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Abstract

The numerical simulation of many-particle systems (e.g., in molecular dynamics) often involves
constraints of various forms. We present a symplectic integrator for mechanical systems with
holonomic (bilateral) and unilateral contact constraints, the latter being in the form of a non-
penetration condition. The scheme is based on a discrete variant of Hamilton’s principle in
which both the discrete trajectory and the unknown collision time are varied (cf. [Fetecau et al.,
2003, SIAM J. Applied Dynamical Systems, 2, pp. 381–416]). As a consequence, the collision
event enters the discrete equations of motion as an unknown that has to be computed on-the-fly
whenever a collision is imminent. The additional bilateral constraints are e�ciently dealt with
employing a discrete null space reduction (including a projection and a local reparametrisation
step) which considerably reduces the number of unknowns and improves the condition number
during each time-step as compared to a standard treatment with Lagrange multipliers. We il-
lustrate the numerical scheme with a simple example from polymer dynamics, a linear chain of
beads, and test it against other standard numerical schemes for collision problems.

Keywords: variational integrators, collisions, holonomic constraints, discrete null space
method, event-driven algorithm, polymer dynamics, chain of beads

1. Introduction

In computer simulations of polymeric solutions, the polymers are often thought of as spheri-
cal hard bodies (beads) with no internal degrees of freedom, but covalent and non-bonded interac-
tions between them [11]. The typical interaction potentials (such as the Lennard-Jones potential)
are very sti↵, which limits the maximum possible time-step in a simulation. A common approach
to increase the time-step in order to speed up the simulation consists in replacing the sti↵ forces
by constraints [31]. Pushing this idea to the extreme, one can think of a model in which each
molecule is represented as a single bead and the sole interactions are in form of perfectly elastic
collisions, modelled by inequality constraints that prevent the beads from penetrating each other
(excluded volume e↵ect); this is the basis of the classical event-driven algorithm [1], in which no
numerical discretization at all is needed as the motion of the beads follows straight lines in the
absence of collisions. For chain-like polymers, a common model is the pearl-necklace-model in
which the beads are linked by bond constraints with no other restrictions on their relative posi-
tions [29, 14]. It has proven useful for the simulation of melts, and, though conceptually rather
simple, is able to explain a variety of phenomena such as reptation, Rouse dynamics, or glassy
states on the basis of Monte-Carlo simulations (see [5] and the references therein). Even though
the total energy of a chain is independent of the bond angles, within the limitation that the beads
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cannot penetrate each other, it is possible to control the sti↵ness of the chain (more precisely:
its persistence length) by changing the ratio between the bead size and the bond length. The dy-
namics of the chain are characterised by smooth motions of the bond-constrained particles with
impulsive forces when particles collide where the main di�culty for the numerical discretization
is the robust treatment of both equality constraints and collisions (see, e.g., [36, 10]). For a recent
overview of coarse-grained polymer models, we refer to [28].

In this article we present an variational algorithm that handles equality and inequality con-
straints on the same footing. Our approach closely follows the route described in [13] where a
seamless variational integrator for collision problems is introduced; by ‘seamless’ we mean that
both the integration scheme for the free motion and the contact conditions at the points of colli-
sion follow from a single variational principle. Here we extend the seamless variational scheme
to the case where, besides the non-penetration condition for the beads, additional holonomic con-
straints are present during the entire motion. Although our method is an ordinary time-stepping
scheme, it shares some of the spirit of event-driven methodology in that it combines an implicit
integrator for the free motion of the chain that allows for large time-steps with an exact treatment
of the collision events. In particular, the collision times are computed on-the-fly by solving a sim-
ple quadratic equation. As the system is not sti↵—it does not involve soft-core potentials—the
method allows for using relatively large time-steps in the implicit integrator where ‘relative’ is
meant in comparison with a typical molecular dynamics (MD) integrator, e.g., the Verlet method.
We stress, however, that it is possible to add an interaction potential; since the scheme that we
propose is fully implicit, we do not expect that this will lead to serious time-step limitations or
major implementation issues (depending on the implicit solver that is used). But since the main
bottleneck for the numerics is in the constraints we focus only on this aspect.

The typical approach for treating hard-core collisions in molecular simulations is by means
of combining a traditional MD integrator, typically the Verlet method, with a suitable collision
operator that comes into play whenever a collision is detected [32, 27, 33]. Imminent collisions
are detected by checking whether particles overlap at the end or during the time interval, while
the momentum update at the collision point is done by exploiting the balance of total energy
and total linear and angular momentum [18, 7, 17]. The underlying mathematical theory for
problems of this type (i.e., non-smooth problems) is provided by the theory of di↵erential inclu-
sions in which the impulsive collision forces are understood as measure-valued generalisations
of smooth forces; for a thorough treatment of numerical methods for di↵erential inclusions we
refer to [12] or [23]. For smooth systems, variational integrators with constant time-step pre-
serve various properties of the exact dynamics such as symplecticity or momentum maps (e.g.,
linear or angular momentum) at the discrete level [34, 26]. The key idea is simple: rather than
discretising the continuous-time equations of motion, variational integrators directly discretise
Hamilton’s principle by appropriate quadrature rules; the numerical scheme then follows from
the now discrete Euler-Lagrange equations. Variational integrators have proven useful, e.g., in
understanding the long-term stability of symplectic integrators using backward error analysis
[16]. Moreover, the (discrete) variational principle allows for easy generalisations so as to treat,
e.g., infinite-dimensional systems [8], systems with constraints [19], or contact problems in con-
tinuum mechanics [9]. The standard molecular dynamics algorithm for systems with holonomic
constraints, that is in fact a variational integrator, is the SHAKE/RATTLE algorithm [31, 2]
which can be considered an augmented version of the Verlet algorithm where the constraints are
enforced by suitable Lagrange multipliers. As an alternative to Lagrange multipliers that may
cause stability problems when the integration time-steps are small (e.g., close to a collision point)
the discrete null space method eliminates the constraint force and the Lagrange multipliers by
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projecting the forces in the system onto the space of admissible momenta. It does so by taking
advantage of the d’Alembert principle that states that the constraint forces are always acting per-
pendicular to the constraint manifold and therefore have no component in the tangential direction.
The discrete null space method has been introduced in conjunction with an energy-momentum
conserving time integration scheme in [3, 4] and has been transferred to variational time-stepping
schemes in [25]. The new idea in this work is to use the discrete null space methodology also
for the treatment of the contact constraints while they are active. As a consequence, the pro-
posed method is variational. Yet the method is not symplectic in any obvious sense (neither are
variants based on SHAKE/RATTLE), for the time-stepping is altered in the presence of colli-
sions. Therefore backward error analysis cannot be employed to analyse the long-term stability
or quasi-conservation of energy (cf. [7]), even though our numerical test suggest good long-term
stability of the scheme.

