trajectories is no
more applicable on trajectories of length of at least 3× 107 steps and is furthermore
not quite objective. However Figure 17 is presented the reader to get an impression
on how the generated trajectories actually look like.

5.1 Purely diffusion-limited output rate
A theoretical upper bound to the G∗ production rate upon single photon activa-
tion was estimated to be 7000 s−1 in [36] based on simple arguments using two-
dimensional reaction-diffusion kinetics and estimations of the reaction parameters.
Here we can explicitly calculate this bound by taking the following limits (see Table
5): (i) GTP was considered to be highly concentrated such that R*G0

+GTP−→ R*GGTP
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occurs instantaneously, (ii) GDP was considered in zero concentration such that
the unproductive back-reaction R*GGDP

+GDP←− R*G0 occurs never, (iii) all physico-
chemical dissociation events occur instantly, i.e. k1, k2 and k3 are ∞. In this limit,
the G∗ production rate is only limited by diffusion initially, but will asymptotically
decrease to zero as G is depleted on the membrane. Thus, the maximum rate is
obtained at short times. Fig. 18 shows the cumulative G∗ production and the linear
fit indicates an estimate of the maximum rate of ∼8455 s−1. Despite the simplicity
of the arguments in [36], the estimate given there is surprisingly accurate. However,
it needs to be noted that both the estimates in [36] and here are only valid bounds if
all particles are in fact diffusing freely and isotropically with the diffusion constants
given in [43]. Any type of anomalous diffusion due to e.g. formation of Rhodopsin
dimers or oligomers would reduce this upper bound.
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Figure 18: Upper bound (diffusion-limited) of the cumulative G∗ production (blue).
The dashed black line shows a linear fit indicating a rate of 8455 s−1.

5.2 Simulation of the experimental setup
To gather enough data for reliable statistics, 16 simulations were run for 100 ms for
each G-protein configuration (see Table 1), using the simulation setup and initial
conditions presented in 4.4. In total 96 simulations were performed, each taking on
average two weeks for completion which resulted in the investment of 1344 compu-
taton days for this study.

5.2.1 Features of individual trajectories

Figure 20 depicts the cumulative number of each reaction event that happened
during the simulation of three chosen trajectories from the G10 setup. See Figure
19 for an explanation of the color coding of trajectory figures.

On the time resolution of milli seconds only the rare reaction events are visible
and can be distinguished from others. Especially reaction events that happen in a
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Figure 19: Color coding of reaction events. The predominant reactions, visible in
plots of trajectories are marked with a box. A: R1 and R2 mark the reactions be-
tween the MetaI and MetaII. These are quite rare events but have a high impact
since a reaction from MetaII to MetaI (k2) prevents all other reactons from hap-
pening. B: The complex formation reaction between R* and G. C: The dissociation
reaction of the R*G complex. D: Due to their high reaction rate, reactions 5, 6, 7, 8
and 9 folllow each other in such small time intervals that they all disappear behind
the plot of the last reaction 9 which depicts the dissociation reaction of G* from the
membrane, the desired output of the simulation.

short time subsequently to each other may be hidden behind the last reaction in that
queue. Because of this effect, reactions 5 to 8 are hidden behind the time course of
reaction 9 in the presented figures.

However the time courses that are visible show the important features of the
trajectories: The most important one is the course of events of G* membrane disso-
ciations, depicted in green color which states the experimentally measured output.
The two other curves show the number of complex formation events between R*
and G (yellow, above the green one) and their dissociation (orange, below the green
one).

There are times, where all three of these curves form a plateau. This is especially
the case in trajectories A and B and happenes after a MetaII to MetaI reaction
event took place (depicted as cyan curves). Until a backward reaction happens
(blue curves) all other reactions are blocked since MetaI is not capable of G-protein
activation. Such blocking periods are illustrated in the figures by an asterisk.

The diffusive finding of R* and G and all subsequent reactions that finally end
up by a dissociation event of an activated G-protein are stochastic processes that
demand averaging over multiple realizations. Blocking periods of the receptor and
an increasing G-protein depletion over time due to their activation and dissociation
increase the variability of the trajectories additionally. In this sense, the next section
deals with the analysis of an ensemble of trajectories.

5.2.2 Statistics for one G-protein setup

To compare our simulation results with expermental data we have to average over
multiple realizations. Figure 21 illustrates the mean and the standard error over
16 realizations of the G40 setup which resembles physiological conditions. It is
remarkable, that despite the stochasticity of the process and receptor blocking events
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Figure 20: Cumulative number of events of three realizations of setup G10. Please
see Figure 19 for the color coding. It stands out, that trajectories A and B have a
much smaller active G-protein output (green curve) than trajectory C. The reason
for this is an occurred back reaction from the active, G-protein activation capable
MetaII form of Rhodopsin, to the passive MetaI form. Events of this form are
colored in cyan. During the absence of MetaII no further reactions in the signalling
pathway can occur. While in A the MetaII never comes back again, it reappears in
B at 90ms leading to further production of active G-protein. The time periods of
MetaII absense are marked with an asterisk (*).

the number of G* dissociation rises quite uniformly. We will elaborate on this
observation later in section 6.