The paper is organised as follows: Section 2 briefly reviews the variational principle for
collision problems. The discrete formulation is given in detail in Section 3 where also the discrete
null space method is introduced. As a numerical test of our integrator we simulate a linear chain
of beads in Section 4 and compare it against an high-order implicit collocation method and the
semi-explicit SHAKE/RATTLE algorithm; the test systems are nontrivial (one is non-integrable),
yet simple enough to illustrate the basic features of the method. We summarise the results of the
article in Section 5.

2. Hamilton’s principle for collision problems

Our formulation of the variational collision integrator follows the route taken in [13] and
extends it to the case of a system that, besides a non-penetration condition, is subject to holo-
nomic constraints. For a better understanding of the approach, it is instructive to look at the
continuous formulation first. Let Q ✓ Rd denote the d-dimensional configuration space of our
system where d equals three times the number of particles. We suppose that the system is sub-
ject to m holonomic constraints g(q) = 0 with g = (g1, . . . , gm)T being the vector of constraints
with the requirement that G = rg has maximum rank m on the admissible set of configurations,
C = {q 2 Q : g(q) = 0} ⇢ Q, and with det GGT � a > 0 being bounded away from zero.1 The
mc non-penetration conditions for the particles can be expressed in terms of a vector of smooth
unilateral constraints gc(q) � 0 by which the set of admissible configurations turns out to be

C+ = {q 2 Q : g(q) = 0, gc(q) � 0} ⇢ C .

Calling
T Q = {(q, v) : q 2 Q , v 2 TqQ}

the state space of the system consisting of the unconstrained positions and velocities, we define
the Lagrangian (we use the natural identification of all tangent spaces TqQ with Rd)

L : T Q! R , L(q, v) =
1
2

v · Mv � V(q)

with M 2 Rd⇥d being the symmetric and positive definite mass matrix and V being a smooth
potential energy. Now let � : [0,T ] ! Q be a curve in Q that is everywhere twice continuously

1The latter requires that the function g has a certain regularity that we can safely assume for most cases of interest.
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di↵erentiable except at an isolated impact point q◆ = �(t◆), t◆ 2 (0,T ) where the curve � hits the
boundary @C+ of the admissible set (i.e., where exactly one of the components of gc is zero).
The classical action is then of the form

S [�, t◆] =
Z t◆

0
L̂(�(t), �̇(t)) dt +

Z T

t◆
L̂(�(t), �̇(t)) dt (1)

where
L̂(q, v) = L(q, v) � g(q) · � (2)

is the augmented Lagrangian involving the constraints g and the Lagrange multiplier � 2 Rm

(cf. Lagrange multiplier theorem e.g. in [35]). Taking variations with respect to both � and the
unknown collision time t◆, we find

�S [�, t◆] =�
 Z t◆

0
L̂(�(t), �̇(t)) dt +

Z T

t◆
L̂(�(t), �̇(t)) dt

!

=

Z T

0

 
@L̂
@�
� d

dt
@L̂
@�̇

!
· �� dt �

"
@L̂
@�̇
· �� + L̂�t◆

#t+◆

t�◆

.

(3)

Requiring that the integral vanishes, yields Newton’s law

Mq̈ = �rV(q) � G(q)T� , g(q) = 0 (4)

for the motion away from the collision. The remaining boundary terms provide the contact
conditions at the point of impact. To make this precise we call gc the scalar component of gc that
is zero at the moment of collision (cf. 3.2 for the treatment of multiple collisions at a time) and
note that gc(�(t◆)) = 0 entails �gc(�(t◆)) = 0, i.e.,

Gc(�(t◆)) · (�q◆ + �̇(t◆)�t◆) = 0

where q◆ = �(t◆) denotes the impact point. The last equation is satisfied if either

�q◆ = ��̇(t◆)�t◆

or
�q◆ ? Gc(q◆) for �t◆ = 0

which determines the admissible variations of the curve at the collision point. Taking joint vari-
ations of q◆ and t◆ under the constraint �q◆ = ��̇(t◆)�t◆ implies

"
L̂ � @L̂
@�̇
· �̇

#t+◆

t�◆

= 0 (5)

which, using that

E =
@L̂
@�̇
· �̇ � L̂ ,

is equivalent to conservation of energy E. Conversely, if we vary q◆ orthogonal to the contact
surface while keeping t◆ fixed (i.e., �t◆ = 0), then

"
@L̂
@�̇
· ��

#t+◆

t�◆

= 0 for ��(t◆) ? Gc(q◆)
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implies
"
@L̂
@�̇

#t+◆

t�◆

= GT
c �c . (6)

Here �c 2 R is an unknown Lagrange multiplier that must be determined by solving (5). Defining
the conjugate momentum p = @L/@�̇ in the usual way, equations (5) and (6) can be recast as

p(t+◆ ) = p(t�◆ ) +GT
c (q◆)�c , p(t+◆ ) · M�1 p(t+◆ ) = p(t�◆ ) · M�1 p(t�◆ ) (7)

But the last equation is simply the momentum reflection law for an elastic collision. That is,
the change in momentum occurs normal to the contact surface where the amount by which the
momentum changes is determined from the conservation of energy during the collision (note that
the potential V is not needed to determine the unknown multiplier �c). As a consequence of (7),
both total linear and angular momentum and the total energy are conserved during the collision.