Although we have now the average number of G* dissociation events we can not
compare these numbers to the experimental data yet. The next section will outline
the reasons and describe the results of making them comparable.

5.2.3 Postprocessing of trajectories

When we average all realizations of a given setup and plot their number of G*
dissociation events against the experimental data, we get the following picture (see
Figure 22 A) which doesn’ t look very promising.

The reason is that we underestimate our results and have to reweight them first.
Heck and Hofmann published in their experimental setup that every flash of light
activated 5.7 R∗µm−2 on their disc vesicle membranes. Our simulated vesicles have
a radius of 0.07µm which results in a surface area of 0.061µm2. In this respect we
would have 0.35 R∗ per vesicle. However every simulated trajectory started with one
R∗ instead of only every third. In consequence we have to reweight our trajectories
by a factor of 1

0.35 . The result can be seen in Figure 22 B. No it looks much more
comparable to the experimental data.

Yet we still have to include the effect that all trajectories started with Rhodopsin
in the active MetaII form instead of MetaI. As already outlined in Paragraph 4.4
the effect can be included by an additional reweighting of the simulated trajectories
according to the probability that the reaction from MetaI to MetaII has already
happened from time t = 0 to time t. Figure 22 C depicts the result of this final
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Figure 21: Average over the cumulative number of events of 16 realizations of the
G40 setup which resembles physiological conditions. Please see Figure 19 for the
color coding.

weighting.
The last step reveals remarkable agreements between our simulated trajectories,

the experimental data and the fitted ODE model, at least for setup G10, G20 and
G30. The average trajectories of G40, G50 and G60 seem to fit well in the first
part until about 50ms but then start to underestimate the experimental values. A
remarkable fact is also that the average trajectories of G10 and G20 seem to follow
the experimental and ODE descriptions almost perfectly until they reach a certain
number of dissociated G* and continue from this point on with a smaller slope.
Please see Section 5.3 where this detail is analysed furter.

5.2.4 Statistics for all G-protein setups and their comparison to exper-
imental data

After the two steps of reweighting we can compare our simulation results to the
experimental data and the ODE model from Heck and Hofmann. Figure 23 shows
the average cumulative numbers of reaction events together with their standard
deviation of all reactions present in the simulation. The green curves show the
number of G∗ dissociation events which is the signal monitored by the experiment
of Heck and Hofmann.

The total number of G∗ dissociation events rise with the initial number of in-
active G-proteins present on the vesicle. In contrast a decrease in the numer of
back reactions from MetaII to MetaI (cyan curves) is visible with rising G-protein
numbers.

Comparing the average number of G∗ dissociation events with the predictions of
the ODE model (red solid lines) reveals that the results from G10, G20 and G30
match almost perfectly to the mean of our trajectories. Together with G40, G50
and G60 all setups lie within the error bars. At the border of our simulated time of
100ms, the ODE description leaves the error bars of the G50 and G60 signals. An
almost identical behavior can be found for the experimentally measured data (black
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Figure 22: Postprocessing of the cumulative G* dissociation events of our simulated
trajectories (bold lines) in comparison to experimental data (solid thin lines) and an
ODE model description of the system (dashed thin lines). The colors indicate the
different setups: G10 (blue), G20 (yellow), G30 (red), G40 (brown), G50 (green) and
G60 (black). A indicates the raw simulation data in comparison to the experimental
and ODE data. B depicts the same scenario but with the simulation data weighted
by factor of 1

0.35 . C illustrates the simulation data after the second reweighting step
according to the reaction probability of the MetaI to MetaII form of Rhodopsin.
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solid line) in comparison with our simulation results.
In summary our simulation results are in a good aggreement with the experi-

mental results and its ODE model description.

5.3 Spacial effects of explicit particle dynamics compared to
the ODE model

In the following section the spacial effects that arise from G-protein depletion on
the membrane are discussed.

5.3.1 Regimes of different expected behavior

During the time evolution of our model system, the initial pool of membrane bound
G-protein is transformed into its active state and then dissociates from the mem-
brane. The prerequisite of this transformation is that a G-protein meets the single
active Rhodopsin on the vesicle via diffusional motion. However as the time evolves
and the pool of inactive G-proteins becomes smaller and smaller, it becomes more
and more unlikely that R∗ and G find each other on the membrane.

The speed at which R∗ and G can find each other is the sum of their diffusion
constants DR∗G = 2µm2s−1. After each activation reaction of a G by R∗ it takes
a certain time for an other pair of reaction partners to find each other. Using the
average <> of this waiting time twait gives us the possibility to compute the area that
R∗ and G can sample between two reactions to find each other. If the probability to
find a G in this area is larger than one we are in a regime of well mixed conditions
where the reaction partners can find each other very quickly and an ODE model
description of the system seems appropriate. However if the probability to find a
G drops below 1 we are in a regime where spatial effects play a role and the actual
particle positions with respect to each other start to matter.
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Figure 23: Average cumulative reaction events of all simulated setups from G10 to
G60. The number of G∗ dissociation events is depicted in green and is compare to
the experimental data obtained from that setup (black solid line) and the curse of
an ODE model derived from the experiments (red solid line). Please see Figure 19
for the color coding.
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G10 G20 G30 G40 G50 G60

G 21 40 88 156 228 335

< twait > [ms] 6.91 4.34 2.24 1.72 1.55 1.38

A(twait) [µm2] 0.0139 0.0083 0.0045 0.0034 0.0031 0.0028

Gcrit 4.44 7.44 13.72 17.93 19.91 22.38

Table 7: Thresholds for the boundary of the low density regimes for the different
setups. G: Initial number of G proteins, < twait >: average waiting time between
two successive R∗+G complex formation reactions, A(twait): Area on the sphere that
R∗ and G can sample together to find each other for a reaction, Gcrit: The critical
number of G-proteins left on the sphere below which the low density regime starts
where spatial effects become predominant.

In Table 7 the average waiting times of the six different setups are given, together
with the initial available number of G-proteins on the vesicle and the respective criti-
cal number of G-proteins below which we enter the low density regime. The resulting
boundaries of the low density regime for the respective setups are illustrated in Fig-
ure 24. Here the cumulative number of G∗ dissociation events in the experimental
data and its ODE model are depicted, together with the respective boundary to the
low density regime of the individual setups. A curve crossing the boundary indi-
cates that more G is depleted than its critical number. Above the boundary the low
density conditions apply for the system.

5.3.2 Decreased reaction rates within lower density regimes

Due to our limited simulation time we can only study two boundary crossing events
within the trajectories of G10 and G20. If we draw the regime boundaries into our
data (see Figure 25) we see that they cross the curves exactly in those points that
separate two parts of different slopes. For G10 (the lower curve) the slope below
the boundary is 0.28 and decreases above it by 41% to 0.17. For G20 (the upper
curve) the effect is less pronounced but still present: The slope decreases from 0.49
by 19% to 0.40 after the boundary.

These effects are clearly an effect of spacial effects on the disc vesicle membrane.
During the time course of a simulation the only variable parameter to affect the
number of R∗+G complex formation reactions is the number of G proteins. The
complex formation reaction rate and the number of R∗ remains fixed during the
simulation. Above the regime boundary the number of still available G-proteins
becomes so low, that R∗ and G need a longer time to find each other which slows
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Figure 24: Cumulative number of G∗ dissociation events in the experimental data
(solid line) and its ODE model (dashed line). The colors indicate the different
setups: G10 (blue), G20 (yellow), G30 (red), G40 (brown), G50 (green) and G60
(black). Boundary lines (parallel to the x axis) above which the critical regime starts
are depicted in the same color as the respective setup configuration. The boundary
crossings are marked by a small circles. The timescales that are not accessible by
our simulation are shaded in grey.

down the number of complex formation reactions.

5.3.3 Increased reaction efficiency in lower density regimes

In the previous section we have seen that the low density of available G-protein on the
vesicle surface can lower the cumulative number of produced G∗ molecules. However
the special spatial effects in the lower density regime can increase the efficiency of
the first, R∗G complex formation reaction. At first this may sound contradictory
but both are different effects. An increased reaction efficiency for complex formation
may still lead to a lower output on G∗ molecules if the now more efficient reaction
can not find enough substrate to react.

The idea is the following: In the first regime there is plenty of G-protein available
with which R∗ can interact. If in this regime a just formed complex of R∗ and G
dissociates again, the G that has been in the complex before may still be in the
neighborhood of R∗ but the excessive supply of G-proteins renders it equally likely
that R∗ attempts a new complex formation with a new G-protein than with the old
one. Yet this is not the case in the second regime where the G-protein supply is
much lower. Here the probability that a dissociated R∗G-complex is formed again
from its components after its dissociation is much higher.