We stress that the contact condition (7) follows seamlessly from the boundary terms arising
in (3). In the next section we will show, again following the approach described in [13], how the
discrete variant of (1) naturally gives rise to a fully variational collision integrator.

3. Variational collision integrator for constrained problems

Our derivation below follows closely the route taken in [13], but extends it to the case of
systems subject to holonomic constraints. The constraints are treated fully variationally using
the discrete null space method that has been introduced in [25]. The new idea here is to use the
discrete null space methodology also for the treatment of the contact forces while they are active.

3.1. Discrete variational principle and discrete null space reduction
Assume that the time nodes t0, t1, . . . , t◆�1, t◆+1, . . . , tN with a constant basic time-step h =

tn+1 � tn are given, however the collision time t◆ with t◆�1  t◆  t◆+1 is unknown. Let the discrete
trajectory be denoted by qd = {qn}Nn=0 with qn ⇡ q(tn), and let �d = {�n}Nn=0 with �n ⇡ �(tn)
approximate the Lagrange multipliers. As usual in the context of discrete variational principles
(e.g., see [26]), the discrete Lagrangian is an approximation to the action integral of the continu-
ous Lagrangian over one time interval. In accordance with (2), this yields away from a collision

L̂d(qn, qn+1, tn, tn+1) ⇡
Z tn+1

tn
L(q, v) � g(q) · � dt

In this work, a midpoint discrete Lagrangian

Ld(qn, qn+1, tn, tn+1) = (tn+1 � tn)L
 

qn + qn+1

2
,

qn+1 � qn

tn+1 � tn

!
(8)

is used in the following discrete augmented Lagrangian

L̂d(qn, qn+1, tn, tn+1) = Ld(qn, qn+1, tn, tn+1) � tn+1 � tn
2

(g(qn) · �n + g(qn+1) · �n+1) .

For the clarity of exposition, the dependence of the discrete Lagrangian on given time nodes is
not stated explicitly in the sequel and it is assumed that only one collision gc(q◆) = 0 occurs at
t◆ during the time interval [t◆�1, t◆+1]; see Figure 1 for an illustration. The extension to multiple
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Figure 1: Discrete trajectory in constraint manifold.

collisions is formally straightforward, however more involved from the implementation point of
view (see 3.2). An approximation to (1) is given by the discrete action sum

S d =

◆�2X

n=0

Ld(qn, qn+1) � tn+1 � tn
2

(g(qn) · �n + g(qn+1) · �n+1)

+Ld(q◆�1, q◆, t◆�1, t◆) �
t◆ � t◆�1

2
(g(q◆�1) · �◆�1 + g(q◆) · �◆ + gc(q◆) · �c)

+Ld(q◆, q◆+1, t◆, t◆+1) � t◆+1 � t◆
2

(g(q◆) · �◆ + g(q◆+1) · �◆+1 + gc(q◆) · �c)

+

N�1X

n=◆+1

Ld(qn, qn+1) � tn+1 � tn
2

(g(qn) · �n + g(qn+1) · �n+1) .

(9)

As before, the discrete variational principle for the constrained motion requires that �S d = 0 for
all admissible variations �q1, . . . , �q◆, . . . , �qN�1, ��1, . . . , ��N , ��c, �t◆. This then yields discrete
equations of motion for the dynamics o↵ the contact surface with additional boundary conditions
at the collision points. The equations for the collision-free motion are stated first:

Pre- and post-collision. As long as no collision takes place, i.e., for n = 1, ..., ◆ � 2 the discrete
variational principle yields the following system

D2Ld(qn�1, qn) + D1Ld(qn, qn+1) � tn+1 � tn�1

2
GT (qn)�n = 0 (10a)

g(qn+1) = 0 (10b)

which is solved for q2, ..., q◆�1, �1, ..., �◆�2. Here, DiLd denotes the derivative of the discrete La-
grangian with respect to the i-th argument. Note that just as in the continuous case described in
Section 2, there exists a Lagrange multiplier theorem relating stationary points of the discrete
action (9) to the finite dimensional system (10), see [26]. Once the collision configuration q◆
and time t◆ and the first post-collision configuration q◆+1 have been determined (as will be de-
scribed below), normal time-stepping continues for n = ◆ + 1, ...,N � 1, i.e., (10) is solved for
q◆+2, ..., qN , �◆+1, ..., �N�1. Obviously, (10) is a two-step method, thus special care must be given
to the initialisation of the simulation. Assuming that no collision takes place during the first
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time-step, the following equations determine q1 and �0 from given initial data (q(0), q̇(0)) 2 TC.
First, one sets q0 = q(0) and p�0 = (@L/@q̇)(q(0), q̇(0)) and then solves

p�0 + D1Ld(q0, q1) � t1 � t0
2

GT (q0)�0 = 0

g(q1) = 0

Collisions in the first time-step can be handled analogously to later collisions described below.

Remark 1 (SHAKE/RATTLE). If, instead of the midpoint discrete Lagrangian in (8), a constant
time-step h > 0 and any composition

Ld(qn, qn+1) = ↵hL
✓
qn,

qn+1 � qn

h

◆
+ (1 � ↵)hL

✓
qn+1,

qn+1 � qn

h

◆

with 0  ↵  1 is used as discrete Lagrangian, (10) yields the SHAKE algorithm. Its phase space
variant RATTLE that is due to [2] is well known to be symplectic on the constrained phase space
T ⇤C (e.g., see [21]).