We want to elaborate on this idea on the basis of kinetic data: If a complex
between R∗ and G has been formed it can dissociate again with rate k−2 = 283 s−1

or it can go on in the reaction chain and perform a nucleotide exchange with rate
k3 = 607.5 s−1 which can be considered as an irreversible step that finally leads to
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Figure 25: Average cumulative number of G∗ dissociation events of our simulated
data together with the boundaries of the low density regime for G10 (lower curve)
and G20 (upper curve). The colors indicate the different regimes of high (cyan)
and low (blue) G-protein density. The numbers indicate ths slopes of the respective
linear fits of the G∗ dissociation events. A clear decrease in reaction speed is visible
from the high to the low density regimes.

the production of an activated Transducin G∗. Consequently the probability for a G-
protein to be transformed into G∗ is p+ = k3/(k−2 + k3) = 0.68 while the probabiliy
not to be transformed is p− = 0.32.

If we now assume that the rebinding rate of a dissociated G is zero in the first
regime, the G∗ production efficiency of the reaction will remain p+ = 0.68. However
this is not the case for the second regime where such rebinding events are assumed
to be more likely. We can try to estimate a magnitude of this effect like this: After
a R∗G complex dissociation event, the expected waiting time τ between the next
complex formation events is the inverse of of its reaction rate k3 = 20710.5 s−1

which results in τ = 48µs. R∗ and G have now time τ to diffuse around and
find each other again to attempt an other complex formation. We can model this
process by assuming R∗ to be immobile in the origin of our coordinate system and
G now diffuses around it with diffusion constant D = DG + DR∗ . The area of an
R∗ molecule is AR∗ = 33nm2 and the area the G-protein can cover in time τ is
AG = 97nm2. This means, that the probability that G collides again with R∗ on its
path is pagain = AG

AR∗
= 0.34.

Now we can construct a markov jump process with two ordinary and one ab-
sorbing state. The states are 1: R∗ and G are free, 2: R∗G in complex and 3: G∗

and the transitions tij from state i to state j between them:

T =




0 pagain 0
p− 0 p+

0 0 0





. This means that if we have a complex R∗G it can form either G∗ (2 → 3) with
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Figure 26: The same setup is depicted as in Figure 25 but with the difference that
the simulation time here is 150ms instead of 100ms. Instead for the slopes of a
linear fit, the numbers stand for the reaction rate at which an individual G-protein
that meets an R∗ is transformed to an G∗. This rate is increased in the low density
regime.

probability p+ or it can dissociate again (2 → 1) with probability p−. And since
we are in the low density regime a third component enters with the possibility that
the parts of a dissociated complex can make an other attempt to form a complex
(1 → 2) with probabiilty pagain. Once the system has reached the absorbing state 3
it never leaves it.

This leads now to the following series of possible events: A complex forms and
directly goes to state 3 with probability p+, a complex forms then dissociates with
probability p− but associates again with pagain and then goes to state 3 which would
in total have probability P = p+ + p+ × (p− × pagain). Each time we run the circle
of dissociation and association we get an (p− × pagain) component. In total we have
the series: P = p+(1 + (p− × pagain) + (p− × pagain)2 + ... = p+

∑∞
n=0(p

− × pagain)n.
In our case, P valuates to 0.77 which is an increase of 12% compared with the rate
where no re-associations are assumed.

To test this hypothesis of an increased probability for individual G-protein to
become activated in the low density regime, we tracked all G-proteins in our sim-
ulation individually and evaluated their attempts to form complexes with R∗ and
their successs in becoming activated. Unfortunately the 100ms trajectories that we
used before did not provide us with enough statistics since the first regimes in G10
and G20 started at about 68ms and 78ms respectively. For this reason we generated
eight new trajectories for each G10 and G20 with simulation time of 150ms. This
was affordable since these trajectories have the smallest number of G-proteins which
rendered a such long simulation for them to be relatively cheap in comparison. The
150ms trajectories are depicted in Figure 26together with the regime boundaries.

Table 8 shows that in both setup G10 and G20 the number of trials of a G-
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G10 G20

Regime1 Regime2 Regime1 Regime2

trials 68 38 134 63

successes 53 31 106 62

rate 0.78 0.82 0.79 0.98

Table 8: Number of G-proteins that attempted a complex formation with R∗, the
number how many of them succeeded in becoming activated in the two different
regimes of G10 and G20 and the rate that results from the fraction of trials and
successes.

protein to become activated may decrease in the second regime of low density but
their rate of success is increased. The number of trials indicate all individual G-
proteins in the eight realizations of the respective setup, that attempted a comlex
formation with R∗. If such a G-protein ended up in a R∗G0 complex it is counted
as a success. Here it doesnt matter for count as a success if the G-protein reached
this final state directly or diffused away at first after a complex dissociaton, came
back and succeded in an other attempt. We see from the analysis that the effect of
increasing the turnover efficiency of an individual G is higher than expected from
theoretical considerations. However the assumptions made there were, that in the
high density regime no rebinding events occur while they would be favored in the
low density regime. Under simulation conditions it seems plausible that rebinding
already occurs in the first regime and is increased in the second one which leads to
a shift to a higher efficiency in both regimes compared to the estimated ones.