Discrete null space reduction. Details on the reduction of the discrete variational equations of
motion with constraints via the discrete null space method with local reparametrisation can be
found in [25]. The main idea is the elimination of the constraint forces from the discrete system
via the premultiplication with an appropriate null space matrix P(·) : Rd�m ! TC, i.e., the
null space matrix fulfils range P(qn) = ker G(qn). Secondly, a local reparametrisation of the
constraint manifold qn+1 = Fd(un+1, qn) 2 C in terms of the discrete generalised coordinates
un+1 2 Rd�m representing the system’s change during one time-step ensures that the constraints
are fulfilled and (10b) becomes superfluous. The reduced equations read

PT (qn)
⇥
D2Ld(qn�1, qn) + D1Ld(qn, Fd(un+1, qn))

⇤
= 0 (11)

Away from the collision, they are solved for u2, ...,u◆�1 and u◆+2, ...,uN while in the very first
step,

PT (q0)
h
p�0 + D1Ld(q0, Fd(u1, q0))

i
= 0

is solved for u1. In contrast to an absolute parametrisation in generalised coordinates with respect
to the initial configuration q0 reading qn+1 = Fd(un+1, q0), locality of the discrete parametrisation
avoids singularities present, e.g., when dealing with large rotations. The described procedure re-
duces the (d + m)-dimensional system (10) to the (d � m)-dimensional system (11). Depending
on the particular problem under consideration, this can reduce the computational costs substan-
tially. Due to the elimination of the Lagrange multipliers from the set of unknowns, the well
known condition problem associated with discretisations of index 3 DAEs is removed. While
the condition number of the Jacobian matrix in the linearisation of (10) is of the order h�3, the
corresponding condition number in (11) is independent of the time-step (see [25]). Note that
after solving (11), the Lagrange multipliers can always be determined as a post-processing step
if one is interested in the constraint forces. This is particularly important when the contact forces
themselves are eliminated using the discrete null space reduction (cf. equation (16) below).

Remark 2 (Iterative solution procedure). Solving the nonlinear system (11) iteratively, e.g.,
using a Newton-Raphson method, an iterative update procedure ql+1

n+1 = Fd(ul+1
n+1, q

l
n+1) suggests

itself (the upper index l denotes the l-th Newton iteration). Then, simply, P(ql
n+1) can be used as
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an approximation of the Jacobian of the discrete reparametrisation Fd close to the identity by
which the Jacobian matrix that occurs in the linearisation of (11) takes the form

PT (qn)D12Ld(qn, ql
n+1)P(ql

n+1) (12)

The latter can be easily computed analytically and only needs to be evaluated at the respective
configurations. Note, however, that the approximant thus defined is not sparse.

Collision. Before integrating forward in a new time-step, the contact inequality condition is
checked. If it is violated, i.e., if gc(q◆) < 0, then q◆ is discarded and the collision configuration q◆
and time t◆ as well as �◆�1 are determined by solving

D2Ld(q◆�2, q◆�1) + D1Ld(q◆�1, q◆, t◆�1, t◆) �
t◆ � t◆�2

2
GT (q◆�1)�◆�1 = 0 (13a)

g(q◆) = 0 (13b)
gc(q◆) = 0 (13c)

which have been obtained from �S d = 0 in (9) for variations �q◆�1, ��◆, ��c. After that, taking
admissible variations �q◆, ��◆+1, �t◆ yields

D2Ld(q◆�1, q◆, t◆�1, t◆) + D1Ld(q◆, q◆+1, t◆, t◆+1) � t◆+1 � t◆�1

2

⇣
GT (q◆)�◆ + GT

c (q◆)�c

⌘
= 0 (14a)

g(q◆+1) = 0 (14b)
D4Ld(q◆�1, q◆, t◆�1, t◆) + D3Ld(q◆, q◆+1, t◆, t◆+1) = 0 (14c)

from which q◆+1, �◆, �c follow. Note that (14c) is resulting from the variation with respect to the
time node t◆, thus it is a conservation condition for the discrete energy.

Discrete null space reduction. Equivalent to (13), the reduced system yielding u◆, t◆ reads

PT (q◆�1)
⇥
D2Ld(q◆�2, q◆�1) + D1Ld(q◆�1, q◆, t◆�1, t◆)

⇤
= 0 (15a)

gc(q◆) = 0 (15b)

and instead of solving (14), the unknown u◆+1 can be obtained from

PT
c (q◆)PT (q◆)

⇥
D2Ld(q◆�1, q◆, t◆�1, t◆) + D1Ld(q◆, q◆+1, t◆, t◆+1)

⇤
= 0 (16a)

D4Ld(q◆�1, q◆, t◆�1, t◆) + D3Ld(q◆, q◆+1, t◆, t◆+1) = 0 (16b)

As mentioned before, the Lagrange multipliers and in particular the contact forces GT
c (q◆)�c can

be computed as a post-processing step.

Symplecticity of the discrete flow. One possibility to check whether the method thus defined is
symplectic would be to check whether it belongs to the class of variational Specialized Parti-
tioned Additive Runge-Kutta (variational SPARK) methods for which symplecticity has been
proved [20, Thm. 4.1]. However the conditions on the coe�cients guaranteeing that the method
is symplectic are di�cult to check in our case; in particular the role of the variable collision
time-step is unclear. Away from the collision, a direct proof consists in eliminating the con-
straints by using generalised coordinates or, if these are not available, appropriate local coor-
dinates. This route has been taken in [34, Thm. 1] and shows that the two formulations are
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equivalent, when the midpoint rule is employed. Hence for the midpoint rule, the symplecticity
of the unconstrained midpoint variational integrator entails the symplecticity of the Lagrange
multiplier version. The proof essentially consists in showing that, given a (local) embedding
� : Rd�m ! C ⇢ Rd, u 7! �(u) of the constraint submanifold C into the ambient space Rd,
the discrete Euler-Lagrange equations for the generalised (local) coordinates un+1 have a so-
lution if and only if the respective equations for the ambient space coordinates qn+1 plus the
Lagrange multiplier �n+1 have a solution satisfying qn+1 = �(un+1). Even though the treat-
ment of the constraints in the discrete Lagrangian (8) is slightly di↵erent than in [34], the proof
carries over as the discrete Euler-Lagrange equations are the same. As a consequence, the cor-
responding discrete Lagrangian symplectic form is preserved (cf. [13, Sec. 3.3]); the property is
trivially inherited by the discrete nullspace reduction method. Note, however, that the discrete
flow (qn, pn) 7! (qn+1, pn+1) is not a symplectic phase space flow T ⇤C ! T ⇤C, for the sim-
ple reason that the discrete momenta pn+1 do not satisfy the hidden constraint, in other words:
pn+1 < T ⇤qn+1

C.

Remark 3 (Backward error analysis). The excellent energy behaviour of variational integra-
tors based on constant time-steps can be explained using backward error analysis [26, 30, 16].
However, in the context of collisions, the systems (13)–(14) or (15)–(16) constitute variational
time-stepping equations with a variable time-step. While the discrete trajectory is close to the
exact solution of a single modified Hamiltonian system away from collisions, the stability argu-
ment implied by backward error analysis is no longer applicable here. In [6], a modified collision
Verlet algorithm is proposed that conserves the modified Hamiltonian (to fourth order accuracy
using a higher order method) during the collision steps and thereby gains numerical stability.
Note that collision times are determined solving a quartic equation in [6]. In the presence of a
polynomial potential of degree at most 2, the time-stepping equations proposed in this work are
at most quadratic also during the collision steps. We leave the stability analysis of the scheme
for future work and simply note here, that the numerical example shown in Section 4.4 illustrates
excellent energy behaviour for a simulation with 10000 collisions.

3.2. Multiple collisions

If multiple collisions occur at the same time t◆, i.e. gc(q) � 0 2 Rmc is really vector valued
with mc 2 R, then

⇣Pmc
k=1 gck (q◆)

⌘
�c is used in the discrete action (9). Note that corresponding to

the single unknown collision time t◆, the Lagrange multiplier �c is scalar. Variation with respect
to �c yields

⇣Pmc
k=1 gck (q◆)

⌘
= 0 in (13c) which, together with the positiveness of all components,

is equivalent to gck (q◆) = 0 for k = 1, . . . ,mc. Accordingly,
⇣Pmc

k=1 GT
ck

(q◆)
⌘
�c appears in (14a) and

then, as for single collisions, the discrete energy conservation condition for the complete system
(14c) determines �c. The discrete null space reduction works analogously to the single collision
case.

If collisions follow each other in quick succession, the algorithm does not return to the regular
grid immediately but computes another collision time node within a basic time-step h.

4. Kinematic descriptions and numerical examples

Before we come to the simulation of a colliding polymer chain, we have to recall that the
(discrete) null space method requires that a local parametrisation of the constraint submanifold
C ⇢ Q is available. Hence we address the parametrisation issue first.
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4.1. Kinematics of a rigid body

For models that describe a polymer as a chain of rigid bodies (here: beads), local coordi-
nates are the centre of mass and the orientation of each particle. Here we will use a particular
parametrisation of the rigid body in terms of the 12-dimensional redundant configuration vari-
able q = (', d1, d2, d3) as is described in detail in [4, 25]. The parametrisation uses the centre
of mass ' 2 R3 and the directors dI 2 R3, I = 1, 2, 3 representing the orientation of the body.
Each director triad is constrained to stay orthonormal during the motion. The corresponding null
space matrix and nodal reparametrisation take the form

P(q) =

2
666666666666664

I 0
0 �bd1

0 �bd2

0 �bd3

3
777777777777775
,

'n+1 = 'n +
⇣
u'

⌘
n+1

(d1)n+1 = exp(d✓n+1) (d1)n+1

(d2)n+1 = exp(d✓n+1) (d2)n+1

(d3)n+1 = exp(d✓n+1) (d3)n+1

where un+1 = (
⇣
u'

⌘
n+1
, ✓n+1) consists of the displacement

⇣
u'

⌘
n+1

and the incremental rotation
vector ✓n+1.

4.2. Numerical example: intracolliding rigid spheres

As a first numerical example, we consider two (oriented) rigid spheres of radius r = 0.1
with a uniform density % = 2700 and use a basic time-step of h = 0.01.2 The unilateral contact
constraint takes the form given in (18) below. The bodies are spinning with angular velocities
!1 = (1, 2,�1) and !2 = (2, 3,�3), respectively. Since no forces in tangential direction are
exchanged during the collision, the angular velocities remain unchanged during all simulations.
In this example, the discrete equations of motion are solved using standard Newton-Raphson
iteration (tolerance 10�10) without any damping. In the first simulation, the initial positions
and translational velocities of the spheres’ centres are '1 = (5, 5, 0), '̇1 = (0, 1, 0) and '2 =
(5, 7, 0), '̇2 = (0,�1, 0). The plots in the first row in Figure 2 show the trajectory of the spheres’
centres (whereby their orientation is illustrated by the director triads and the first, contact and
last configuration are plotted) as well as the conservation of energy and angular momentum and
the evolution of the contact constraint. More precisely, oscillation amplitudes are of the order of
magnitude 10�13 for the energy and 10�14 for the angular momentum, i.e. oscillations are smaller
than the tolerance in the Newton-Raphson iteration, thus energy and angular momentum are
considered to be conserved within the numerical tolerance. The middle row shows the results for
the initial conditions '1 = (5, 5,�0.85), '̇1 = (0, 1, 1) and '2 = (5, 7, 1), '̇2 = (0,�1,�1). Due to
the more complex motion, the energy shows a jump of 9·10�5 at the collision (this jump decreases
to 10�7 for h = 0.001 and is about 4 · 10�3 for h = 0.05), nevertheless, oscillations are small
away from the collision (order of magnitude 10�13) and angular momentum is exactly conserved
(order of magnitude 10�14) during the entire simulation. In the first simulation, the contact
constraint is zero at a given time node and then 6 iterations are necessary to solve (16). In the
second simulation, contact occurs between given time nodes, thus (15)–(16) are solved requiring
5 and 13 iterations, respectively. Finally, we consider the initial conditions '1 = (5, 5, 0.2), '̇1 =
(0, 1, 0) and '2 = (5, 7, 0), '̇2 = (0,�1, 0) for which the bodies merely touch each other in passing
at a given time node. This case, in which the contact force is very small (depending on the