The information, about the number of attempts an individual G-protein needed
on average for a complex formation in each regime until it succeeded, could even
more support the hypothesis of a higher probability of the R∗ to catch the same G
twice or more in the low density regime. Figure 27 depicts how many Gs succeeded
in the first trial or after one or more dissociation and re-association events. To render
the numbers of the two regimes comparable to each other they are normalized by
the number of Gs that succeeded in their first trial. It is clearly visible, that the
transition from the high (cyan) to the low (blue) density regime makes it more likely
for an individual G-protein to get a second and even a third chance to succeed. The
G-protein activation machinery handles its rare ressources more efficiently in the
low density regime than it does when plenty of supply is available.
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Figure 27: Numbers of G-proteins in the high (cyan) and low (blue) density regime
that succeed in their first (A) trial to become part of an R∗G0 complex or make a
second attempt after a complex dissociation (B) or even make a third attempt (C).
The numbers are normalized to the number of first trial successes. A on the left
depicts setup G10, B on the right depicts setup G20. In the low density regimes
more G-proteins get a second or even third chance to succeed.

6 Summary and conclusions
The obtained results have a number of interesting implications:

1. When diffusion is free and isotropic, i.e. no specific structures such as Rhodopsin
oligomer bands (Ref [21]) are present, then the G∗ production is not diffusion-
limited. The diffusion-limited rate would be a factor of ∼8 faster than the
experimentally measured rate under otherwise optimal conditions (plenty of
GTP and no GDP in the solution). This statement is not necessarily true
when Rhodopsin patterns do form on the disc memrane.

2. Fig. 23 shows the average G∗ production of a single photon activation. This is
an intermediate part of the single-photon response. In particular, this Figure
also shows the variability between individual realizations. It is observed that
the individual realization show very little variability, i.e. are very uniform.
This is at first surprising since at this stage none of the effects that have so
far been proposed as being responsible for the uniformity of the single-photon
response are involved in our simulation. The uniformity of the G∗ production
is a simple consequence of the fact the it is the same single R∗ that must
iteratively go through exponentially distributed waiting times with means k−1

1

and k−1
2 for each G∗ produced. Since the total number of G∗ produced depends

on the very same R∗ going through this random process over and over again,
it is simply the central limit theorem which leads to a small variation to the
number N of G∗ produced after a given time. In other words, even though
the individual times a single G∗ needs to be produced after it has formed a
complex with R∗ varies a lot, the total number of G∗ produced by a single R∗
after at least 3-5 such events is almost uniformly reproducible. Although this
result does not explain the uniformity of the entire output current signal, it is
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certainly directly correlated with the uniformity of the rise of this current.

3. Fig. 23 also shows the comparison between our simulated trajectories and
the experimental data suggests, that we can explain the available kinetic data
with our explicit particle diffusion model. Furthermore the high similarity
between the predictions of an ODE model and our data suggests that we
have well mixing conditions on our disc vesicles, at least for certain regimes of
parameters. The low difference between the computed microscopic diffusion
constant and the observable macroscopic value, which indicates low crowding
effects, even more supports this hypothesis of well mixed conditions. We find
this regime whenever the number of available G-proteins on a vesicle is high
enough that R∗ can immediately find a new G after the release of a G∗. We call
this regime the high density regime. However to study the dynamics in this
regime, an ODE description of the system is sufficient and the full particle
resolution can be neglected. Yet it states a proof of concept that the full
particle resolution leads to the same results.

4. In our data we see that the well mixed density regime does not extend through-
out the entire parameter space. If the G-protein concentration drops below a
certain threshold during the time course of the reactions, well mixing can no
longer be assumed. Now the explicit particle positions with respect to each
other start to matter and influence the dynamic significantly. One example
for such spatially influenced behavior is the drop in G∗ dissociation speed by
20% to 40%, immediately after the number of G-proteins has dropped below
the threshold that separates the high from the low density regime (see Fig-
ure 25). Under low density conditions it takes the R∗ longer times to find
G-proteins which slows down the output rate. An other effect of spatial in-
fluence of particle positions with respect to each other is the increase in G
turnover efficiency for individual G-proteins in the low density regime. Table
8 shows that the individual success rate of a G to become activated is increased
by 5% to 24% leading to individual G activation probabilities of up to 98%.
This can be explained by the assumption that, because of less competition
between individual Gs for the receptor in the low density regime, individual
Gs get multiple chances to become activated even if a first attempt of complex
formation failed. Figure 27 shows that the distribution of attempt numbers,
after which individual Gs succeed in becoming activated, is shifted towards
higher number of attempts in the low density regime. Such effects are exactly
the reason why single particle resolution is important even in systems which
seem to be well mixed on first glance. Every attempt to capture spatial ef-
fects like those mentioned with models that assume well mixing in different
subvolumes or even the entire system will most probably fail.