2Throughout the article we employ dimensionless units.
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tolerance used for collision detection), is sometimes called a ‘grazing collision’ (cf. [7]). Even
though 64 iterations are required here to solve (16), the algorithm finds a solution and proceeds
further in time as depicted in the last row in Figure 2. Oscillation amplitudes are of the order of
magnitude 10�11 for the energy of 10�14 for the angular momentum.

4.3. Kinematics of a chain of beads
Consider a chain of nmp mass points illustrated in Figure 3 with mass mi and position qi 2 R3,

i = 1, . . . , nmp, being connected by bond constraints, i.e., the distance between adjacent mass
points is constrained to be constant via the m-dimensional constraint function g(q) = 0 reading

gi(q) =
1
2

⇣
||qi+1 � qi||2 � (li+1)2

⌘
= 0 for i = 1, . . . ,m (17)

where m = nmp � 1 and li+1 denotes the initial distance between the mass points qi and qi+1.
Each mass point is modelled as an (orientationless) sphere of radius ri 2 R. The spheres are not
allowed to intersect, thus the motion is subject to the inequality constraint

gi j
c (q) =

1
2

⇣
||qi � q j||2 � (ri + r j)2

⌘
� 0 (18)

for all i , j. In particular, two particles with indices i and j are in contact when gi j
c = 0.

Since the chain is free to move in space, one mass point, say the first one, has three trans-
lational degrees of freedom, hence q̇1 2 R3, while all others can merely rotate around their
neighbours. This gives rise to the following relation of the velocities

q̇i = q̇i�1 + ✓̇ir ri + ✓̇issi for i = 2, . . . , nmp (19)

whereby the vectors di = (qi � qi�1)/li and ri, si form an orthonormal triad. In particular, ri, si

span the tangent plane Tdi S 2. Admissible velocities fulfilling the hidden constraints G(q)q̇ = 0
can be computed as q̇ = P(q)⌫ in terms of the independent velocities ⌫ = (q̇1, ✓̇2r , ✓̇

2
s , . . . , ✓̇

nmp
r , ✓̇

nmp
s )

and the null space matrix

P(q) =

2
666666666666666666664

I 0 0 0 0 . . . 0 0
I r2 s2 0 0 . . . 0 0
I r2 s2 r3 s3 . . . 0 0
...
...
...
...
...
. . . 0 0

I r2 s2 r3 s3 . . . rnmp snmp

3
777777777777777777775

(20)

In particular, PT GT = 0 holds and the null space matrix can be used to eliminate the constraint
forces from the equations of motion. A null space matrix Pc fulfilling PT

c PT GT
c = 0 can easily

be defined, e.g., in the case nmp = 3, it reads

Pc(q) =

2
66666666666666666666664

I 0 0 0
0 �

⇣
q3 � q1

⌘
· (s2) 0 �

⇣
q3 � q1

⌘
· (s3)

0
⇣
q3 � q1

⌘
· (r2) 0 0

0 0 �
⇣
q3 � q1

⌘
· (s3) 0

0 0 0
⇣
q3 � q1

⌘
· (r3)

3
77777777777777777777775

(21)
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Figure 2: Trajectory and evolution of energy, angular momentum (conservation up to numerical tolerance) and contact
constraint for two rigid spheres.
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Figure 3: Model of a chain of beads.

Figure 4: Pre-collision, collision and post-collision trimer configuration.

For the kinematic mass point chain, the discrete generalised coordinates
un+1 =

⇣
u1

n+1,
⇣
u2

r

⌘
n+1
,
⇣
u2

s

⌘
n+1
, . . . ,

⇣
unmp

r

⌘
n+1
,
⇣
unmp

s

⌘
n+1

⌘
comprise the first mass’ displacement

and two incremental rotations for each subsequent mass. The discrete reparametrisation qn+1 =
Fd(un+1, qn) reads

q1
n+1 = q1

n + u1
n+1

qi
n+1 = qi�1

n+1 + li expdi
n

⇣
(ui

r)n+1ri
n + (ui

s)n+1si
n

⌘ (22)

with the exponential map expd : TdS 2 ! S 2 given by

expd(⌫) = cos(||⌫||)d +
sin(||⌫||)
||⌫|| ⌫ (23)

Remark 4 (Branched and looped polymers). Note that for simplicity of exposition, a linear
kinematic chain is described here. However, the methodology can be easily applied to branched
polymer chains and to molecules with loops. For details regarding the discrete null space reduc-
tion we refer to [3, 4, 25].

4.4. Numerical example: intracolliding trimer
This numerical example considers a trimer, thus nmp = 3, consisting of (orientationless)

spheres of radius ri = d
2 = 0.5 with mass mi = 1 for i = 1, 2, 3 and initial distances be-

tween the masses l2 = l3 = 1, see Figure 4. At time t0 = 0, the masses are placed at q0 =
(1, 0, 0, 0, 0, 0, 0,�1, 0) and the initial velocity, being consistent with the hidden constraints, is
q̇0 = (0, 0.5, 0, 0, 0, 0,�0.5, 0, 0). No potential energy is present in this example. Except around
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collisions, time nodes are equispaced with h = 0.5. The possibility to use a relatively large basic
time-step shows the robustness of the variational integrator. Using a Newton-Raphson iteration,
the discrete equations of motion have been solved up to a tolerance of 10�12. Figures 5 and 6
show results of the simulation of 10 and 10000 collisions using the variational integrator with
the discrete null space reduction. The most important observation is the good energy behaviour
which is typical for symplectic integration schemes. Even-though a large basic time-step is used
and many collisions occur, the energy does not show any drift. It oscillates quasi-periodically
with a small amplitude (order of magnitude 10�2) around the correct value during this long-
term simulation. This amplitude (the energy error being the di↵erence between upper and lower
envelope) decreases quadratically for decreasing basic time-steps. The right panel of Figure 5
shows that during a normal time interval (without collision), typically 4 � 5 Newton iterations
are required, while 7 � 9 iterations are necessary in time intervals with collisions. Always, the
last configuration qn is used as an initial guess for the iteration. Around collisions, the presence
of the discrete energy conservation requires a more careful treatment: to ensure that iterates do
not leave the radius of convergence, an ad-hoc damping strategy has been implemented which
ensures that the Euclidian norm of iterative increments is not larger than the basic time-step,
i.e. kul+1

n+1k  h. The diagrams show that in some – but not in all – time intervals with collisions,
one Newton increment has been damped.

Simulations using the variational integrator with the Lagrange multiplier method show in-
distinguishable results concerning the energy evolution. However, as the basic time-step gets
smaller, slightly more Newton iterations are required while damping occurs a little less fre-
quently. The most significant di↵erence is that due to the presence of the Lagrange multipliers,
the condition number becomes much larger as the basic time-step decreases compared to that in
the discrete null space method (see Figure 7).

The comparison of the variational collision integrator with existing methods is summarised
in Table 1. In [17], the same trimer example has been simulated using a collocation-based parti-
tioned Gauss-Runge-Kutta method. Just like the variational integrator used here, this method is
symplectic, momentum conserving and reversible. Furthermore, it preserves quadratic invariants.
In the case of the trimer, energy fluctuations are in the range of 10�7, i.e., energy is preserved
to higher accuracy than for the variational scheme where fluctuations are in the range of 10�2;
see Figure 6. In the purely configuration based formulation of the discrete equations of motion
in the variational integration scheme, the number of unknowns is generally only half as large as
in configuration-velocity or configuration-momentum based formulations. While the Lagrange
multiplier method increases the number of unknowns in the presence of constraints, their number
is reduced to the minimum with the discrete null space reduction. In this example, the number
of unknowns in our new approach is about 23 times smaller than in the configuration-velocity
based collocation method with Lagrange multipliers and s = 10 stages (which are necessary to
cope with the large basic time-step of 0.5). In [17], the collision time is determined via a re-
finement strategy (with the same number of stages) between those collocation points where the
contact takes place. The impulsive contribution of collisions is computed analytically. However,
the large condition numbers in the range of 1012 caused by the presence of Lagrange multipliers
limits the possible collision-time accuracy to 10�4. Between 4 and 5 refinements are neces-
sary to determine the collision time up to this accuracy. In contrast to that, for each collision,
we solve (15)–(16) to the aforementioned tolerance of 10�12. The larger number of unknowns
together with the higher number of required time-steps in the collocation approach with refine-
ment increases the computational costs by a factor of 13 compared to the variational scheme
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Figure 5: Intracolliding trimer: evolution of energy, inequality constraint, number of Newton iterations and number
of necessary dampings during a simulation of 10 collisions using the variational integrator with the discrete null space
reduction.

variational integrator collocation RATTLE
null space reduction stage based refinement bisection

nb. unknowns 65 750 1 540 000 1 251 668

CPU-time < 1 min. 13 min. 6.5 min.

max. condition 102 1012

accuracy t◆ 10�12 10�4 10�4

energy fluctuation 10�2 10�7 10�3 drift

Table 1: Intracolliding trimer: comparison of the trimer motion with 1000 collisions simulated using the variational
integrator with the discrete null space reduction, a collocation method with s = 10 and RATTLE.

with discrete null space reduction. Both methods are comparable concerning the fulfilment of
the constraints on configuration and velocity level and the conservation of angular momentum.
Figure 8 shows an initial segment of the simulations using the variational integrator with discrete
null space reduction and the collocation approach. As can be seen, the di↵ering collision-time
detection strategies cause a slight phase shift.

We moreover compared the variational scheme to a SHAKE/RATTLE integrator. The method
becomes explicit when the Lagrange multipliers are solved for by successive linearisations em-
ploying a nonlinear one-step Gauss-Seidel iteration (see [22]). Using a basic time-step larger
than 0.1 was not possible. Collision times have been determined via a classical bisection strategy
and 6 bisections have been required to determine the collision time to an accuracy of 10�4. The
number of unknowns is comparable to that of the collocation simulation, but the explicit RAT-
TLE simulation is only half as expensive, and therefore it is still approximatey 6.5 times slower
than the variational scheme with discrete null space reduction. Even-though after 1000 collisions
the energy fluctuations are still relatively small, the energy shows an obvious drift (due to the still
relatively large time-step).