5. Though our medhod could describe the experimental data quite well and
reavealed some spatial effects in addition, it still remains based on the as-
sumption of free diffusion of all particle species without any attraction poten-
tials that were proposed to be present under physiological conditions (such as
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Rhodopsin-Rhodopsin attraction driven oligomer band formation on the disc
membrane [21]). Our presented model can be considered to be a maximum
model with respect to the freedom of particles. This can also be seen as a
reason for the success of an ODE model description for our system, at least in
the regime of high G-protein density. Yet first experiments with Rhodopsin-
Rhodopsin attraction potentials (see Section 7.1) show, that even a slight
attractive potential would have a significant global effect on the patterns and
the dynamics of the entire disc, and thus likely on the entire phototransduc-
tion cascade. It is conceivable that such potentials do exist but depend on
the conformational state of Rhodopsin. For example, inactive Rhodopsin may
have a negligible attraction potential, thus yielding a situation where the free-
diffusion setup can be made fully consistent with the measurements in [27],
but in other conformational states Rhodopsin may have significant interac-
tion potentials. Such a setting could be useful for molecular sorting on the
disc membrane that would effectively deposit Ligand-free Opsins in “dead clus-
ters”, thus freeing diffusion space for the remaining Rhodopsins that can then
still work efficiently. In any case, additional attraction potentials, that may
even lead to the formation of patterns, will increase the effect of crowding and
will therefore enlarge the regime where spatial effects matter. The study of
these effects present the outlook of this work.
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7 Outlook
In this section an outlook of planned further research, based on this work is pre-
sented. Parts of this work are already under investigation, as the effect of Rhodopsin-
Rhodopsin attraction potentials and its resulting effects, others are planned for the
near future.

7.1 Free diffusion versus pattern formation of Rhodopsins
A number of recent studies have discussed the possibility of the formation of patterns
or anisotropic structures of Rhodopsins on the disc membrane [32, 19, 18, 23, 30, 52,
42]. Although the physiological relevance of these observations is debated due to the
possible bias resulting from necessities in the experimental or simulation setup [11],
it is worthwhile to study and understand the effects - if any at all - that pattern for-
mation would have on the function of the phototransduction activation module. Ref
[13] has suggested that the existence of diffusion obstacles strongly affect the overall
transport on the disk, but these studies were done using a grid-based Monte Carlo
procedure and did not involve physically realistic molecular diffusion and interac-
tion properties. Here, we have compared the vesicle dynamics using two different
Rhodopsin-Rhodopsin interaction potentials. In setup A (Table 6), a purely repul-
sive potential was used to exclude interpenetration of proteins on the membrane,
but otherwise diffusion was free, using microscopic diffusion constants that would
upon crowding effects reproduce the experimentally-determined macroscopic diffu-
sion constants of Rhodopsin and Transducin [43]. In setup B (Table 6), Rhodopsins
were given a potential that makes them additionally to the repulsive core slightly
attract other Rhodopsins at nearby distances (see Fig. 8 for illustration). The rel-
evance of such a potential is supported in particular by [30, 42], although further
quantitative studies are required to determine the magnitude and orientational de-
pendence of the potential. Both simulations were started from a uniformly random
assignment of protein positions on the membrane. While the setup A simulations
as expected maintain a homogeneous and isotropic distribution of proteins on the
membrane, setup B simulations quickly (with few µs simulation time) converge to
aggregates or clusters of Rhodopsins of a typical size (Fig. 28a and b). The corre-
sponding radial distribution functions (rdf) between Rhodopsins are shown in Fig.
28c and d. While the rdf of the purely repulsive potential mainly shows depletion of
particles below the collision distance with a osciallatory structure at longer distances
that converges towards the mean particle density, the rdf of the attractive-repulsive
potential has significantly more pronounced structures. Fig. 28d shows also the
resemblance of this rdf with the rdf of a crystalline structure that was obtained by
densely packing the vesicle surface with Rhodopsins using purely repulsive poten-
tials. Dynamically, it is observed that the macroscopic diffusion of Rhodopsins in
the attractive-repulsive case is strongly slowed down. This slowdown is more pro-
nounced for stronger attractiveness in the potential, because of two additive effects:
(i) for stronger attractive potentials, the exchange of Rhodopsins between clusters
becomes more rare, reducing the contribution to the macroscopic diffusion constants
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by single Rhodopsin escapes, and (ii) the average cluster size increases, as the favor-
able enthalpy loss upon cluster formation outweights the unfavorable entropy loss,
and large clusters diffuse more slowly than small clusters. For any but very shallow
interaction potentials, the experimentally-measured macroscopic diffusion constants
could only be achieved with extremely large microscopic diffusion constants that are
untypical for membrane proteins in lipid solution. This suggests that the attractive
interaction between inactive Rhodopsins must be weak, if it exists at all. However,
this does not exclude the existence of strong attractive potentials for Rhodopsins in
other than the inactive states and further quantitative studies are needed here.
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Figure 28: The effect of an attractive Rhodopsin-Rhodopsin potential. (a) Represen-
tative simulation snapshot of the vesicle with a purely repulsive interaction poten-
tial, showing the active Rhodopsin (yellow), inactive Rhodopsins (white) and Trans-
ducins (cyan). (b) Representative simulation snapshot with attractive Rhodopsin-
Rhodopsin potential. (c) Radial distribution function between Rhodopsins for purely
repulsive interaction potential. (d) Radial distribution function between Rhodopsins
with attractive potential (red), compared with a radial distribution function that
has been obtained for a crystalline-like dense packing of Rhodopsins on a sphere
(blue).
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7.2 Suggested future work
Deeper investigation of the data provided by Heck and Hofmann The ex-
perimental data used in this work is only a fraction of the data Heck and Hofmann
measured and published in [27]. Here we only used G-protein titration data under
constant nucleotide concentrations of GDP and GTP. Additional to that GDP and
GTP titration data exist as well for the same experimental setup. The inclusion
of these data sets in our model will provide further insight whether the “free diffu-
sion model” (using no other interactions than purely repulsive potentials between
particles) can explain the entirety of these measurements, or whether additional ef-
fects are needed. Additionally the effect of different nucleotide concentrations on the
boundary between a well mixed and a single molecule regime have to be investigated.

Theoretical study of Rhodopsin-Rhodopsin interaction potentials: A
prerequisite for the study of Rhodopsin dimerization or even oligormerization is the
use of reliable interaction potentials. As already indicated in 7.1 a high potential
attractiveness may lead to a pronounced pattern formation as it has been seen in
[21] but lead on the other hand to atypical very high microscopic diffusion constants
to still provide a certain mobility on the membrane. Additional insight into this
question could come from coarse-grained molecular dynamics simulations ( similar
to the setup in [42] but with more extensive sampling and different Rhodopsin
structures, e.g. [41]) and experiments (e.g. [30]). It is planed for the future to
obtain such data and to include them into the simulation.

Transition from homogenous to more complicated diffusional systems
The present study models only the very first steps in the light induced photoactiva-
tion cascade of the Rod cell. It is planned for the future to extend the knowledge
about particle dynamics simulations to larger systems of size of the entire Rod outer
segment (ROS) where the full cascade could be investigated including as well all
activation as all shut-down reactions. This extension will bring additional spatial
effects because of the special geometry of layered discs hosting 2D diffusion which
are themselves embedded into the 3D space of the surrounding cytoplasm. Extensive
work will have to be done in order to finally come up with a full particle resolution
model of the ROS but the possible outcomes are promising and the present study
states already the first step in this direction.
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8 Appendix

8.1 Derivation of microscopic vs macroscopic reaction rates
in 2D

In order to derive a formula that incorporates microscopic and macroscopic reaction
rates in two dimensions we consider the diffusion of a molecular species A to a disc
with radius r̂ which removes molecules of A with the rate λ. Let the center of the
disc be at the origin.

To describe this system, we start from the Laplacian Diffusion Equation

dc(x, t)

dt
= D∇2c(x, t) (9)

which relates the change in time of the molecular concentration of A c(x, t), given
at a point x in space and time t, to the diffusion constant D. If we assume the
movement of both entities, the disc and molecules of A, D becomes the sum of both
diffusion constants D = DA + DB.