15



0 0.5 1 1.5 2 2.5 3 3.5
x 104

0.248

0.25

0.252

0.254

0.256

0.258

0.26

0.262

0.264

0.266

t

en
er

gy
 e

nv
el

op
e

nb. of contacts: 10000       basic time−step: 0.5

10−4 10−3 10−2 10−1 100
10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

h

en
er

gy
 e

rro
r

Figure 6: Intracolliding trimer: envelope of energy evolution during a simulation of 10000 collisions using the variational
integrator with the discrete null space reduction. The energy oscillates quasi-periodically as in Figure 5 between the
upper and lower envelope. The energy error (di↵erence between upper and lower envelope) decreases quadratically for
decreasing basic time-steps.

10−4 10−3 10−2 10−1 100
102

104

106

108

1010

1012

1014

1016

basic time−step

co
nd

iti
on

 n
um

be
r

 

 
null space reduction
Lagrange multipliers

Figure 7: Intracolliding trimer: condition number of the iteration matrix for the variational integrator with Lagrange
multipliers and with null space reduction.

16



0 2 4 6 8 10 12 14 16 18
−0.5

0

0.5

1

1.5

t

co
nt

ac
t c

on
st

ra
in

t

nb. of contacts: 1000       basic time−step: 0.5

var. null space method
collocation

0 2 4 6 8 10 12 14 16 18
−4

−2

0

2

4

t

bo
dy

 1

1
2
3

Figure 8: Intracolliding trimer: initial segment of the contact constraint and evolution of the first body’s coordinates for
the variational integrator and the collocation approach.

17



4.5. Numerical example: chain of four beads in a box

As an example of a more complicated, non-integrable model, we consider a linear chain of
four beads in a three-dimensional box. The trimer from Section 4.4 has been extended by one
additional bead (of the same mass, length and radius) and placed in a box of size 8 ⇥ 10 ⇥ 14
(relative to the bead size with radius r = 0.1). Depending on the initial conditions, planar or
real three-dimensional, periodic or non-periodic motion takes place where multiple collisions
(between multiple beads or between multiple beads and multiple walls) occur.

Periodic motion with simultaneously happening contacts. The aim of the first simulation with
initial conditions

q0 = (� 3
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2
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6
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6
, 0)

is to demonstrate the ability of the algorithm to handle simultaneously happening collisions in
a stable way over a long range of time. The chain moves periodically between the collision
configurations shown in Figure 9. Note that colliding beads are coloured in blue. Even after
10000 collisions (with 5000 corresponding collision time nodes), the collision times do not drift
apart and the energy oscillates quasi-periodically with an amplitude of the order of magnitude
10�2 without any drift, see Figure 10.

Non-integrable three-dimensional motion. Initially, the chain is located as in the last example,
however the initial velocity

q̇0 = (� 1
10
,

1
10
,� 1

10
, 0, 0, 0, 0, 0, 0, 0, 0, 0)

leads to chaotic motion of the chain. Figure 11 illustrates di↵erent configurations, where beads
in contact with other beads are coloured in blue while the red beads are in contact with a wall of
the box. Note that the third row depicts a bead-bead collision happening a very short time before
a bead-wall collision and the fourths row shows a bead-wall collision followed immediately by
a bead-bead collision. In particular, the time between the described collisions is shorter than the
basic time-step h = 0.1. Obviously, the algorithm is capable to handle multiple collisions (at one
time node) and collisions following each other rapidly in a stable way exhibiting good energy
behaviour (fluctuations are are of the order of magnitude 10�4, they are not periodic as in the
previous example, however we do not observe drift, see Figure 12).

5. Conclusion

Starting from a discrete version of Hamilton’s principle, we have derived a structure pre-
serving integrator for mechanical systems including holonomic (bilateral) constraints as well as
unilateral contact (inequality) constraints. The basic idea of the discrete variational principle for
systems involving collisions is to treat both the discrete-time trajectory and unknown collision
time as unknowns; the resulting discrete Euler-Lagrange equations plus boundary conditions then
lead to a time-stepping algorithm that includes the contact force and the constraint forces corre-
sponding to the holonomic constraints. As we have shown all reaction forces can be eliminated
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Figure 9: Chain of four beads, periodic motion: initial, intermediate and collision configurations.
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Figure 10: Chain of four beads, planar periodic motion: envelope of energy evolution during a simulation of 10000
collisions (at 5000 time nodes, two collisions take place simultaneously).
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Figure 11: Chain of four beads, chaotic motion: di↵erent configurations including bead-bead and bead-wall collisions
following each other rapidly.
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Figure 12: Chain of four beads, chaotic motion: evolution of energy during a simulation of 1000 collisions, including
various collisions following each other in quick succession.

from the discrete equations of motion using a discrete null space reduction (involving a projec-
tion and a local reparametrisation step) which considerably reduces the number of unknowns as
compared to the standard treatment with Lagrange multipliers. As a consequence, the condition
number during iteration stays low. This fact, together with the possibility to determine the con-
tact time by solving an algebraic equation rather than searching it via bisection strategies, leads
to much lower computational costs while, at the same time, it increases the accuracy to which the
contact time is determined. Although the overall scheme is not symplectic in any obvious sense,
we found that it shows excellent long-term stability and quasi-energy-conservation akin to sym-
plectic integrators: the total energy remains close to the correct value, even after many thousands
of collisions using a large basic time-step, and even in case of multiple collisions happening at
the same time node or following each other in quick succession. We stress that the method is
rather flexible and can (and should) be extended to, e.g., non-spherical particle geometries or
systems involving a smooth interaction potential. For large particle systems, in which the parti-
cle density varies in di↵erent regions, i.e., collisions occur more frequently in some parts of the
system than in others, a combination with a multiple time-stepping strategy (a multirate integra-
tor [15, 16] or an asynchronous integrator [24]) might be worthwhile. A still open problem is the
backward error analysis of non-smooth systems with variable time-step that will be addressed in
future work.
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