To use the symmetry of the system we express this equation in therms of polar
coordinates

dc(r, θ, t)

dt
= D∇2c(r, θ, t), (10)

with x being expressed now in terms of the distance from the origin r and the
angle θ. Remark that the Laplacian Operator ∇2 has now to be expressed in polar
coordinates as well, which reads

∇2 =
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂θ2
. (11)

Because of the isotropy of the system, the angle θ makes no difference which
simplyfies the Laplacian to

∇2 =
∂2

∂r2
+

1

r

∂

∂r
. (12)

If we apply the Laplacian to the Diffusion Equation we get

dc(r, t)

dt
= D

[
∂2c(r, t)

∂r2
+

1

r

∂c(r, t)

∂r

]
, (13)

which evaluates to

∂2c(r, t)

∂r2
+

1

r

∂c(r, t)

∂r
− 1

D

∂c(r, t)

∂t
= 0. (14)

In our system, the change in concentration over time ∂c(r,t)
∂t splits into two cases:

1. Outside the disc, c(r, t) equals the equilibrium concentration of A and remains
constant:

∂c(r, t)

∂t
= 0 for r ≥ r̂ (15)
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Figure 29: Bessel functions of the first (blue) and second kind (red) respectively.

2. Inside the disc of radius r̂, molecules of A are removed with rate λ:

∂c(r, t)

∂t
= λc(r, t) for r ≤ r̂ (16)

This leads to the following second order ODEs.

∂2c

∂r2
+

1

r

∂c

∂r
= 0 for r ≥ r̂ (17)

∂2c

∂r2
+

1

r

∂c

∂r
− λc

D
= 0 for r ≤ r̂ (18)

The general solution of these equations can be written in the following form:

c(r) =a1 + a2log(r) for r ≥ r̂ (19)

c(r) =a3J0

[
ir
√

λ√
D

]
+ a4Y0

[
−ir

√
λ√

D

]
for r ≤ r̂ (20)

J0[x] and Y0[x] denote here the Bessel function of the first and the second kind
respectively.

To resolve the parameters a1, a2, a3 and a4 we use the the boundary conditions
lim
r→0

c(r) and lim
r→∞

c(r) as well as the continuity of c(r) and its derivative at r = r̂.

1. lim
r→∞

c(r)
!
= const implies, that a2 = 0 because otherwise log(r) would the

function cause to diverge. Furthermore a1 = c∞, the value of the equilibrium
concentration of A.

2. lim
r→0

c(r)
!
= const implies, that a4 = 0 because otherwise Y0[x] would the

function cause to diverge.

73



The application of these boundary conditions leads to the following equations:

c(r) =c∞ for r ≥ r̂ (21)

c(r) =a3J0

[
ir
√

λ√
D

]
for r ≤ r̂ (22)

If we use now the condition of continuity at r = r̂ we get

c∞ = a3 (23)

a3 = c∞J0

[
ir̂
√

λ√
D

]−1

(24)

When now trying to apply the condition of continuity of the first derivative we
have to derive both conditions and equate them:

c′(r) =0 for r ≥ r̂ (25)

c′(r) =− a3
i
√

λ√
D

J1

[
ir
√

λ√
D

]
for r ≤ r̂ (26)

0 = −a3
i
√

λ√
D

J1

[
ir̂
√

λ√
D

]
(27)

Continuity of the first derivative is only given at the extreme points of the Bessel
function which would imply, that we would constrain our choice of r̂, λ or D such
that we match such an extreme point. To allow for arbitrary choices we drop the
continuity of the first derivative while pointing to the fact, that the ODEs that we
constructed contain a jump by construction, namely the jump from 15 to 16. This
jump can happen to be rather extreme, dependent on the choice of c∞ and λ. This
argument underlines why we cannot expect to have continuity of the first derivative
at the jump side.

Referring to [16] the flux through the unit area of the boundary of the disc can
be computed by

D
∂c

∂r
|r=r̂ = −D a3

i
√

λ√
D

J1

[
ir̂
√

λ√
D

]
. (28)

The circumference of a disc is 2πr̂ which leads to the fact, that the total flux through
the disc boundary is

−2πr̂ D a3
i
√

λ√
D

J1

[
ir̂
√

λ√
D

]
, (29)
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which gives with a3,

−2πr̂ D



c∞J0

[
ir̂
√

λ√
D

]−1


 i
√

λ√
D

J1

[
ir̂
√

λ√
D

]
. (30)

This quantity is equal to the rate constant of bimolecular reaction k multiplied
by the concentration of the chemical far from the reacting molecule c∞. Dividing by
c∞ we get the final result that relates the macroscopic rate k [m2

s ]with the microsopic
rate λ[1s ].

k = −2πr̂ D
i
√

λ√
D

J1

[
ir̂
√

λ√
D

]

J0

[
ir̂
√

λ√
D

] (31)

The imaginary unit cancels out since the fraction of the two Bessel functions is
only imaginary what leaves us with the following formula:

k = 2πr̂
√

D
√

λ
I1

[
r̂
√

λ√
D

]

I0

[
r̂
√

λ√
D

] (32)
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